--- _id: '8983' abstract: - lang: eng text: Metabolic adaptation is a critical feature of migrating cells. It tunes the metabolic programs of migrating cells to allow them to efficiently exert their crucial roles in development, inflammatory responses and tumor metastasis. Cell migration through physically challenging contexts requires energy. However, how the metabolic reprogramming that underlies in vivo cell invasion is controlled is still unanswered. In my PhD project, I identify a novel conserved metabolic shift in Drosophila melanogaster immune cells that by modulating their bioenergetic potential controls developmentally programmed tissue invasion. We show that this regulation requires a novel conserved nuclear protein, named Atossa. Atossa enhances the transcription of a set of proteins, including an RNA helicase Porthos and two metabolic enzymes, each of which increases the tissue invasion of leading Drosophila macrophages and can rescue the atossa mutant phenotype. Porthos selectively regulates the translational efficiency of a subset of mRNAs containing a 5’-UTR cis-regulatory TOP-like sequence. These 5’TOPL mRNA targets encode mitochondrial-related proteins, including subunits of mitochondrial oxidative phosphorylation (OXPHOS) components III and V and other metabolic-related proteins. Porthos powers up mitochondrial OXPHOS to engender a sufficient ATP supply, which is required for tissue invasion of leading macrophages. Atossa’s two vertebrate orthologs rescue the invasion defect. In my PhD project, I elucidate that Atossa displays a conserved developmental metabolic control to modulate metabolic capacities and the cellular energy state, through altered transcription and translation, to aid the tissue infiltration of leading cells into energy demanding barriers. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: E-Lib - _id: CampIT acknowledgement: Also, I would like to express my appreciation and thanks to the Bioimaging facility, LSF, GSO, library, and IT people at IST Austria. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 citation: ama: Emtenani S. Metabolic regulation of Drosophila macrophage tissue invasion. 2020. doi:10.15479/AT:ISTA:8983 apa: Emtenani, S. (2020). Metabolic regulation of Drosophila macrophage tissue invasion. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8983 chicago: Emtenani, Shamsi. “Metabolic Regulation of Drosophila Macrophage Tissue Invasion.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8983. ieee: S. Emtenani, “Metabolic regulation of Drosophila macrophage tissue invasion,” Institute of Science and Technology Austria, 2020. ista: Emtenani S. 2020. Metabolic regulation of Drosophila macrophage tissue invasion. Institute of Science and Technology Austria. mla: Emtenani, Shamsi. Metabolic Regulation of Drosophila Macrophage Tissue Invasion. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8983. short: S. Emtenani, Metabolic Regulation of Drosophila Macrophage Tissue Invasion, Institute of Science and Technology Austria, 2020. date_created: 2020-12-30T15:41:26Z date_published: 2020-12-30T00:00:00Z date_updated: 2023-09-07T13:24:17Z day: '30' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:8983 file: - access_level: open_access checksum: ec2797ab7a6f253b35df0572b36d1b43 content_type: application/pdf creator: semtenan date_created: 2020-12-30T15:34:01Z date_updated: 2021-12-31T23:30:04Z embargo: 2021-12-30 file_id: '8984' file_name: Thesis_Shamsi_Emtenani_pdfA.pdf file_size: 10848175 relation: main_file - access_level: closed checksum: cc30e6608a9815414024cf548dff3b3a content_type: application/pdf creator: semtenan date_created: 2020-12-30T15:37:36Z date_updated: 2021-12-31T23:30:04Z embargo_to: open_access file_id: '8985' file_name: Thesis_Shamsi_Emtenani_source file.pdf file_size: 10073648 relation: source_file file_date_updated: 2021-12-31T23:30:04Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '141' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8557' relation: part_of_dissertation status: public - id: '6187' relation: part_of_dissertation status: public status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: Metabolic regulation of Drosophila macrophage tissue invasion