--- _id: '13122' abstract: - lang: eng text: Data for submitted article "Entangling microwaves with light" at arXiv:2301.03315v1 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 citation: ama: Sahu R. Entangling microwaves with light. 2023. doi:10.5281/ZENODO.7789417 apa: Sahu, R. (2023). Entangling microwaves with light. Zenodo. https://doi.org/10.5281/ZENODO.7789417 chicago: Sahu, Rishabh. “Entangling Microwaves with Light.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7789417. ieee: R. Sahu, “Entangling microwaves with light.” Zenodo, 2023. ista: Sahu R. 2023. Entangling microwaves with light, Zenodo, 10.5281/ZENODO.7789417. mla: Sahu, Rishabh. Entangling Microwaves with Light. Zenodo, 2023, doi:10.5281/ZENODO.7789417. short: R. Sahu, (2023). date_created: 2023-06-06T06:46:16Z date_published: 2023-03-31T00:00:00Z date_updated: 2023-08-02T06:08:56Z day: '31' department: - _id: JoFi doi: 10.5281/ZENODO.7789417 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7789418 month: '03' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13106' relation: used_in_publication status: public status: public title: Entangling microwaves with light tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13166' abstract: - lang: eng text: Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans. acknowledgement: "We thank N.A. Pertsov White Sea Biological Station of Moscow State University for the help and support in obtaining samples and providing access to all required facilities and equipment of the “Center of Microscopy WSBS MSU”. We are grateful to Dr. Amro Hamdoun for pCS2+8 plasmid (Addgene plasmid # 34931).\r\nWork in the Walentek lab is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Emmy Noether Programme (grant WA3365/2-2) and under Germany’s Excellence Strategy (CIBSS-EXC-2189-Project ID 390939984). SK is supported by the project No. 0088-2021-0009 of the Koltzov Institute of Developmental Biology of the RAS. The study of molecular patterning of D. pumila colony was funded by RFBR, project number 20-04-00978a (to S.K.)." article_number: '9382' article_processing_charge: No article_type: original author: - first_name: Alexandra A. full_name: Vetrova, Alexandra A. last_name: Vetrova - first_name: Daria M. full_name: Kupaeva, Daria M. last_name: Kupaeva - first_name: Alena full_name: Kizenko, Alena id: a521c60b-0815-11ed-9b02-b8bd522477c8 last_name: Kizenko - first_name: Tatiana S. full_name: Lebedeva, Tatiana S. last_name: Lebedeva - first_name: Peter full_name: Walentek, Peter last_name: Walentek - first_name: Nikoloz full_name: Tsikolia, Nikoloz last_name: Tsikolia - first_name: Stanislav V. full_name: Kremnyov, Stanislav V. last_name: Kremnyov citation: ama: Vetrova AA, Kupaeva DM, Kizenko A, et al. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. 2023;13. doi:10.1038/s41598-023-35979-8 apa: Vetrova, A. A., Kupaeva, D. M., Kizenko, A., Lebedeva, T. S., Walentek, P., Tsikolia, N., & Kremnyov, S. V. (2023). The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-023-35979-8 chicago: Vetrova, Alexandra A., Daria M. Kupaeva, Alena Kizenko, Tatiana S. Lebedeva, Peter Walentek, Nikoloz Tsikolia, and Stanislav V. Kremnyov. “The Evolutionary History of Brachyury Genes in Hydrozoa Involves Duplications, Divergence, and Neofunctionalization.” Scientific Reports. Springer Nature, 2023. https://doi.org/10.1038/s41598-023-35979-8. ieee: A. A. Vetrova et al., “The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization,” Scientific Reports, vol. 13. Springer Nature, 2023. ista: Vetrova AA, Kupaeva DM, Kizenko A, Lebedeva TS, Walentek P, Tsikolia N, Kremnyov SV. 2023. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. 13, 9382. mla: Vetrova, Alexandra A., et al. “The Evolutionary History of Brachyury Genes in Hydrozoa Involves Duplications, Divergence, and Neofunctionalization.” Scientific Reports, vol. 13, 9382, Springer Nature, 2023, doi:10.1038/s41598-023-35979-8. short: A.A. Vetrova, D.M. Kupaeva, A. Kizenko, T.S. Lebedeva, P. Walentek, N. Tsikolia, S.V. Kremnyov, Scientific Reports 13 (2023). date_created: 2023-06-25T22:00:46Z date_published: 2023-06-09T00:00:00Z date_updated: 2023-08-02T06:17:18Z day: '09' ddc: - '570' department: - _id: GradSch doi: 10.1038/s41598-023-35979-8 external_id: isi: - '001006690200045' pmid: - '37296138' file: - access_level: open_access checksum: baddf6b2fa9adf88263d4a3b0998f0f2 content_type: application/pdf creator: dernst date_created: 2023-06-26T09:58:53Z date_updated: 2023-06-26T09:58:53Z file_id: '13170' file_name: 2023_ScientificReports_Vetrova.pdf file_size: 4844149 relation: main_file success: 1 file_date_updated: 2023-06-26T09:58:53Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_identifier: eissn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2023' ... --- _id: '13138' abstract: - lang: eng text: "We consider the spin-\r\n1\r\n2\r\n Heisenberg chain (XXX model) weakly perturbed away from integrability by an isotropic next-to-nearest