--- _id: '203' abstract: - lang: eng text: Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses. article_processing_charge: No author: - first_name: Mohamad full_name: Abbas, Mohamad id: 47E8FC1C-F248-11E8-B48F-1D18A9856A87 last_name: Abbas - first_name: García J full_name: Hernández, García J last_name: Hernández - first_name: Stephan full_name: Pollmann, Stephan last_name: Pollmann - first_name: Sophia L full_name: Samodelov, Sophia L last_name: Samodelov - first_name: Martina full_name: Kolb, Martina last_name: Kolb - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Ulrich Z full_name: Hammes, Ulrich Z last_name: Hammes - first_name: Matias D full_name: Zurbriggen, Matias D last_name: Zurbriggen - first_name: Miguel full_name: Blázquez, Miguel last_name: Blázquez - first_name: David full_name: Alabadí, David last_name: Alabadí citation: ama: Abbas M, Hernández GJ, Pollmann S, et al. Auxin methylation is required for differential growth in Arabidopsis. PNAS. 2018;115(26):6864-6869. doi:10.1073/pnas.1806565115 apa: Abbas, M., Hernández, G. J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., … Alabadí, D. (2018). Auxin methylation is required for differential growth in Arabidopsis. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1806565115 chicago: Abbas, Mohamad, García J Hernández, Stephan Pollmann, Sophia L Samodelov, Martina Kolb, Jiří Friml, Ulrich Z Hammes, Matias D Zurbriggen, Miguel Blázquez, and David Alabadí. “Auxin Methylation Is Required for Differential Growth in Arabidopsis.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1806565115. ieee: M. Abbas et al., “Auxin methylation is required for differential growth in Arabidopsis,” PNAS, vol. 115, no. 26. National Academy of Sciences, pp. 6864–6869, 2018. ista: Abbas M, Hernández GJ, Pollmann S, Samodelov SL, Kolb M, Friml J, Hammes UZ, Zurbriggen MD, Blázquez M, Alabadí D. 2018. Auxin methylation is required for differential growth in Arabidopsis. PNAS. 115(26), 6864–6869. mla: Abbas, Mohamad, et al. “Auxin Methylation Is Required for Differential Growth in Arabidopsis.” PNAS, vol. 115, no. 26, National Academy of Sciences, 2018, pp. 6864–69, doi:10.1073/pnas.1806565115. short: M. Abbas, G.J. Hernández, S. Pollmann, S.L. Samodelov, M. Kolb, J. Friml, U.Z. Hammes, M.D. Zurbriggen, M. Blázquez, D. Alabadí, PNAS 115 (2018) 6864–6869. date_created: 2018-12-11T11:45:11Z date_published: 2018-06-26T00:00:00Z date_updated: 2023-09-08T13:24:40Z day: '26' department: - _id: JiFr doi: 10.1073/pnas.1806565115 ec_funded: 1 external_id: isi: - '000436245000096' intvolume: ' 115' isi: 1 issue: '26' language: - iso: eng main_file_link: - open_access: '1' url: http://eprints.nottingham.ac.uk/52388/ month: '06' oa: 1 oa_version: None page: 6864-6869 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7710' quality_controlled: '1' scopus_import: '1' status: public title: Auxin methylation is required for differential growth in Arabidopsis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '399' abstract: - lang: eng text: Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm. acknowledgement: We thank Robert Seiringer and Daniel Ueltschi for bringing the issue of the change in critical temperature to our attention. We also thank the Erwin Schrödinger Institute (all authors) and the Department of Mathematics, University of Copenhagen (MN) for the hospitality during the period this work was carried out. We gratefully acknowledge the financial support by the European Unions Seventh Framework Programme under the ERC Grant Agreement Nos. 321029 (JPS and RR) and 337603 (RR) as well as support by the VIL-LUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059) (JPS and RR), by the National Science Center (NCN) under grant No. 2016/21/D/ST1/02430 and the Austrian Science Fund (FWF) through project No. P 27533-N27 (MN). article_number: '10007' article_processing_charge: No article_type: original author: - first_name: Marcin M full_name: Napiórkowski, Marcin M id: 4197AD04-F248-11E8-B48F-1D18A9856A87 last_name: Napiórkowski - first_name: Robin full_name: Reuvers, Robin last_name: Reuvers - first_name: Jan full_name: Solovej, Jan last_name: Solovej citation: ama: Napiórkowski MM, Reuvers R, Solovej J. Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL. 2018;121(1). doi:10.1209/0295-5075/121/10007 apa: Napiórkowski, M. M., Reuvers, R., & Solovej, J. (2018). Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL. IOP Publishing Ltd. https://doi.org/10.1209/0295-5075/121/10007 chicago: Napiórkowski, Marcin M, Robin Reuvers, and Jan Solovej. “Calculation of the Critical Temperature of a Dilute Bose Gas in the Bogoliubov Approximation.” EPL. IOP Publishing Ltd., 2018. https://doi.org/10.1209/0295-5075/121/10007. ieee: M. M. Napiórkowski, R. Reuvers, and J. Solovej, “Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation,” EPL, vol. 121, no. 1. IOP Publishing Ltd., 2018. ista: Napiórkowski MM, Reuvers R, Solovej J. 2018. Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation. EPL. 121(1), 10007. mla: Napiórkowski, Marcin M., et al. “Calculation of the Critical Temperature of a Dilute Bose Gas in the Bogoliubov Approximation.” EPL, vol. 121, no. 1, 10007, IOP Publishing Ltd., 2018, doi:10.1209/0295-5075/121/10007. short: M.M. Napiórkowski, R. Reuvers, J. Solovej, EPL 121 (2018). date_created: 2018-12-11T11:46:15Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-08T13:30:51Z day: '01' department: - _id: RoSe doi: 10.1209/0295-5075/121/10007 external_id: arxiv: - '1706.01822' isi: - '000460003000003' intvolume: ' 121' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1706.01822 month: '01' oa: 1 oa_version: Preprint project: - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems publication: EPL publication_status: published publisher: IOP Publishing Ltd. publist_id: '7432' quality_controlled: '1' scopus_import: '1' status: public title: Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 121 year: '2018' ... --- _id: '5830' abstract: - lang: eng text: CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants. article_processing_charge: No author: - first_name: Luosha full_name: Zhang, Luosha last_name: Zhang - first_name: Xiong full_name: Shi, Xiong last_name: Shi - first_name: Yutao full_name: Zhang, Yutao last_name: Zhang - first_name: Jiajing full_name: Wang, Jiajing last_name: Wang - first_name: Jingwei full_name: Yang, Jingwei last_name: Yang - first_name: Takashi full_name: Ishida, Takashi last_name: Ishida - first_name: Wenqian full_name: Jiang, Wenqian last_name: Jiang - first_name: Xiangyu full_name: Han, Xiangyu last_name: Han - first_name: Jingke full_name: Kang, Jingke last_name: Kang - first_name: Xuening full_name: Wang, Xuening last_name: Wang - first_name: Lixia full_name: Pan, Lixia last_name: Pan - first_name: Shuo full_name: Lv, Shuo last_name: Lv - first_name: Bing full_name: Cao, Bing last_name: Cao - first_name: Yonghong full_name: Zhang, Yonghong last_name: Zhang - first_name: Jinbin full_name: Wu, Jinbin last_name: Wu - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Zhubing full_name: Hu, Zhubing last_name: Hu - first_name: Langjun full_name: Cui, Langjun last_name: Cui - first_name: Shinichiro full_name: Sawa, Shinichiro last_name: Sawa - first_name: Junmin full_name: He, Junmin last_name: He - first_name: Guodong full_name: Wang, Guodong last_name: Wang citation: ama: Zhang L, Shi X, Zhang Y, et al. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana. Plant Cell and Environment. 2018. doi:10.1111/pce.13475 apa: Zhang, L., Shi, X., Zhang, Y., Wang, J., Yang, J., Ishida, T., … Wang, G. (2018). CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana. Plant Cell and Environment. Wiley. https://doi.org/10.1111/pce.13475 chicago: Zhang, Luosha, Xiong Shi, Yutao Zhang, Jiajing Wang, Jingwei Yang, Takashi Ishida, Wenqian Jiang, et al. “CLE9 Peptide-Induced Stomatal Closure Is Mediated by Abscisic Acid, Hydrogen Peroxide, and Nitric Oxide in Arabidopsis Thaliana.” Plant Cell and Environment. Wiley, 2018. https://doi.org/10.1111/pce.13475. ieee: L. Zhang et al., “CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana,” Plant Cell and Environment. Wiley, 2018. ista: Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G. 2018. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana. Plant Cell and Environment. mla: Zhang, Luosha, et al. “CLE9 Peptide-Induced Stomatal Closure Is Mediated by Abscisic Acid, Hydrogen Peroxide, and Nitric Oxide in Arabidopsis Thaliana.” Plant Cell and Environment, Wiley, 2018, doi:10.1111/pce.13475. short: L. Zhang, X. Shi, Y. Zhang, J. Wang, J. Yang, T. Ishida, W. Jiang, X. Han, J. Kang, X. Wang, L. Pan, S. Lv, B. Cao, Y. Zhang, J. Wu, H. Han, Z. Hu, L. Cui, S. Sawa, J. He, G. Wang, Plant Cell and Environment (2018). date_created: 2019-01-13T22:59:11Z date_published: 2018-10-31T00:00:00Z date_updated: 2023-09-11T12:43:31Z day: '31' department: - _id: JiFr doi: 10.1111/pce.13475 external_id: isi: - '000459014800021' pmid: - '30378140' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30378140 month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Plant Cell and Environment publication_identifier: issn: - '01407791' publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '288' abstract: - lang: eng text: Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer. article_processing_charge: No article_type: original author: - first_name: Anna full_name: Lilja, Anna last_name: Lilja - first_name: Veronica full_name: Rodilla, Veronica last_name: Rodilla - first_name: Mathilde full_name: Huyghe, Mathilde last_name: Huyghe - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Camille full_name: Landragin, Camille last_name: Landragin - first_name: Olivier full_name: Renaud, Olivier last_name: Renaud - first_name: Olivier full_name: Leroy, Olivier last_name: Leroy - first_name: Steffen full_name: Rulands, Steffen last_name: Rulands - first_name: Benjamin full_name: Simons, Benjamin last_name: Simons - first_name: Silvia full_name: Fré, Silvia last_name: Fré citation: ama: Lilja A, Rodilla V, Huyghe M, et al. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nature Cell Biology. 2018;20(6):677-687. doi:10.1038/s41556-018-0108-1 apa: Lilja, A., Rodilla, V., Huyghe, M., Hannezo, E. B., Landragin, C., Renaud, O., … Fré, S. (2018). Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/s41556-018-0108-1 chicago: Lilja, Anna, Veronica Rodilla, Mathilde Huyghe, Edouard B Hannezo, Camille Landragin, Olivier Renaud, Olivier Leroy, Steffen Rulands, Benjamin Simons, and Silvia Fré. “Clonal Analysis of Notch1-Expressing Cells Reveals the Existence of Unipotent Stem Cells That Retain Long-Term Plasticity in the Embryonic Mammary Gland.” Nature Cell Biology. Nature Publishing Group, 2018. https://doi.org/10.1038/s41556-018-0108-1. ieee: A. Lilja et al., “Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland,” Nature Cell Biology, vol. 20, no. 6. Nature Publishing Group, pp. 677–687, 2018. ista: Lilja A, Rodilla V, Huyghe M, Hannezo EB, Landragin C, Renaud O, Leroy O, Rulands S, Simons B, Fré S. 2018. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nature Cell Biology. 20(6), 677–687. mla: Lilja, Anna, et al. “Clonal Analysis of Notch1-Expressing Cells Reveals the Existence of Unipotent Stem Cells That Retain Long-Term Plasticity in the Embryonic Mammary Gland.” Nature Cell Biology, vol. 20, no. 6, Nature Publishing Group, 2018, pp. 677–87, doi:10.1038/s41556-018-0108-1. short: A. Lilja, V. Rodilla, M. Huyghe, E.B. Hannezo, C. Landragin, O. Renaud, O. Leroy, S. Rulands, B. Simons, S. Fré, Nature Cell Biology 20 (2018) 677–687. date_created: 2018-12-11T11:45:38Z date_published: 2018-05-21T00:00:00Z date_updated: 2023-09-11T12:44:08Z day: '21' department: - _id: EdHa doi: 10.1038/s41556-018-0108-1 external_id: isi: - '000433237300003' pmid: - '29784917' intvolume: ' 20' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984964 month: '05' oa: 1 oa_version: Submitted Version page: 677 - 687 pmid: 1 publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '7594' quality_controlled: '1' scopus_import: '1' status: public title: Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 20 year: '2018' ... --- _id: '304' abstract: - lang: eng text: "Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods.\r\nAs a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications.\r\n \r\nIn this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process.\r\nThis requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure.\r\nMany of these components should be re-usable for the design of other optical structures at this scale.\r\n \r\nWe show initial results of material samples fabricated based on our designs.\r\nWhile these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications." acknowledgement: This work was in part supported by King Abdullah University of Science and Technology Baseline Funding. alternative_title: - ACM Transactions on Graphics article_number: '159' article_processing_charge: No author: - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Wolfgang full_name: Heidrich, Wolfgang last_name: Heidrich - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: Auzinger T, Heidrich W, Bickel B. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics. 2018;37(4). doi:10.1145/3197517.3201376 apa: Auzinger, T., Heidrich, W., & Bickel, B. (2018). Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3197517.3201376 chicago: Auzinger, Thomas, Wolfgang Heidrich, and Bernd Bickel. “Computational Design of Nanostructural Color for Additive Manufacturing.” ACM Transactions on Graphics. ACM, 2018. https://doi.org/10.1145/3197517.3201376. ieee: T. Auzinger, W. Heidrich, and B. Bickel, “Computational design of nanostructural color for additive manufacturing,” ACM Transactions on Graphics, vol. 37, no. 4. ACM, 2018. ista: Auzinger T, Heidrich W, Bickel B. 2018. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics. 37(4), 159. mla: Auzinger, Thomas, et al. “Computational Design of Nanostructural Color for Additive Manufacturing.” ACM Transactions on Graphics, vol. 37, no. 4, 159, ACM, 2018, doi:10.1145/3197517.3201376. short: T. Auzinger, W. Heidrich, B. Bickel, ACM Transactions on Graphics 37 (2018). date_created: 2018-12-11T11:45:43Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-11T12:46:13Z day: '01' ddc: - '000' - '535' - '680' department: - _id: BeBi doi: 10.1145/3197517.3201376 ec_funded: 1 external_id: isi: - '000448185000120' file: - access_level: open_access checksum: dcdcc955a4c1c6d2599aeebb97d2e7b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:14Z date_updated: 2020-07-14T12:45:59Z file_id: '5334' file_name: IST-2018-1024-v1+1_NanoStructColor-Auzinger-paper.pdf file_size: 10751684 relation: main_file - access_level: open_access checksum: cae52b3a8d5e97be84771cd61ea2f75e content_type: application/pdf creator: system date_created: 2018-12-12T10:18:15Z date_updated: 2020-07-14T12:45:59Z file_id: '5335' file_name: IST-2018-1024-v1+2_NanoStructColor-Auzinger-supplemental.pdf file_size: 20755095 relation: main_file - access_level: open_access checksum: 76dd90648f75779d3f64e324b6daaffe content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:16Z date_updated: 2020-07-14T12:45:59Z file_id: '5336' file_name: IST-2018-1024-v1+3_NanoStructColor-Auzinger-image.jpg file_size: 2186944 relation: main_file - access_level: open_access checksum: c3a5b775a0ecdb20ccefb8d9646ec140 content_type: application/x-7z-compressed creator: system date_created: 2018-12-12T10:18:17Z date_updated: 2020-07-14T12:45:59Z file_id: '5337' file_name: IST-2018-1024-v1+4_NanoStructColor-Auzinger-blueprint.7z file_size: 2734352 relation: main_file - access_level: open_access checksum: dcdcc955a4c1c6d2599aeebb97d2e7b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:18Z date_updated: 2020-07-14T12:45:59Z file_id: '5338' file_name: IST-2018-1024-v2+1_NanoStructColor-Auzinger-paper.pdf file_size: 10751684 relation: main_file - access_level: open_access checksum: 76dd90648f75779d3f64e324b6daaffe content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:19Z date_updated: 2020-07-14T12:45:59Z file_id: '5339' file_name: IST-2018-1024-v2+3_NanoStructColor-Auzinger-image.jpg file_size: 2186944 relation: main_file - access_level: open_access checksum: c3a5b775a0ecdb20ccefb8d9646ec140 content_type: application/x-7z-compressed creator: system date_created: 2018-12-12T10:18:20Z date_updated: 2020-07-14T12:45:59Z file_id: '5340' file_name: IST-2018-1024-v2+4_NanoStructColor-Auzinger-blueprint.7z file_size: 2734352 relation: main_file - access_level: open_access checksum: 667e91b686db41e44d855a4fb2137402 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:21Z date_updated: 2020-07-14T12:45:59Z file_id: '5341' file_name: IST-2018-1024-v2+5_NanoStructColor-Auzinger-supplemental.pdf file_size: 20755762 relation: main_file - access_level: open_access checksum: dcdcc955a4c1c6d2599aeebb97d2e7b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:22Z date_updated: 2020-07-14T12:45:59Z file_id: '5342' file_name: IST-2018-1024-v3+1_NanoStructColor-Auzinger-paper.pdf file_size: 10751684 relation: main_file - access_level: open_access checksum: 76dd90648f75779d3f64e324b6daaffe content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:22Z date_updated: 2020-07-14T12:45:59Z file_id: '5343' file_name: IST-2018-1024-v3+3_NanoStructColor-Auzinger-image.jpg file_size: 2186944 relation: main_file - access_level: open_access checksum: c3a5b775a0ecdb20ccefb8d9646ec140 content_type: application/x-7z-compressed creator: system date_created: 2018-12-12T10:18:23Z date_updated: 2020-07-14T12:45:59Z file_id: '5344' file_name: IST-2018-1024-v3+4_NanoStructColor-Auzinger-blueprint.7z file_size: 2734352 relation: main_file - access_level: open_access checksum: 667e91b686db41e44d855a4fb2137402 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:24Z date_updated: 2020-07-14T12:45:59Z file_id: '5345' file_name: IST-2018-1024-v3+5_NanoStructColor-Auzinger-supplemental.pdf file_size: 20755762 relation: main_file - access_level: open_access checksum: 72dce35388fb1aa7953df4d9ae3d02f1 content_type: application/vnd.openxmlformats-officedocument.presentationml.presentation creator: system date_created: 2018-12-12T10:18:25Z date_updated: 2020-07-14T12:45:59Z file_id: '5346' file_name: IST-2018-1024-v3+6_NanoStructColor-Auzinger-presentation.pptx file_size: 69698068 relation: main_file file_date_updated: 2020-07-14T12:45:59Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: ACM Transactions on Graphics publication_status: published publisher: ACM pubrep_id: '1028' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/color-effects-from-transparent-3d-printed-nanostructures/ scopus_import: '1' status: public title: Computational design of nanostructural color for additive manufacturing type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2018' ... --- _id: '12' abstract: - lang: eng text: Molding is a popular mass production method, in which the initial expenses for the mold are offset by the low per-unit production cost. However, the physical fabrication constraints of the molding technique commonly restrict the shape of moldable objects. For a complex shape, a decomposition of the object into moldable parts is a common strategy to address these constraints, with plastic model kits being a popular and illustrative example. However, conducting such a decomposition requires considerable expertise, and it depends on the technical aspects of the fabrication technique, as well as aesthetic considerations. We present an interactive technique to create such decompositions for two-piece molding, in which each part of the object is cast between two rigid mold pieces. Given the surface description of an object, we decompose its thin-shell equivalent into moldable parts by first performing a coarse decomposition and then utilizing an active contour model for the boundaries between individual parts. Formulated as an optimization problem, the movement of the contours is guided by an energy reflecting fabrication constraints to ensure the moldability of each part. Simultaneously, the user is provided with editing capabilities to enforce aesthetic guidelines. Our interactive interface provides control of the contour positions by allowing, for example, the alignment of part boundaries with object features. Our technique enables a novel workflow, as it empowers novice users to explore the design space, and it generates fabrication-ready two-piece molds that can be used either for casting or industrial injection molding of free-form objects. article_number: '135' article_processing_charge: No author: - first_name: Kazutaka full_name: Nakashima, Kazutaka last_name: Nakashima - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Emmanuel full_name: Iarussi, Emmanuel id: 33F19F16-F248-11E8-B48F-1D18A9856A87 last_name: Iarussi - first_name: Ran full_name: Zhang, Ran id: 4DDBCEB0-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0002-3808-281X - first_name: Takeo full_name: Igarashi, Takeo last_name: Igarashi - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 citation: ama: 'Nakashima K, Auzinger T, Iarussi E, Zhang R, Igarashi T, Bickel B. CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transaction on Graphics. 2018;37(4). doi:10.1145/3197517.3201341' apa: 'Nakashima, K., Auzinger, T., Iarussi, E., Zhang, R., Igarashi, T., & Bickel, B. (2018). CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transaction on Graphics. ACM. https://doi.org/10.1145/3197517.3201341' chicago: 'Nakashima, Kazutaka, Thomas Auzinger, Emmanuel Iarussi, Ran Zhang, Takeo Igarashi, and Bernd Bickel. “CoreCavity: Interactive Shell Decomposition for Fabrication with Two-Piece Rigid Molds.” ACM Transaction on Graphics. ACM, 2018. https://doi.org/10.1145/3197517.3201341.' ieee: 'K. Nakashima, T. Auzinger, E. Iarussi, R. Zhang, T. Igarashi, and B. Bickel, “CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds,” ACM Transaction on Graphics, vol. 37, no. 4. ACM, 2018.' ista: 'Nakashima K, Auzinger T, Iarussi E, Zhang R, Igarashi T, Bickel B. 2018. CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds. ACM Transaction on Graphics. 37(4), 135.' mla: 'Nakashima, Kazutaka, et al. “CoreCavity: Interactive Shell Decomposition for Fabrication with Two-Piece Rigid Molds.” ACM Transaction on Graphics, vol. 37, no. 4, 135, ACM, 2018, doi:10.1145/3197517.3201341.' short: K. Nakashima, T. Auzinger, E. Iarussi, R. Zhang, T. Igarashi, B. Bickel, ACM Transaction on Graphics 37 (2018). date_created: 2018-12-11T11:44:09Z date_published: 2018-08-04T00:00:00Z date_updated: 2023-09-11T12:48:09Z day: '04' ddc: - '004' - '516' - '670' department: - _id: BeBi doi: 10.1145/3197517.3201341 ec_funded: 1 external_id: isi: - '000448185000096' file: - access_level: open_access checksum: 6a5368bc86c4e1a9fcfe588fd1f14ee8 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:38Z date_updated: 2020-07-14T12:44:38Z file_id: '5360' file_name: IST-2018-1037-v1+1_CoreCavity-AuthorVersion.pdf file_size: 104225664 relation: main_file - access_level: open_access checksum: 3861e693ba47c51f3ec7b7867d573a61 content_type: application/zip creator: system date_created: 2018-12-12T10:18:39Z date_updated: 2020-07-14T12:44:38Z file_id: '5361' file_name: IST-2018-1037-v1+2_CoreCavity-Supplemental.zip file_size: 377743553 relation: main_file - access_level: open_access checksum: 490040c685ed869536e2a18f5a906b94 content_type: video/vnd.objectvideo creator: system date_created: 2018-12-12T10:18:41Z date_updated: 2020-07-14T12:44:38Z file_id: '5362' file_name: IST-2018-1037-v1+3_CoreCavity-Video.mp4 file_size: 162634396 relation: main_file - access_level: open_access checksum: be7fc8b229adda727419b6504b3b9352 content_type: image/jpeg creator: system date_created: 2018-12-12T10:18:42Z date_updated: 2020-07-14T12:44:38Z file_id: '5363' file_name: IST-2018-1037-v1+4_CoreCavity-RepresentativeImage.jpg file_size: 527972 relation: main_file file_date_updated: 2020-07-14T12:44:38Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version project: - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design publication: ACM Transaction on Graphics publication_status: published publisher: ACM publist_id: '8044' pubrep_id: '1037' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/interactive-software-tool-makes-complex-mold-design-simple/ scopus_import: '1' status: public title: 'CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2018' ... --- _id: '454' abstract: - lang: eng text: Direct reciprocity is a mechanism for cooperation among humans. Many of our daily interactions are repeated. We interact repeatedly with our family, friends, colleagues, members of the local and even global community. In the theory of repeated games, it is a tacit assumption that the various games that a person plays simultaneously have no effect on each other. Here we introduce a general framework that allows us to analyze “crosstalk” between a player’s concurrent games. In the presence of crosstalk, the action a person experiences in one game can alter the person’s decision in another. We find that crosstalk impedes the maintenance of cooperation and requires stronger levels of forgiveness. The magnitude of the effect depends on the population structure. In more densely connected social groups, crosstalk has a stronger effect. A harsh retaliator, such as Tit-for-Tat, is unable to counteract crosstalk. The crosstalk framework provides a unified interpretation of direct and upstream reciprocity in the context of repeated games. acknowledgement: "This work was supported by the European Research Council (ERC) start grant 279307: Graph Games (C.K.), Austrian Science Fund (FWF) grant no P23499-N23 (C.K.), FWF\r\nNFN grant no S11407-N23 RiSE/SHiNE (C.K.), Office of Naval Research grant N00014-16-1-2914 (M.A.N.), National Cancer Institute grant CA179991 (M.A.N.) and by the John Templeton Foundation. J.G.R. is supported by an Erwin Schrödinger fellowship\r\n(Austrian Science Fund FWF J-3996). C.H. acknowledges generous support from the\r\nISTFELLOW program. The Program for Evolutionary Dynamics is supported in part by\r\na gift from B Wu and Eric Larson." article_number: '555' article_processing_charge: No author: - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: David full_name: Rand, David last_name: Rand - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Reiter J, Hilbe C, Rand D, Chatterjee K, Nowak M. Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness. Nature Communications. 2018;9(1). doi:10.1038/s41467-017-02721-8 apa: Reiter, J., Hilbe, C., Rand, D., Chatterjee, K., & Nowak, M. (2018). Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-017-02721-8 chicago: Reiter, Johannes, Christian Hilbe, David Rand, Krishnendu Chatterjee, and Martin Nowak. “Crosstalk in Concurrent Repeated Games Impedes Direct Reciprocity and Requires Stronger Levels of Forgiveness.” Nature Communications. Nature Publishing Group, 2018. https://doi.org/10.1038/s41467-017-02721-8. ieee: J. Reiter, C. Hilbe, D. Rand, K. Chatterjee, and M. Nowak, “Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness,” Nature Communications, vol. 9, no. 1. Nature Publishing Group, 2018. ista: Reiter J, Hilbe C, Rand D, Chatterjee K, Nowak M. 2018. Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness. Nature Communications. 9(1), 555. mla: Reiter, Johannes, et al. “Crosstalk in Concurrent Repeated Games Impedes Direct Reciprocity and Requires Stronger Levels of Forgiveness.” Nature Communications, vol. 9, no. 1, 555, Nature Publishing Group, 2018, doi:10.1038/s41467-017-02721-8. short: J. Reiter, C. Hilbe, D. Rand, K. Chatterjee, M. Nowak, Nature Communications 9 (2018). date_created: 2018-12-11T11:46:34Z date_published: 2018-02-07T00:00:00Z date_updated: 2023-09-11T12:51:03Z day: '07' ddc: - '004' department: - _id: KrCh doi: 10.1038/s41467-017-02721-8 ec_funded: 1 external_id: isi: - '000424318200001' file: - access_level: open_access checksum: b6b90367545b4c615891c960ab0567f1 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:18Z date_updated: 2020-07-14T12:46:31Z file_id: '4741' file_name: IST-2018-964-v1+1_2018_Hilbe_Crosstalk_in.pdf file_size: 843646 relation: main_file file_date_updated: 2020-07-14T12:46:31Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '7368' pubrep_id: '964' quality_controlled: '1' scopus_import: '1' status: public title: Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 9 year: '2018' ... --- _id: '320' abstract: - lang: eng text: 'Fast-spiking, parvalbumin-expressing GABAergic interneurons (PV+-BCs) express a complex machinery of rapid signaling mechanisms, including specialized voltage-gated ion channels to generate brief action potentials (APs). However, short APs are associated with overlapping Na+ and K+ fluxes and are therefore energetically expensive. How the potentially vicious combination of high AP frequency and inefficient spike generation can be reconciled with limited energy supply is presently unclear. To address this question, we performed direct recordings from the PV+-BC axon, the subcellular structure where active conductances for AP initiation and propagation are located. Surprisingly, the energy required for the AP was, on average, only ∼1.6 times the theoretical minimum. High energy efficiency emerged from the combination of fast inactivation of Na+ channels and delayed activation of Kv3-type K+ channels, which minimized ion flux overlap during APs. Thus, the complementary tuning of axonal Na+ and K+ channel gating optimizes both fast signaling properties and metabolic efficiency. Hu et al. demonstrate that action potentials in parvalbumin-expressing GABAergic interneuron axons are energetically efficient, which is highly unexpected given their brief duration. High energy efficiency emerges from the combination of fast inactivation of voltage-gated Na+ channels and delayed activation of Kv3 channels in the axon. ' article_processing_charge: Yes (in subscription journal) author: - first_name: Hua full_name: Hu, Hua id: 4AC0145C-F248-11E8-B48F-1D18A9856A87 last_name: Hu - first_name: Fabian full_name: Roth, Fabian last_name: Roth - first_name: David H full_name: Vandael, David H id: 3AE48E0A-F248-11E8-B48F-1D18A9856A87 last_name: Vandael orcid: 0000-0001-7577-1676 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Hu H, Roth F, Vandael DH, Jonas PM. Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons. Neuron. 2018;98(1):156-165. doi:10.1016/j.neuron.2018.02.024 apa: Hu, H., Roth, F., Vandael, D. H., & Jonas, P. M. (2018). Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2018.02.024 chicago: Hu, Hua, Fabian Roth, David H Vandael, and Peter M Jonas. “Complementary Tuning of Na+ and K+ Channel Gating Underlies Fast and Energy-Efficient Action Potentials in GABAergic Interneuron Axons.” Neuron. Elsevier, 2018. https://doi.org/10.1016/j.neuron.2018.02.024. ieee: H. Hu, F. Roth, D. H. Vandael, and P. M. Jonas, “Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons,” Neuron, vol. 98, no. 1. Elsevier, pp. 156–165, 2018. ista: Hu H, Roth F, Vandael DH, Jonas PM. 2018. Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons. Neuron. 98(1), 156–165. mla: Hu, Hua, et al. “Complementary Tuning of Na+ and K+ Channel Gating Underlies Fast and Energy-Efficient Action Potentials in GABAergic Interneuron Axons.” Neuron, vol. 98, no. 1, Elsevier, 2018, pp. 156–65, doi:10.1016/j.neuron.2018.02.024. short: H. Hu, F. Roth, D.H. Vandael, P.M. Jonas, Neuron 98 (2018) 156–165. date_created: 2018-12-11T11:45:48Z date_published: 2018-04-04T00:00:00Z date_updated: 2023-09-11T12:45:10Z day: '04' ddc: - '570' department: - _id: PeJo doi: 10.1016/j.neuron.2018.02.024 ec_funded: 1 external_id: isi: - '000429192100016' file: - access_level: open_access checksum: 76070f3729f9c603e1080d0151aa2b11 content_type: application/pdf creator: dernst date_created: 2018-12-17T10:37:50Z date_updated: 2020-07-14T12:46:03Z file_id: '5690' file_name: 2018_Neuron_Hu.pdf file_size: 3180444 relation: main_file file_date_updated: 2020-07-14T12:46:03Z has_accepted_license: '1' intvolume: ' 98' isi: 1 issue: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 156 - 165 project: - _id: 25C0F108-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '268548' name: Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C26B1E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P24909-B24 name: Mechanisms of transmitter release at GABAergic synapses - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize publication: Neuron publication_status: published publisher: Elsevier publist_id: '7545' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/a-certain-type-of-neurons-is-more-energy-efficient-than-previously-assumed/ scopus_import: '1' status: public title: Complementary tuning of Na+ and K+ channel gating underlies fast and energy-efficient action potentials in GABAergic interneuron axons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 98 year: '2018' ... --- _id: '423' abstract: - lang: eng text: Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. acknowledgement: "We are grateful to Remy Chait for his help and assistance with establishing our experimental setups and to Tobias Bergmiller for valuable insights into some specific experimental details. We thank Luciano Marraffini for donating us the pCas9 plasmid used in this study. We also want to express our gratitude to Seth Barribeau, Andrea Betancourt, Călin Guet, Mato Lagator, Tiago Paixão and Maroš Pleška for valuable discussions on the manuscript. Finally, we would like to thank the \r\neditors and reviewers for their helpful comments and suggestions." article_number: e32035 article_processing_charge: No author: - first_name: Pavel full_name: Payne, Pavel id: 35F78294-F248-11E8-B48F-1D18A9856A87 last_name: Payne orcid: 0000-0002-2711-9453 - first_name: Lukas full_name: Geyrhofer, Lukas last_name: Geyrhofer - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 citation: ama: Payne P, Geyrhofer L, Barton NH, Bollback JP. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife. 2018;7. doi:10.7554/eLife.32035 apa: Payne, P., Geyrhofer, L., Barton, N. H., & Bollback, J. P. (2018). CRISPR-based herd immunity can limit phage epidemics in bacterial populations. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.32035 chicago: Payne, Pavel, Lukas Geyrhofer, Nicholas H Barton, and Jonathan P Bollback. “CRISPR-Based Herd Immunity Can Limit Phage Epidemics in Bacterial Populations.” ELife. eLife Sciences Publications, 2018. https://doi.org/10.7554/eLife.32035. ieee: P. Payne, L. Geyrhofer, N. H. Barton, and J. P. Bollback, “CRISPR-based herd immunity can limit phage epidemics in bacterial populations,” eLife, vol. 7. eLife Sciences Publications, 2018. ista: Payne P, Geyrhofer L, Barton NH, Bollback JP. 2018. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife. 7, e32035. mla: Payne, Pavel, et al. “CRISPR-Based Herd Immunity Can Limit Phage Epidemics in Bacterial Populations.” ELife, vol. 7, e32035, eLife Sciences Publications, 2018, doi:10.7554/eLife.32035. short: P. Payne, L. Geyrhofer, N.H. Barton, J.P. Bollback, ELife 7 (2018). date_created: 2018-12-11T11:46:23Z date_published: 2018-03-09T00:00:00Z date_updated: 2023-09-11T12:49:17Z day: '09' ddc: - '576' department: - _id: NiBa - _id: JoBo doi: 10.7554/eLife.32035 ec_funded: 1 external_id: isi: - '000431035800001' file: - access_level: open_access checksum: 447cf6e680bdc3c01062a8737d876569 content_type: application/pdf creator: dernst date_created: 2018-12-17T10:36:07Z date_updated: 2020-07-14T12:46:25Z file_id: '5689' file_name: 2018_eLife_Payne.pdf file_size: 3533881 relation: main_file file_date_updated: 2020-07-14T12:46:25Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '7400' quality_controlled: '1' related_material: record: - id: '9840' relation: research_data status: public scopus_import: '1' status: public title: CRISPR-based herd immunity can limit phage epidemics in bacterial populations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2018' ... --- _id: '5791' abstract: - lang: eng text: Due to data compression or low resolution, nearby vertices and edges of a graph drawing may be bundled to a common node or arc. We model such a “compromised” drawing by a piecewise linear map φ:G → ℝ. We wish to perturb φ by an arbitrarily small ε>0 into a proper drawing (in which the vertices are distinct points, any two edges intersect in finitely many points, and no three edges have a common interior point) that minimizes the number of crossings. An ε-perturbation, for every ε>0, is given by a piecewise linear map (Formula Presented), where with ||·|| is the uniform norm (i.e., sup norm). We present a polynomial-time solution for this optimization problem when G is a cycle and the map φ has no spurs (i.e., no two adjacent edges are mapped to overlapping arcs). We also show that the problem becomes NP-complete (i) when G is an arbitrary graph and φ has no spurs, and (ii) when φ may have spurs and G is a cycle or a union of disjoint paths. alternative_title: - LNCS article_processing_charge: No author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: Csaba D. full_name: Tóth, Csaba D. last_name: Tóth citation: ama: 'Fulek R, Tóth CD. Crossing minimization in perturbed drawings. In: Vol 11282. Springer; 2018:229-241. doi:10.1007/978-3-030-04414-5_16' apa: 'Fulek, R., & Tóth, C. D. (2018). Crossing minimization in perturbed drawings (Vol. 11282, pp. 229–241). Presented at the Graph Drawing and Network Visualization, Barcelona, Spain: Springer. https://doi.org/10.1007/978-3-030-04414-5_16' chicago: Fulek, Radoslav, and Csaba D. Tóth. “Crossing Minimization in Perturbed Drawings,” 11282:229–41. Springer, 2018. https://doi.org/10.1007/978-3-030-04414-5_16. ieee: R. Fulek and C. D. Tóth, “Crossing minimization in perturbed drawings,” presented at the Graph Drawing and Network Visualization, Barcelona, Spain, 2018, vol. 11282, pp. 229–241. ista: Fulek R, Tóth CD. 2018. Crossing minimization in perturbed drawings. Graph Drawing and Network Visualization, LNCS, vol. 11282, 229–241. mla: Fulek, Radoslav, and Csaba D. Tóth. Crossing Minimization in Perturbed Drawings. Vol. 11282, Springer, 2018, pp. 229–41, doi:10.1007/978-3-030-04414-5_16. short: R. Fulek, C.D. Tóth, in:, Springer, 2018, pp. 229–241. conference: end_date: 2018-09-28 location: Barcelona, Spain name: Graph Drawing and Network Visualization start_date: 2018-09-26 date_created: 2018-12-30T22:59:15Z date_published: 2018-12-18T00:00:00Z date_updated: 2023-09-11T12:49:55Z day: '18' department: - _id: UlWa doi: 10.1007/978-3-030-04414-5_16 external_id: arxiv: - '1808.07608' isi: - '000672802500016' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1808.07608 month: '12' oa: 1 oa_version: Preprint page: 229-241 publication_identifier: isbn: - '9783030044138' publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Crossing minimization in perturbed drawings type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: '11282 ' year: '2018' ... --- _id: '291' abstract: - lang: eng text: Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions. article_number: '054401' article_processing_charge: No author: - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Budanur NB, Hof B. Complexity of the laminar-turbulent boundary in pipe flow. Physical Review Fluids. 2018;3(5). doi:10.1103/PhysRevFluids.3.054401 apa: Budanur, N. B., & Hof, B. (2018). Complexity of the laminar-turbulent boundary in pipe flow. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/PhysRevFluids.3.054401 chicago: Budanur, Nazmi B, and Björn Hof. “Complexity of the Laminar-Turbulent Boundary in Pipe Flow.” Physical Review Fluids. American Physical Society, 2018. https://doi.org/10.1103/PhysRevFluids.3.054401. ieee: N. B. Budanur and B. Hof, “Complexity of the laminar-turbulent boundary in pipe flow,” Physical Review Fluids, vol. 3, no. 5. American Physical Society, 2018. ista: Budanur NB, Hof B. 2018. Complexity of the laminar-turbulent boundary in pipe flow. Physical Review Fluids. 3(5), 054401. mla: Budanur, Nazmi B., and Björn Hof. “Complexity of the Laminar-Turbulent Boundary in Pipe Flow.” Physical Review Fluids, vol. 3, no. 5, 054401, American Physical Society, 2018, doi:10.1103/PhysRevFluids.3.054401. short: N.B. Budanur, B. Hof, Physical Review Fluids 3 (2018). date_created: 2018-12-11T11:45:39Z date_published: 2018-05-30T00:00:00Z date_updated: 2023-09-11T12:45:44Z day: '30' department: - _id: BjHo doi: 10.1103/PhysRevFluids.3.054401 external_id: arxiv: - '1802.01918' isi: - '000433426200001' intvolume: ' 3' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1802.01918 month: '05' oa: 1 oa_version: Preprint publication: Physical Review Fluids publication_status: published publisher: American Physical Society publist_id: '7590' quality_controlled: '1' scopus_import: '1' status: public title: Complexity of the laminar-turbulent boundary in pipe flow type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 3 year: '2018' ... --- _id: '58' abstract: - lang: eng text: 'Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.' article_processing_charge: No author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Erel full_name: Segal Halevi, Erel last_name: Segal Halevi citation: ama: Akopyan A, Segal Halevi E. Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. 2018;32(3):2242-2257. doi:10.1137/16M110407X apa: Akopyan, A., & Segal Halevi, E. (2018). Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/16M110407X chicago: Akopyan, Arseniy, and Erel Segal Halevi. “Counting Blanks in Polygonal Arrangements.” SIAM Journal on Discrete Mathematics. Society for Industrial and Applied Mathematics , 2018. https://doi.org/10.1137/16M110407X. ieee: A. Akopyan and E. Segal Halevi, “Counting blanks in polygonal arrangements,” SIAM Journal on Discrete Mathematics, vol. 32, no. 3. Society for Industrial and Applied Mathematics , pp. 2242–2257, 2018. ista: Akopyan A, Segal Halevi E. 2018. Counting blanks in polygonal arrangements. SIAM Journal on Discrete Mathematics. 32(3), 2242–2257. mla: Akopyan, Arseniy, and Erel Segal Halevi. “Counting Blanks in Polygonal Arrangements.” SIAM Journal on Discrete Mathematics, vol. 32, no. 3, Society for Industrial and Applied Mathematics , 2018, pp. 2242–57, doi:10.1137/16M110407X. short: A. Akopyan, E. Segal Halevi, SIAM Journal on Discrete Mathematics 32 (2018) 2242–2257. date_created: 2018-12-11T11:44:24Z date_published: 2018-09-06T00:00:00Z date_updated: 2023-09-11T12:48:39Z day: '06' department: - _id: HeEd doi: 10.1137/16M110407X ec_funded: 1 external_id: arxiv: - '1604.00960' isi: - '000450810500036' intvolume: ' 32' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1604.00960 month: '09' oa: 1 oa_version: Preprint page: 2242 - 2257 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: SIAM Journal on Discrete Mathematics publication_status: published publisher: 'Society for Industrial and Applied Mathematics ' publist_id: '7996' quality_controlled: '1' scopus_import: '1' status: public title: Counting blanks in polygonal arrangements type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2018' ... --- _id: '9840' abstract: - lang: eng text: Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. article_processing_charge: No author: - first_name: Pavel full_name: Payne, Pavel id: 35F78294-F248-11E8-B48F-1D18A9856A87 last_name: Payne orcid: 0000-0002-2711-9453 - first_name: Lukas full_name: Geyrhofer, Lukas last_name: Geyrhofer - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 citation: ama: 'Payne P, Geyrhofer L, Barton NH, Bollback JP. Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations. 2018. doi:10.5061/dryad.42n44' apa: 'Payne, P., Geyrhofer, L., Barton, N. H., & Bollback, J. P. (2018). Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations. Dryad. https://doi.org/10.5061/dryad.42n44' chicago: 'Payne, Pavel, Lukas Geyrhofer, Nicholas H Barton, and Jonathan P Bollback. “Data from: CRISPR-Based Herd Immunity Limits Phage Epidemics in Bacterial Populations.” Dryad, 2018. https://doi.org/10.5061/dryad.42n44.' ieee: 'P. Payne, L. Geyrhofer, N. H. Barton, and J. P. Bollback, “Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations.” Dryad, 2018.' ista: 'Payne P, Geyrhofer L, Barton NH, Bollback JP. 2018. Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations, Dryad, 10.5061/dryad.42n44.' mla: 'Payne, Pavel, et al. Data from: CRISPR-Based Herd Immunity Limits Phage Epidemics in Bacterial Populations. Dryad, 2018, doi:10.5061/dryad.42n44.' short: P. Payne, L. Geyrhofer, N.H. Barton, J.P. Bollback, (2018). date_created: 2021-08-09T13:10:02Z date_published: 2018-03-12T00:00:00Z date_updated: 2023-09-11T12:49:17Z day: '12' department: - _id: NiBa - _id: JoBo doi: 10.5061/dryad.42n44 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.42n44 month: '03' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '423' relation: used_in_publication status: public status: public title: 'Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '616' abstract: - lang: eng text: Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation. article_number: e32073 article_processing_charge: Yes author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Line V full_name: Ugelvig, Line V id: 3DC97C8E-F248-11E8-B48F-1D18A9856A87 last_name: Ugelvig orcid: 0000-0003-1832-8883 - first_name: Florian full_name: Wiesenhofer, Florian id: 39523C54-F248-11E8-B48F-1D18A9856A87 last_name: Wiesenhofer - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Simon full_name: Tragust, Simon id: 35A7A418-F248-11E8-B48F-1D18A9856A87 last_name: Tragust - first_name: Thomas full_name: Schmitt, Thomas last_name: Schmitt - first_name: Mark full_name: Brown, Mark last_name: Brown - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Pull C, Ugelvig LV, Wiesenhofer F, et al. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife. 2018;7. doi:10.7554/eLife.32073 apa: Pull, C., Ugelvig, L. V., Wiesenhofer, F., Grasse, A. V., Tragust, S., Schmitt, T., … Cremer, S. (2018). Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.32073 chicago: Pull, Christopher, Line V Ugelvig, Florian Wiesenhofer, Anna V Grasse, Simon Tragust, Thomas Schmitt, Mark Brown, and Sylvia Cremer. “Destructive Disinfection of Infected Brood Prevents Systemic Disease Spread in Ant Colonies.” ELife. eLife Sciences Publications, 2018. https://doi.org/10.7554/eLife.32073. ieee: C. Pull et al., “Destructive disinfection of infected brood prevents systemic disease spread in ant colonies,” eLife, vol. 7. eLife Sciences Publications, 2018. ista: Pull C, Ugelvig LV, Wiesenhofer F, Grasse AV, Tragust S, Schmitt T, Brown M, Cremer S. 2018. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife. 7, e32073. mla: Pull, Christopher, et al. “Destructive Disinfection of Infected Brood Prevents Systemic Disease Spread in Ant Colonies.” ELife, vol. 7, e32073, eLife Sciences Publications, 2018, doi:10.7554/eLife.32073. short: C. Pull, L.V. Ugelvig, F. Wiesenhofer, A.V. Grasse, S. Tragust, T. Schmitt, M. Brown, S. Cremer, ELife 7 (2018). date_created: 2018-12-11T11:47:31Z date_published: 2018-01-09T00:00:00Z date_updated: 2023-09-11T12:54:26Z day: '09' ddc: - '570' - '590' department: - _id: SyCr doi: 10.7554/eLife.32073 ec_funded: 1 external_id: isi: - '000419601300001' file: - access_level: open_access checksum: 540f941e8d3530a9441e4affd94f07d7 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:43Z date_updated: 2020-07-14T12:47:20Z file_id: '4832' file_name: IST-2018-978-v1+1_elife-32073-v1.pdf file_size: 1435585 relation: main_file file_date_updated: 2020-07-14T12:47:20Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' - _id: 25DDF0F0-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '302004' name: 'Pathogen Detectors Collective disease defence and pathogen detection abilities in ant societies: a chemo-neuro-immunological approach' publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '7188' pubrep_id: '978' quality_controlled: '1' related_material: record: - id: '819' relation: dissertation_contains status: public scopus_import: '1' status: public title: Destructive disinfection of infected brood prevents systemic disease spread in ant colonies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2018' ... --- _id: '132' abstract: - lang: eng text: Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments. acknowledgement: E.H. is funded by a Junior Research Fellowship from Trinity College, Cam-bridge, a Sir Henry Wellcome Fellowship from the Wellcome Trust, and theBettencourt-Schueller Young Researcher Prize for support. article_processing_charge: No article_type: original author: - first_name: Magdalena full_name: Sznurkowska, Magdalena last_name: Sznurkowska - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Roberta full_name: Azzarelli, Roberta last_name: Azzarelli - first_name: Steffen full_name: Rulands, Steffen last_name: Rulands - first_name: Sonia full_name: Nestorowa, Sonia last_name: Nestorowa - first_name: Christopher full_name: Hindley, Christopher last_name: Hindley - first_name: Jennifer full_name: Nichols, Jennifer last_name: Nichols - first_name: Berthold full_name: Göttgens, Berthold last_name: Göttgens - first_name: Meritxell full_name: Huch, Meritxell last_name: Huch - first_name: Anna full_name: Philpott, Anna last_name: Philpott - first_name: Benjamin full_name: Simons, Benjamin last_name: Simons citation: ama: Sznurkowska M, Hannezo EB, Azzarelli R, et al. Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell. 2018;46(3):360-375. doi:10.1016/j.devcel.2018.06.028 apa: Sznurkowska, M., Hannezo, E. B., Azzarelli, R., Rulands, S., Nestorowa, S., Hindley, C., … Simons, B. (2018). Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2018.06.028 chicago: Sznurkowska, Magdalena, Edouard B Hannezo, Roberta Azzarelli, Steffen Rulands, Sonia Nestorowa, Christopher Hindley, Jennifer Nichols, et al. “Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development.” Developmental Cell. Cell Press, 2018. https://doi.org/10.1016/j.devcel.2018.06.028. ieee: M. Sznurkowska et al., “Defining lineage potential and fate behavior of precursors during pancreas development,” Developmental Cell, vol. 46, no. 3. Cell Press, pp. 360–375, 2018. ista: Sznurkowska M, Hannezo EB, Azzarelli R, Rulands S, Nestorowa S, Hindley C, Nichols J, Göttgens B, Huch M, Philpott A, Simons B. 2018. Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell. 46(3), 360–375. mla: Sznurkowska, Magdalena, et al. “Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development.” Developmental Cell, vol. 46, no. 3, Cell Press, 2018, pp. 360–75, doi:10.1016/j.devcel.2018.06.028. short: M. Sznurkowska, E.B. Hannezo, R. Azzarelli, S. Rulands, S. Nestorowa, C. Hindley, J. Nichols, B. Göttgens, M. Huch, A. Philpott, B. Simons, Developmental Cell 46 (2018) 360–375. date_created: 2018-12-11T11:44:48Z date_published: 2018-08-06T00:00:00Z date_updated: 2023-09-11T12:52:41Z day: '06' ddc: - '570' department: - _id: EdHa doi: 10.1016/j.devcel.2018.06.028 external_id: isi: - '000441327300012' file: - access_level: open_access checksum: 78d2062b9e3c3b90fe71545aeb6d2f65 content_type: application/pdf creator: dernst date_created: 2018-12-17T10:49:49Z date_updated: 2020-07-14T12:44:43Z file_id: '5694' file_name: 2018_DevelopmentalCell_Sznurkowska.pdf file_size: 8948384 relation: main_file file_date_updated: 2020-07-14T12:44:43Z has_accepted_license: '1' intvolume: ' 46' isi: 1 issue: '3' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 360 - 375 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '7791' quality_controlled: '1' scopus_import: '1' status: public title: Defining lineage potential and fate behavior of precursors during pancreas development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 46 year: '2018' ... --- _id: '42' abstract: - lang: eng text: Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield. acknowledgement: This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic through the National Program of Sustainability (grant no. LO1204). article_processing_charge: No author: - first_name: Mara full_name: Cucinotta, Mara last_name: Cucinotta - first_name: Silvia full_name: Manrique, Silvia last_name: Manrique - first_name: Candela full_name: Cuesta, Candela id: 33A3C818-F248-11E8-B48F-1D18A9856A87 last_name: Cuesta orcid: 0000-0003-1923-2410 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Lucia full_name: Colombo, Lucia last_name: Colombo citation: ama: Cucinotta M, Manrique S, Cuesta C, Benková E, Novák O, Colombo L. Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis. Journal of Experimental Botany. 2018;69(21):5169-5176. doi:10.1093/jxb/ery281 apa: Cucinotta, M., Manrique, S., Cuesta, C., Benková, E., Novák, O., & Colombo, L. (2018). Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/ery281 chicago: Cucinotta, Mara, Silvia Manrique, Candela Cuesta, Eva Benková, Ondřej Novák, and Lucia Colombo. “Cup-Shaped Cotyledon1 (CUC1) and CU2 Regulate Cytokinin Homeostasis to Determine Ovule Number in Arabidopsis.” Journal of Experimental Botany. Oxford University Press, 2018. https://doi.org/10.1093/jxb/ery281. ieee: M. Cucinotta, S. Manrique, C. Cuesta, E. Benková, O. Novák, and L. Colombo, “Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis,” Journal of Experimental Botany, vol. 69, no. 21. Oxford University Press, pp. 5169–5176, 2018. ista: Cucinotta M, Manrique S, Cuesta C, Benková E, Novák O, Colombo L. 2018. Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis. Journal of Experimental Botany. 69(21), 5169–5176. mla: Cucinotta, Mara, et al. “Cup-Shaped Cotyledon1 (CUC1) and CU2 Regulate Cytokinin Homeostasis to Determine Ovule Number in Arabidopsis.” Journal of Experimental Botany, vol. 69, no. 21, Oxford University Press, 2018, pp. 5169–76, doi:10.1093/jxb/ery281. short: M. Cucinotta, S. Manrique, C. Cuesta, E. Benková, O. Novák, L. Colombo, Journal of Experimental Botany 69 (2018) 5169–5176. date_created: 2018-12-11T11:44:19Z date_published: 2018-07-26T00:00:00Z date_updated: 2023-09-11T12:52:03Z day: '26' ddc: - '575' department: - _id: EvBe doi: 10.1093/jxb/ery281 external_id: isi: - '000448163900015' file: - access_level: open_access checksum: ca3b6711040b1662488aeb3d1f961f13 content_type: application/pdf creator: dernst date_created: 2018-12-17T10:44:16Z date_updated: 2020-07-14T12:46:25Z file_id: '5691' file_name: 2018_JournalExperimBotany_Cucinotta.pdf file_size: 1292128 relation: main_file file_date_updated: 2020-07-14T12:46:25Z has_accepted_license: '1' intvolume: ' 69' isi: 1 issue: '21' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 5169 - 5176 publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '8012' quality_controlled: '1' scopus_import: '1' status: public title: Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 69 year: '2018' ... --- _id: '407' abstract: - lang: eng text: Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N6-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5). All prepared compounds were screened for affinity for the Arabidopsis thaliana cytokinin receptor (CRE1/AHK4). Although the attachment of the fluorescent labels to iP via the linkers mostly disrupted binding to the receptor, several fluorescent derivatives interacted well. For this reason, three derivatives, two rhodamine B and one 4-chloro-7-nitrobenzofurazan labeled iP were tested for their interaction with CRE1/AHK4 and Zea mays cytokinin receptors in detail. We further showed that the three derivatives were able to activate transcription of cytokinin response regulator ARR5 in Arabidopsis seedlings. The activity of fluorescently labeled cytokinins was compared with corresponding 6-dimethylaminopurine fluorescently labeled negative controls. Selected rhodamine B C2-labeled compounds 17, 18 and 4-chloro-7-nitrobenzofurazan N9-labeled compound 28 and their respective negative controls (19, 20 and 29, respectively) were used for in planta staining experiments in Arabidopsis thaliana cell suspension culture using live cell confocal microscopy. acknowledgement: "This work was supported by the Ministry of Education Youth and Sports, Czech Republic (grant LO1204 from the National Program of Sustainability I and Agricultural Research ) and by Czech Science Foundation grants 16-04184S , 501/10/1450 and 13-39982S and by IGA projects IGA_PrF_2018_033 and IGA_PrF_2018_023 . We would like to thank Jarmila Balonová, Olga Hustáková and Miroslava Šubová for their skillful technical assistance and Mgr. Tomáš Pospíšil, Ph.D. for his measurement of 1 H NMR and analysis of some 2D NMR spectral data. \r\n" article_processing_charge: No author: - first_name: Karolina full_name: Kubiasová, Karolina last_name: Kubiasová - first_name: Václav full_name: Mik, Václav last_name: Mik - first_name: Jaroslav full_name: Nisler, Jaroslav last_name: Nisler - first_name: Martin full_name: Hönig, Martin last_name: Hönig - first_name: Alexandra full_name: Husičková, Alexandra last_name: Husičková - first_name: Lukáš full_name: Spíchal, Lukáš last_name: Spíchal - first_name: Zuzana full_name: Pěkná, Zuzana last_name: Pěkná - first_name: Olga full_name: Šamajová, Olga last_name: Šamajová - first_name: Karel full_name: Doležal, Karel last_name: Doležal - first_name: Ondřej full_name: Plíhal, Ondřej last_name: Plíhal - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Lucie full_name: Plíhalová, Lucie last_name: Plíhalová citation: ama: Kubiasová K, Mik V, Nisler J, et al. Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry. 2018;150:1-11. doi:10.1016/j.phytochem.2018.02.015 apa: Kubiasová, K., Mik, V., Nisler, J., Hönig, M., Husičková, A., Spíchal, L., … Plíhalová, L. (2018). Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry. Elsevier. https://doi.org/10.1016/j.phytochem.2018.02.015 chicago: Kubiasová, Karolina, Václav Mik, Jaroslav Nisler, Martin Hönig, Alexandra Husičková, Lukáš Spíchal, Zuzana Pěkná, et al. “Design, Synthesis and Perception of Fluorescently Labeled Isoprenoid Cytokinins.” Phytochemistry. Elsevier, 2018. https://doi.org/10.1016/j.phytochem.2018.02.015. ieee: K. Kubiasová et al., “Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins,” Phytochemistry, vol. 150. Elsevier, pp. 1–11, 2018. ista: Kubiasová K, Mik V, Nisler J, Hönig M, Husičková A, Spíchal L, Pěkná Z, Šamajová O, Doležal K, Plíhal O, Benková E, Strnad M, Plíhalová L. 2018. Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry. 150, 1–11. mla: Kubiasová, Karolina, et al. “Design, Synthesis and Perception of Fluorescently Labeled Isoprenoid Cytokinins.” Phytochemistry, vol. 150, Elsevier, 2018, pp. 1–11, doi:10.1016/j.phytochem.2018.02.015. short: K. Kubiasová, V. Mik, J. Nisler, M. Hönig, A. Husičková, L. Spíchal, Z. Pěkná, O. Šamajová, K. Doležal, O. Plíhal, E. Benková, M. Strnad, L. Plíhalová, Phytochemistry 150 (2018) 1–11. date_created: 2018-12-11T11:46:18Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-11T12:53:11Z day: '01' department: - _id: EvBe doi: 10.1016/j.phytochem.2018.02.015 external_id: isi: - '000435623400001' intvolume: ' 150' isi: 1 language: - iso: eng month: '06' oa_version: None page: 1-11 publication: Phytochemistry publication_status: published publisher: Elsevier publist_id: '7422' quality_controlled: '1' scopus_import: '1' status: public title: Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 150 year: '2018' ... --- _id: '46' abstract: - lang: eng text: We analyze a disordered central spin model, where a central spin interacts equally with each spin in a periodic one-dimensional (1D) random-field Heisenberg chain. If the Heisenberg chain is initially in the many-body localized (MBL) phase, we find that the coupling to the central spin suffices to delocalize the chain for a substantial range of coupling strengths. We calculate the phase diagram of the model and identify the phase boundary between the MBL and ergodic phase. Within the localized phase, the central spin significantly enhances the rate of the logarithmic entanglement growth and its saturation value. We attribute the increase in entanglement entropy to a nonextensive enhancement of magnetization fluctuations induced by the central spin. Finally, we demonstrate that correlation functions of the central spin can be utilized to distinguish between MBL and ergodic phases of the 1D chain. Hence, we propose the use of a central spin as a possible experimental probe to identify the MBL phase. acknowledgement: F.P. acknowledges the sup- port of the DFG Research Unit FOR 1807 through Grants No. PO 1370/2-1 and No. TRR80, the Nanosystems Initiative Munich (NIM) by the German Excellence Initiative, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 771537). N.Y.Y. acknowledges support from the NSF (PHY-1654740), the ARO STIR program, and a Google research award. article_number: '161122' article_processing_charge: No article_type: original author: - first_name: Daniel full_name: Hetterich, Daniel last_name: Hetterich - first_name: Norman full_name: Yao, Norman last_name: Yao - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Frank full_name: Pollmann, Frank last_name: Pollmann - first_name: Björn full_name: Trauzettel, Björn last_name: Trauzettel citation: ama: Hetterich D, Yao N, Serbyn M, Pollmann F, Trauzettel B. Detection and characterization of many-body localization in central spin models. Physical Review B. 2018;98(16). doi:10.1103/PhysRevB.98.161122 apa: Hetterich, D., Yao, N., Serbyn, M., Pollmann, F., & Trauzettel, B. (2018). Detection and characterization of many-body localization in central spin models. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.98.161122 chicago: Hetterich, Daniel, Norman Yao, Maksym Serbyn, Frank Pollmann, and Björn Trauzettel. “Detection and Characterization of Many-Body Localization in Central Spin Models.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.98.161122. ieee: D. Hetterich, N. Yao, M. Serbyn, F. Pollmann, and B. Trauzettel, “Detection and characterization of many-body localization in central spin models,” Physical Review B, vol. 98, no. 16. American Physical Society, 2018. ista: Hetterich D, Yao N, Serbyn M, Pollmann F, Trauzettel B. 2018. Detection and characterization of many-body localization in central spin models. Physical Review B. 98(16), 161122. mla: Hetterich, Daniel, et al. “Detection and Characterization of Many-Body Localization in Central Spin Models.” Physical Review B, vol. 98, no. 16, 161122, American Physical Society, 2018, doi:10.1103/PhysRevB.98.161122. short: D. Hetterich, N. Yao, M. Serbyn, F. Pollmann, B. Trauzettel, Physical Review B 98 (2018). date_created: 2018-12-11T11:44:20Z date_published: 2018-10-15T00:00:00Z date_updated: 2023-09-11T12:55:03Z day: '15' department: - _id: MaSe doi: 10.1103/PhysRevB.98.161122 external_id: arxiv: - '1806.08316' isi: - '000448596500002' intvolume: ' 98' isi: 1 issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.08316 month: '10' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '8008' quality_controlled: '1' scopus_import: '1' status: public title: Detection and characterization of many-body localization in central spin models type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 98 year: '2018' ... --- _id: '308' abstract: - lang: eng text: Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. acknowledged_ssus: - _id: SSU article_processing_charge: No article_type: original author: - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Michael full_name: Smutny, Michael last_name: Smutny - first_name: Jana full_name: Veselá, Jana id: 433253EE-F248-11E8-B48F-1D18A9856A87 last_name: Veselá - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Ratheesh A, Bicher J, Smutny M, et al. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 2018;45(3):331-346. doi:10.1016/j.devcel.2018.04.002 apa: Ratheesh, A., Bicher, J., Smutny, M., Veselá, J., Papusheva, E., Krens, G., … Siekhaus, D. E. (2018). Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2018.04.002 chicago: Ratheesh, Aparna, Julia Bicher, Michael Smutny, Jana Veselá, Ekaterina Papusheva, Gabriel Krens, Walter Kaufmann, Attila György, Alessandra M Casano, and Daria E Siekhaus. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell. Elsevier, 2018. https://doi.org/10.1016/j.devcel.2018.04.002. ieee: A. Ratheesh et al., “Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration,” Developmental Cell, vol. 45, no. 3. Elsevier, pp. 331–346, 2018. ista: Ratheesh A, Bicher J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. mla: Ratheesh, Aparna, et al. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell, vol. 45, no. 3, Elsevier, 2018, pp. 331–46, doi:10.1016/j.devcel.2018.04.002. short: A. Ratheesh, J. Bicher, M. Smutny, J. Veselá, E. Papusheva, G. Krens, W. Kaufmann, A. György, A.M. Casano, D.E. Siekhaus, Developmental Cell 45 (2018) 331–346. date_created: 2018-12-11T11:45:44Z date_published: 2018-05-07T00:00:00Z date_updated: 2023-09-11T13:22:13Z day: '07' department: - _id: DaSi - _id: CaHe - _id: Bio - _id: EM-Fac - _id: MiSi doi: 10.1016/j.devcel.2018.04.002 ec_funded: 1 external_id: isi: - '000432461400009' pmid: - '29738712' intvolume: ' 45' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2018.04.002 month: '05' oa: 1 oa_version: Published Version page: 331 - 346 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Developmental Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cells-change-tension-to-make-tissue-barriers-easier-to-get-through/ scopus_import: '1' status: public title: Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2018' ... --- _id: '17' abstract: - lang: eng text: Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic turbulence accompanied by drag enhancement due to elastic stress produced by flow-stretched polymers. However, in inertia-dominated flow at high Re and low fluid elasticity El, a reduction in turbulent frictional drag is caused by an intricate competition between inertial and elastic stresses. Here we explore the effect of inertia on the stability of viscoelastic flow in a broad range of control parameters El and (Re,Wi). We present the stability diagram of observed flow regimes in Wi-Re coordinates and find that the instabilities' onsets show an unexpectedly nonmonotonic dependence on El. Further, three distinct regions in the diagram are identified based on El. Strikingly, for high-elasticity fluids we discover a complete relaminarization of flow at Reynolds number in the range of 1 to 10, different from a well-known turbulent drag reduction. These counterintuitive effects may be explained by a finite polymer extensibility and a suppression of vorticity at high Wi. Our results call for further theoretical and numerical development to uncover the role of inertial effect on elastic turbulence in a viscoelastic flow. article_number: '103302 ' article_processing_charge: No author: - first_name: Atul full_name: Varshney, Atul id: 2A2006B2-F248-11E8-B48F-1D18A9856A87 last_name: Varshney orcid: 0000-0002-3072-5999 - first_name: Victor full_name: Steinberg, Victor last_name: Steinberg citation: ama: Varshney A, Steinberg V. Drag enhancement and drag reduction in viscoelastic flow. Physical Review Fluids. 2018;3(10). doi:10.1103/PhysRevFluids.3.103302 apa: Varshney, A., & Steinberg, V. (2018). Drag enhancement and drag reduction in viscoelastic flow. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/PhysRevFluids.3.103302 chicago: Varshney, Atul, and Victor Steinberg. “Drag Enhancement and Drag Reduction in Viscoelastic Flow.” Physical Review Fluids. American Physical Society, 2018. https://doi.org/10.1103/PhysRevFluids.3.103302. ieee: A. Varshney and V. Steinberg, “Drag enhancement and drag reduction in viscoelastic flow,” Physical Review Fluids, vol. 3, no. 10. American Physical Society, 2018. ista: Varshney A, Steinberg V. 2018. Drag enhancement and drag reduction in viscoelastic flow. Physical Review Fluids. 3(10), 103302. mla: Varshney, Atul, and Victor Steinberg. “Drag Enhancement and Drag Reduction in Viscoelastic Flow.” Physical Review Fluids, vol. 3, no. 10, 103302, American Physical Society, 2018, doi:10.1103/PhysRevFluids.3.103302. short: A. Varshney, V. Steinberg, Physical Review Fluids 3 (2018). date_created: 2018-12-11T11:44:11Z date_published: 2018-10-15T00:00:00Z date_updated: 2023-09-11T12:59:28Z day: '15' ddc: - '532' department: - _id: BjHo doi: 10.1103/PhysRevFluids.3.103302 ec_funded: 1 external_id: isi: - '000447311500001' file: - access_level: open_access checksum: e1445be33e8165114e96246275600750 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:14Z date_updated: 2020-07-14T12:45:12Z file_id: '4800' file_name: IST-2018-1061-v1+1_PhysRevFluids.3.103302.pdf file_size: 1409040 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Fluids publication_status: published publisher: American Physical Society publist_id: '8038' pubrep_id: '1061' quality_controlled: '1' scopus_import: '1' status: public title: Drag enhancement and drag reduction in viscoelastic flow type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 3 year: '2018' ...