type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8557' abstract: - lang: eng text: The infiltration of immune cells into tissues underlies the establishment of tissue resident macrophages, and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio which are themselves required for invasion. Cortical F-actin levels are critical as expressing a dominant active form of Diaphanous, a actin polymerizing Formin, can rescue the Dfos Dominant Negative macrophage invasion defect. In vivo imaging shows that Dfos is required to enhance the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the mechanical properties of the macrophage nucleus from affecting tissue entry. We thus identify tuning the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. acknowledged_ssus: - _id: LifeSc acknowledgement: 'We thank the following for their contributions: The Drosophila Genomics Resource Center supported by NIH grant 2P40OD010949-10A1 for plasmids, K. Brueckner. B. Stramer, M. Uhlirova, O. Schuldiner, the Bloomington Drosophila Stock Center supported by NIH grant P40OD018537 and the Vienna Drosophila Resource Center for fly stocks, FlyBase (Thurmond et al., 2019) for essential genomic information, and the BDGP in situ database for data (Tomancak et al., 2002, 2007). For antibodies, we thank the Developmental Studies Hybridoma Bank, which was created by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the NIH, and is maintained at the University of Iowa, as well as J. Zeitlinger for her generous gift of Dfos antibody. We thank the Vienna BioCenter Core Facilities for RNA sequencing and analysis and the Life Scientific Service Units at IST Austria for technical support and assistance with microscopy and FACS analysis. We thank C.P. Heisenberg, P. Martin, M. Sixt and Siekhaus group members for discussions and T.Hurd, A. Ratheesh and P. Rangan for comments on the manuscript. A.G. was supported by the Austrian Science Fund (FWF) grant DASI_FWF01_P29638S, D.E.S. by Marie Curie CIG 334077/IRTIM. M.S. is supported by the FWF, PhD program W1212 915 and the European Research Council (ERC) Advanced grant (ERC-2015-AdG TNT-Tumors 694883). S.W. is supported by an OEAW, DOC fellowship.' article_processing_charge: No author: - first_name: Vera full_name: Belyaeva, Vera id: 47F080FE-F248-11E8-B48F-1D18A9856A87 last_name: Belyaeva - first_name: Stephanie full_name: Wachner, Stephanie id: 2A95E7B0-F248-11E8-B48F-1D18A9856A87 last_name: Wachner - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 - first_name: Markus full_name: Linder, Markus last_name: Linder - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Maria full_name: Sibilia, Maria last_name: Sibilia - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Belyaeva V, Wachner S, Gridchyn I, et al. Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance. bioRxiv. doi:10.1101/2020.09.18.301481 apa: Belyaeva, V., Wachner, S., Gridchyn, I., Linder, M., Emtenani, S., György, A., … Siekhaus, D. E. (n.d.). Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance. bioRxiv. https://doi.org/10.1101/2020.09.18.301481 chicago: Belyaeva, Vera, Stephanie Wachner, Igor Gridchyn, Markus Linder, Shamsi Emtenani, Attila György, Maria Sibilia, and Daria E Siekhaus. “Cortical Actin Properties Controlled by Drosophila Fos Aid Macrophage Infiltration against Surrounding Tissue Resistance.” BioRxiv, n.d. https://doi.org/10.1101/2020.09.18.301481. ieee: V. Belyaeva et al., “Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance,” bioRxiv. . ista: Belyaeva V, Wachner S, Gridchyn I, Linder M, Emtenani S, György A, Sibilia M, Siekhaus DE. Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance. bioRxiv, 10.1101/2020.09.18.301481. mla: Belyaeva, Vera, et al. “Cortical Actin Properties Controlled by Drosophila Fos Aid Macrophage Infiltration against Surrounding Tissue Resistance.” BioRxiv, doi:10.1101/2020.09.18.301481. short: V. Belyaeva, S. Wachner, I. Gridchyn, M. Linder, S. Emtenani, A. György, M. Sibilia, D.E. Siekhaus, BioRxiv (n.d.). date_created: 2020-09-23T09:36:47Z date_published: 2020-09-18T00:00:00Z date_updated: 2024-03-27T23:30:24Z day: '18' department: - _id: DaSi - _id: JoCs doi: 10.1101/2020.09.18.301481 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.09.18.301481 month: '09' oa: 1 oa_version: Preprint project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions - _id: 26199CA4-B435-11E9-9278-68D0E5697425 grant_number: '24800' name: Tissue barrier penetration is crucial for immunity and metastasis publication: bioRxiv publication_status: submitted related_material: record: - id: '10614' relation: later_version status: public - id: '8983' relation: dissertation_contains status: public status: public title: Cortical actin properties controlled by Drosophila Fos aid macrophage infiltration against surrounding tissue resistance type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8831' abstract: - lang: eng text: Holes in planar Ge have high mobilities, strong spin-orbit interaction and electrically tunable g-factors, and are therefore emerging as a promising candidate for hybrid superconductorsemiconductor devices. This is further motivated by the observation of supercurrent transport in planar Ge Josephson Field effect transistors (JoFETs). A key challenge towards hybrid germanium quantum technology is the design of high quality interfaces and superconducting contacts that are robust against magnetic fields. By combining the assets of Al, which has a long superconducting coherence, and Nb, which has a significant superconducting gap, we form low-disordered JoFETs with large ICRN products that are capable of withstanding high magnetic fields. We furthermore demonstrate the ability of phase-biasing individual JoFETs opening up an avenue to explore topological superconductivity in planar Ge. The persistence of superconductivity in the reported hybrid devices beyond 1.8 T paves the way towards integrating spin qubits and proximity-induced superconductivity on the same chip. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: "This research and related results were made possible with the support of the NOMIS Foundation. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility, the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement #844511 and the Grant Agreement #862046. ICN2 acknowledge funding from Generalitat de Catalunya 2017 SGR 327. ICN2 is supported by the Severo Ochoa\r\nprogram from Spanish MINECO (Grant No. SEV2017-0706) and is funded by the CERCA Programme / Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Aut`onoma de Barcelona Materials Science PhD program. The HAADF-STEM microscopy was conducted in the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon-Universidad de Zaragoza. Authors acknowledge the LMA-INA for offering access to their instruments and expertise. We acknowledge support from CSIC Research Platform on Quantum Technologies PTI-001. This project has received funding from\r\nthe European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. M.B. acknowledges support from SUR Generalitat de Catalunya and the EU Social Fund; project ref. 2020 FI 00103. GS and MV acknowledge support through a projectruimte grant associated with the Netherlands Organization of Scientific Research (NWO)." article_number: '2012.00322' article_processing_charge: No author: - first_name: Kushagra full_name: Aggarwal, Kushagra id: b22ab905-3539-11eb-84c3-fc159dcd79cb last_name: Aggarwal orcid: 0000-0001-9985-9293 - first_name: Andrea C full_name: Hofmann, Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - first_name: Daniel full_name: Jirovec, Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec orcid: 0000-0002-7197-4801 - first_name: Ivan full_name: Prieto Gonzalez, Ivan id: 2A307FE2-F248-11E8-B48F-1D18A9856A87 last_name: Prieto Gonzalez orcid: 0000-0002-7370-5357 - first_name: Amir full_name: Sammak, Amir last_name: Sammak - first_name: Marc full_name: Botifoll, Marc last_name: Botifoll - first_name: Sara full_name: Marti-Sanchez, Sara last_name: Marti-Sanchez - first_name: Menno full_name: Veldhorst, Menno last_name: Veldhorst - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Giordano full_name: Scappucci, Giordano last_name: Scappucci - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Aggarwal K, Hofmann AC, Jirovec D, et al. Enhancement of proximity induced superconductivity in planar Germanium. arXiv. apa: Aggarwal, K., Hofmann, A. C., Jirovec, D., Prieto Gonzalez, I., Sammak, A., Botifoll, M., … Katsaros, G. (n.d.). Enhancement of proximity induced superconductivity in planar Germanium. arXiv. chicago: Aggarwal, Kushagra, Andrea C Hofmann, Daniel Jirovec, Ivan Prieto Gonzalez, Amir Sammak, Marc Botifoll, Sara Marti-Sanchez, et al. “Enhancement of Proximity Induced Superconductivity in Planar Germanium.” ArXiv, n.d. ieee: K. Aggarwal et al., “Enhancement of proximity induced superconductivity in planar Germanium,” arXiv. . ista: Aggarwal K, Hofmann AC, Jirovec D, Prieto Gonzalez I, Sammak A, Botifoll M, Marti-Sanchez S, Veldhorst M, Arbiol J, Scappucci G, Katsaros G. Enhancement of proximity induced superconductivity in planar Germanium. arXiv, 2012.00322. mla: Aggarwal, Kushagra, et al. “Enhancement of Proximity Induced Superconductivity in Planar Germanium.” ArXiv, 2012.00322. short: K. Aggarwal, A.C. Hofmann, D. Jirovec, I. Prieto Gonzalez, A. Sammak, M. Botifoll, S. Marti-Sanchez, M. Veldhorst, J. Arbiol, G. Scappucci, G. Katsaros, ArXiv (n.d.). date_created: 2020-12-02T10:42:53Z date_published: 2020-12-02T00:00:00Z date_updated: 2024-03-27T23:30:26Z day: '02' ddc: - '530' department: - _id: GeKa ec_funded: 1 external_id: arxiv: - '2012.00322' file: - access_level: open_access checksum: 22a612e206232fa94b138b2c2f957582 content_type: application/pdf creator: gkatsaro date_created: 2020-12-02T10:42:31Z date_updated: 2020-12-02T10:42:31Z file_id: '8832' file_name: Superconducting_2D_Ge.pdf file_size: 1697939 relation: main_file file_date_updated: 2020-12-02T10:42:31Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version project: - _id: 262116AA-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices - _id: 26A151DA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '844511' name: Majorana bound states in Ge/SiGe heterostructures - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS publication: arXiv publication_status: submitted related_material: record: - id: '10559' relation: later_version status: public - id: '8834' relation: research_data status: public - id: '10058' relation: dissertation_contains status: public status: public title: Enhancement of proximity induced superconductivity in planar Germanium type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8532' abstract: - lang: eng text: The molecular anatomy of synapses defines their characteristics in transmission and plasticity. Precise measurements of the number and distribution of synaptic proteins are important for our understanding of synapse heterogeneity within and between brain regions. Freeze–fracture replica immunogold electron microscopy enables us to analyze them quantitatively on a two-dimensional membrane surface. Here, we introduce Darea software, which utilizes deep learning for analysis of replica images and demonstrate its usefulness for quick measurements of the pre- and postsynaptic areas, density and distribution of gold particles at synapses in a reproducible manner. We used Darea for comparing glutamate receptor and calcium channel distributions between hippocampal CA3-CA1 spine synapses on apical and basal dendrites, which differ in signaling pathways involved in synaptic plasticity. We found that apical synapses express a higher density of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and a stronger increase of AMPA receptors with synaptic size, while basal synapses show a larger increase in N-methyl-D-aspartate (NMDA) receptors with size. Interestingly, AMPA and NMDA receptors are segregated within postsynaptic sites and negatively correlated in density among both apical and basal synapses. In the presynaptic sites, Cav2.1 voltage-gated calcium channels show similar densities in apical and basal synapses with distributions consistent with an exclusion zone model of calcium channel-release site topography. acknowledgement: "This research was funded by Austrian Academy of Sciences, DOC fellowship to D.K., European Research\r\nCouncil Advanced Grant 694539 and European Union Human Brain Project (HBP) SGA2 785907 to R.S.\r\nWe acknowledge Elena Hollergschwandtner for technical support." article_number: '6737' article_processing_charge: No article_type: original author: - first_name: David full_name: Kleindienst, David id: 42E121A4-F248-11E8-B48F-1D18A9856A87 last_name: Kleindienst - first_name: Jacqueline-Claire full_name: Montanaro-Punzengruber, Jacqueline-Claire id: 3786AB44-F248-11E8-B48F-1D18A9856A87 last_name: Montanaro-Punzengruber - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 - first_name: Matthew J full_name: Case, Matthew J id: 44B7CA5A-F248-11E8-B48F-1D18A9856A87 last_name: Case - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Kleindienst D, Montanaro-Punzengruber J-C, Bhandari P, Case MJ, Fukazawa Y, Shigemoto R. Deep learning-assisted high-throughput analysis of freeze-fracture replica images applied to glutamate receptors and calcium channels at hippocampal synapses. International Journal of Molecular Sciences. 2020;21(18). doi:10.3390/ijms21186737 apa: Kleindienst, D., Montanaro-Punzengruber, J.-C., Bhandari, P., Case, M. J., Fukazawa, Y., & Shigemoto, R. (2020). Deep learning-assisted high-throughput analysis of freeze-fracture replica images applied to glutamate receptors and calcium channels at hippocampal synapses. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms21186737 chicago: Kleindienst, David, Jacqueline-Claire Montanaro-Punzengruber, Pradeep Bhandari, Matthew J Case, Yugo Fukazawa, and Ryuichi Shigemoto. “Deep Learning-Assisted High-Throughput Analysis of Freeze-Fracture Replica Images Applied to Glutamate Receptors and Calcium Channels at Hippocampal Synapses.” International Journal of Molecular Sciences. MDPI, 2020. https://doi.org/10.3390/ijms21186737. ieee: D. Kleindienst, J.-C. Montanaro-Punzengruber, P. Bhandari, M. J. Case, Y. Fukazawa, and R. Shigemoto, “Deep learning-assisted high-throughput analysis of freeze-fracture replica images applied to glutamate receptors and calcium channels at hippocampal synapses,” International Journal of Molecular Sciences, vol. 21, no. 18. MDPI, 2020. ista: Kleindienst D, Montanaro-Punzengruber J-C, Bhandari P, Case MJ, Fukazawa Y, Shigemoto R. 2020. Deep learning-assisted high-throughput analysis of freeze-fracture replica images applied to glutamate receptors and calcium channels at hippocampal synapses. International Journal of Molecular Sciences. 21(18), 6737. mla: Kleindienst, David, et al. “Deep Learning-Assisted High-Throughput Analysis of Freeze-Fracture Replica Images Applied to Glutamate Receptors and Calcium Channels at Hippocampal Synapses.” International Journal of Molecular Sciences, vol. 21, no. 18, 6737, MDPI, 2020, doi:10.3390/ijms21186737. short: D. Kleindienst, J.-C. Montanaro-Punzengruber, P. Bhandari, M.J. Case, Y. Fukazawa, R. Shigemoto, International Journal of Molecular Sciences 21 (2020). date_created: 2020-09-20T22:01:35Z date_published: 2020-09-14T00:00:00Z date_updated: 2024-03-27T23:30:30Z day: '14' ddc: - '570' department: - _id: RySh doi: 10.3390/ijms21186737 ec_funded: 1 external_id: isi: - '000579945300001' file: - access_level: open_access checksum: 2e4f62f3cfe945b7391fc3070e5a289f content_type: application/pdf creator: dernst date_created: 2020-09-21T14:08:58Z date_updated: 2020-09-21T14:08:58Z file_id: '8551' file_name: 2020_JournMolecSciences_Kleindienst.pdf file_size: 5748456 relation: main_file success: 1 file_date_updated: 2020-09-21T14:08:58Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '18' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 25D32BC0-B435-11E9-9278-68D0E5697425 name: Mechanism of formation and maintenance of input side-dependent asymmetry in the hippocampus - _id: 26436750-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '785907' name: Human Brain Project Specific Grant Agreement 2 (HBP SGA 2) publication: International Journal of Molecular Sciences publication_identifier: eissn: - '14220067' issn: - '16616596' publication_status: published publisher: MDPI quality_controlled: '1' related_material: record: - id: '9562' relation: dissertation_contains status: public scopus_import: '1' status: public title: Deep learning-assisted high-throughput analysis of freeze-fracture replica images applied to glutamate receptors and calcium channels at hippocampal synapses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2020' ... --- _id: '7810' abstract: - lang: eng text: "Interprocedural data-flow analyses form an expressive and useful paradigm of numerous static analysis applications, such as live variables analysis, alias analysis and null pointers analysis. The most widely-used framework for interprocedural data-flow analysis is IFDS, which encompasses distributive data-flow functions over a finite domain. On-demand data-flow analyses restrict the focus of the analysis on specific program locations and data facts. This setting provides a natural split between (i) an offline (or preprocessing) phase, where the program is partially analyzed and analysis summaries are created, and (ii) an online (or query) phase, where analysis queries arrive on demand and the summaries are used to speed up answering queries.\r\nIn this work, we consider on-demand IFDS analyses where the queries concern program locations of the same procedure (aka same-context queries). We exploit the fact that flow graphs of programs have low treewidth to develop faster algorithms that are space and time optimal for many common data-flow analyses, in both the preprocessing and the query phase. We also use treewidth to develop query solutions that are embarrassingly parallelizable, i.e. the total work for answering each query is split to a number of threads such that each thread performs only a constant amount of work. Finally, we implement a static analyzer based on our algorithms, and perform a series of on-demand analysis experiments on standard benchmarks. Our experimental results show a drastic speed-up of the queries after only a lightweight preprocessing phase, which significantly outperforms existing techniques." alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Chatterjee K, Goharshady AK, Ibsen-Jensen R, Pavlogiannis A. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In: European Symposium on Programming. Vol 12075. Springer Nature; 2020:112-140. doi:10.1007/978-3-030-44914-8_5' apa: 'Chatterjee, K., Goharshady, A. K., Ibsen-Jensen, R., & Pavlogiannis, A. (2020). Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In European Symposium on Programming (Vol. 12075, pp. 112–140). Dublin, Ireland: Springer Nature. https://doi.org/10.1007/978-3-030-44914-8_5' chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Optimal and Perfectly Parallel Algorithms for On-Demand Data-Flow Analysis.” In European Symposium on Programming, 12075:112–40. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-44914-8_5. ieee: K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis, “Optimal and perfectly parallel algorithms for on-demand data-flow analysis,” in European Symposium on Programming, Dublin, Ireland, 2020, vol. 12075, pp. 112–140. ista: 'Chatterjee K, Goharshady AK, Ibsen-Jensen R, Pavlogiannis A. 2020. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. European Symposium on Programming. ESOP: Programming Languages and Systems, LNCS, vol. 12075, 112–140.' mla: Chatterjee, Krishnendu, et al. “Optimal and Perfectly Parallel Algorithms for On-Demand Data-Flow Analysis.” European Symposium on Programming, vol. 12075, Springer Nature, 2020, pp. 112–40, doi:10.1007/978-3-030-44914-8_5. short: K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, A. Pavlogiannis, in:, European Symposium on Programming, Springer Nature, 2020, pp. 112–140. conference: end_date: 2020-04-30 location: Dublin, Ireland name: 'ESOP: Programming Languages and Systems' start_date: 2020-04-25 date_created: 2020-05-10T22:00:50Z date_published: 2020-04-18T00:00:00Z date_updated: 2024-03-27T23:30:33Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-44914-8_5 external_id: isi: - '000681656800005' file: - access_level: open_access checksum: 8618b80f4cf7b39a60e61a6445ad9807 content_type: application/pdf creator: dernst date_created: 2020-05-26T13:34:48Z date_updated: 2020-07-14T12:48:03Z file_id: '7895' file_name: 2020_LNCS_Chatterjee.pdf file_size: 651250 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 12075' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 112-140 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies publication: European Symposium on Programming publication_identifier: eissn: - '16113349' isbn: - '9783030449131' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: '1' status: public title: Optimal and perfectly parallel algorithms for on-demand data-flow analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12075 year: '2020' ...