neighbor exchange interaction. Recently, it was conjectured that this model possesses an infinite tower of quasiconserved integrals of motion (charges) [D. Kurlov et al., Phys. Rev. B 105, 104302 (2022)]. In this work we first test this conjecture by investigating how the norm of the adiabatic gauge potential (AGP) scales with the system size, which is known to be a remarkably accurate measure of chaos. We find that for the perturbed XXX chain the behavior of the AGP norm corresponds to neither an integrable nor a chaotic regime, which supports the conjectured quasi-integrability of the model. We then prove the conjecture and explicitly construct the infinite set of quasiconserved charges. Our proof relies on the fact that the XXX chain perturbed by next-to-nearest exchange interaction can be viewed as a truncation of an integrable long-range deformation of the Heisenberg spin chain." acknowledgement: "The numerical computations in this work were performed using QuSpin [83, 84]. We acknowledge useful discussions with Igor Aleiner, Boris Altshuler, Jacopo de Nardis, Anatoli Polkovnikov, and Gora Shlyapnikov. We thank Piotr Sierant and Dario Rosa for drawing our attention to Refs. [31, 42, 46] and Ref. [47], respectively. We are grateful to an anonymous referee for very useful comments and for drawing our attention to Refs. [80, 81]. The work of VG is part of the DeltaITP consortium, a program of the Netherlands Organization for Scientific\r\nResearch (NWO) funded by the Dutch Ministry of Education, Culture and Science (OCW). VG is also partially supported by RSF 19-71-10092. The work of AT was supported by the ERC Starting Grant 101042293 (HEPIQ). RS acknowledges support from Slovenian Research Agency (ARRS) - research programme P1-0402. " article_number: '184312' article_processing_charge: No article_type: original author: - first_name: Pavel full_name: Orlov, Pavel last_name: Orlov - first_name: Anastasiia full_name: Tiutiakina, Anastasiia last_name: Tiutiakina - first_name: Rustem full_name: Sharipov, Rustem last_name: Sharipov - first_name: Elena full_name: Petrova, Elena id: 0ac84990-897b-11ed-a09c-f5abb56a4ede last_name: Petrova - first_name: Vladimir full_name: Gritsev, Vladimir last_name: Gritsev - first_name: Denis V. full_name: Kurlov, Denis V. last_name: Kurlov citation: ama: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 2023;107(18). doi:10.1103/PhysRevB.107.184312 apa: Orlov, P., Tiutiakina, A., Sharipov, R., Petrova, E., Gritsev, V., & Kurlov, D. V. (2023). Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.184312 chicago: Orlov, Pavel, Anastasiia Tiutiakina, Rustem Sharipov, Elena Petrova, Vladimir Gritsev, and Denis V. Kurlov. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.184312. ieee: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, and D. V. Kurlov, “Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain,” Physical Review B, vol. 107, no. 18. American Physical Society, 2023. ista: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. 2023. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 107(18), 184312. mla: Orlov, Pavel, et al. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B, vol. 107, no. 18, 184312, American Physical Society, 2023, doi:10.1103/PhysRevB.107.184312. short: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, D.V. Kurlov, Physical Review B 107 (2023). date_created: 2023-06-18T22:00:46Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-08-02T06:16:02Z day: '01' department: - _id: GradSch doi: 10.1103/PhysRevB.107.184312 external_id: arxiv: - '2303.00729' isi: - '001003686900004' intvolume: ' 107' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2303.00729 month: '05' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13213' abstract: - lang: eng text: The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis–cortex and cortex–endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth. acknowledgement: We thank Dong liu for offering iron staining technique; ZhiChang Chen and Zhenbiao Yang for discussion; Dandan Zheng for earlier attempt; Liwen Jiang and Dingquan Huang for initial tests of the TEM experiment; John C. Sedbrook for a donation of sku5 and pSKU5::SKU5-GFP seeds; Catherine Perrot-Rechenmann and Ke Zhou for the donation of sks1, sks2, and sku5 sks1 seeds; Zengyu Liu and Zhongquan Lin for live-imaging microscopy assistance. We are grateful to Can Peng, and Xixia Li for helping with sample preparation, and taking TEM images, at the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science. article_processing_charge: No article_type: original author: - first_name: C full_name: Chen, C last_name: Chen - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: J full_name: Cai, J last_name: Cai - first_name: Y full_name: Qiu, Y last_name: Qiu - first_name: L full_name: Li, L last_name: Li - first_name: C full_name: Gao, C last_name: Gao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: M full_name: Ke, M last_name: Ke - first_name: S full_name: Wu, S last_name: Wu - first_name: C full_name: Wei, C last_name: Wei - first_name: J full_name: Chen, J last_name: Chen - first_name: T full_name: Xu, T last_name: Xu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Wang, J last_name: Wang - first_name: R full_name: Li, R last_name: Li - first_name: D full_name: Chao, D last_name: Chao - first_name: B full_name: Zhang, B last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen - first_name: Z full_name: Gao, Z last_name: Gao citation: ama: Chen C, Zhang Y, Cai J, et al. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 2023;192(3):2243-2260. doi:10.1093/plphys/kiad207 apa: Chen, C., Zhang, Y., Cai, J., Qiu, Y., Li, L., Gao, C., … Gao, Z. (2023). Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1093/plphys/kiad207 chicago: Chen, C, Y Zhang, J Cai, Y Qiu, L Li, C Gao, Y Gao, et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology. American Society of Plant Biologists, 2023. https://doi.org/10.1093/plphys/kiad207. ieee: C. Chen et al., “Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots,” Plant Physiology, vol. 192, no. 3. American Society of Plant Biologists, pp. 2243–2260, 2023. ista: Chen C, Zhang Y, Cai J, Qiu Y, Li L, Gao C, Gao Y, Ke M, Wu S, Wei C, Chen J, Xu T, Friml J, Wang J, Li R, Chao D, Zhang B, Chen X, Gao Z. 2023. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 192(3), 2243–2260. mla: Chen, C., et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology, vol. 192, no. 3, American Society of Plant Biologists, 2023, pp. 2243–60, doi:10.1093/plphys/kiad207. short: C. Chen, Y. Zhang, J. Cai, Y. Qiu, L. Li, C. Gao, Y. Gao, M. Ke, S. Wu, C. Wei, J. Chen, T. Xu, J. Friml, J. Wang, R. Li, D. Chao, B. Zhang, X. Chen, Z. Gao, Plant Physiology 192 (2023) 2243–2260. date_created: 2023-07-12T07:32:58Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:27:55Z day: '01' ddc: - '575' department: - _id: JiFr doi: 10.1093/plphys/kiad207 external_id: isi: - '000971795800001' pmid: - '37010107' file: - access_level: open_access checksum: 5492e1d18ac3eaf202633d210fa0fb75 content_type: application/pdf creator: cchlebak date_created: 2023-07-13T13:26:33Z date_updated: 2023-07-13T13:26:33Z file_id: '13220' file_name: 2023_PlantPhys_Chen.pdf file_size: 2076977 relation: main_file success: 1 file_date_updated: 2023-07-13T13:26:33Z has_accepted_license: '1' intvolume: ' 192' isi: 1 issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2243-2260 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 192 year: '2023' ... --- _id: '12478' abstract: - lang: eng text: In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype. acknowledgement: This work was supported by NIH P50 award P50GM081892-02 to the University of Chicago, a catalyst grant from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust to PC, and a Yen Fellowship to CCG. MA was partially supported by PAPIIT-UNAM grant IN-11322. article_number: '1049255' article_processing_charge: Yes article_type: original author: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: L full_name: Bruneaux, L last_name: Bruneaux - first_name: P full_name: Oikonomou, P last_name: Oikonomou - first_name: M full_name: Aldana, M last_name: Aldana - first_name: P full_name: Cluzel, P last_name: Cluzel citation: ama: Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 2023;14. doi:10.3389/fmicb.2023.1049255 apa: Guet, C. C., Bruneaux, L., Oikonomou, P., Aldana, M., & Cluzel, P. (2023). Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2023.1049255 chicago: Guet, Calin C, L Bruneaux, P Oikonomou, M Aldana, and P Cluzel. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology. Frontiers, 2023. https://doi.org/10.3389/fmicb.2023.1049255. ieee: C. C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, and P. Cluzel, “Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression,” Frontiers in Microbiology, vol. 14. Frontiers, 2023. ista: Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. 2023. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 14, 1049255. mla: Guet, Calin C., et al. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology, vol. 14, 1049255, Frontiers, 2023, doi:10.3389/fmicb.2023.1049255. short: C.C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, P. Cluzel, Frontiers in Microbiology 14 (2023). date_created: 2023-02-02T08:13:28Z date_published: 2023-06-20T00:00:00Z date_updated: 2023-08-02T06:25:04Z day: '20' ddc: - '570' department: - _id: CaGu doi: 10.3389/fmicb.2023.1049255 external_id: isi: - '001030002600001' pmid: - '37485524' file: - access_level: open_access checksum: 7dd322347512afaa5daf72a0154f2f07 content_type: application/pdf creator: dernst date_created: 2023-07-31T07:16:34Z date_updated: 2023-07-31T07:16:34Z file_id: '13322' file_name: 2023_FrontiersMicrobiology_Guet.pdf file_size: 6452841 relation: main_file success: 1 file_date_updated: 2023-07-31T07:16:34Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ...