--- _id: '12567' abstract: - lang: eng text: Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations. acknowledgement: This work has been supported by funding of the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG], CRC 166, Project B06 to M.H. and A.-L.S., FOR 3004 SYNABS P1 to M.H.) and by the Interdisciplinary Clinical Research Center (IZKF) Würzburg (Z-3/69 to M.M.P., N-229 to M.H. and A.-L.S.). A.M. is funded by the University of Leipzig Clinician Scientist Program. article_number: '2128' article_processing_charge: No article_type: original author: - first_name: Achmed full_name: Mrestani, Achmed last_name: Mrestani - first_name: Katharina full_name: Lichter, Katharina id: 39302e62-fcfc-11ec-8196-8b01447dbd3d last_name: Lichter - first_name: Anna Leena full_name: Sirén, Anna Leena last_name: Sirén - first_name: Manfred full_name: Heckmann, Manfred last_name: Heckmann - first_name: Mila M. full_name: Paul, Mila M. last_name: Paul - first_name: Martin full_name: Pauli, Martin last_name: Pauli citation: ama: Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. 2023;24(3). doi:10.3390/ijms24032128 apa: Mrestani, A., Lichter, K., Sirén, A. L., Heckmann, M., Paul, M. M., & Pauli, M. (2023). Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms24032128 chicago: Mrestani, Achmed, Katharina Lichter, Anna Leena Sirén, Manfred Heckmann, Mila M. Paul, and Martin Pauli. “Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila Melanogaster after Rapid Cryofixation.” International Journal of Molecular Sciences. MDPI, 2023. https://doi.org/10.3390/ijms24032128. ieee: A. Mrestani, K. Lichter, A. L. Sirén, M. Heckmann, M. M. Paul, and M. Pauli, “Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation,” International Journal of Molecular Sciences, vol. 24, no. 3. MDPI, 2023. ista: Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. 2023. Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. 24(3), 2128. mla: Mrestani, Achmed, et al. “Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila Melanogaster after Rapid Cryofixation.” International Journal of Molecular Sciences, vol. 24, no. 3, 2128, MDPI, 2023, doi:10.3390/ijms24032128. short: A. Mrestani, K. Lichter, A.L. Sirén, M. Heckmann, M.M. Paul, M. Pauli, International Journal of Molecular Sciences 24 (2023). date_created: 2023-02-19T23:00:56Z date_published: 2023-01-21T00:00:00Z date_updated: 2023-08-01T13:16:36Z day: '21' ddc: - '570' department: - _id: PeJo doi: 10.3390/ijms24032128 external_id: isi: - '000930324700001' file: - access_level: open_access checksum: 69a35dcd3e0249f902ab881b06ee2e58 content_type: application/pdf creator: dernst date_created: 2023-02-20T07:09:27Z date_updated: 2023-02-20T07:09:27Z file_id: '12569' file_name: 2023_IJMS_Mrestani.pdf file_size: 2823025 relation: main_file success: 1 file_date_updated: 2023-02-20T07:09:27Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_identifier: eissn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 24 year: '2023' ... --- _id: '12566' abstract: - lang: eng text: "Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a node of the graph as input and, if non-faulty, must output a node such that\r\n– all the outputs are within distance 1 of one another, and\r\n– each output value lies on a shortest path between two input values.\r\nFrom prior work, it is known that there is no wait-free algorithm among processes for this problem on any cycle of length , by reduction from 2-set agreement (Castañeda et al., 2018).\r\n\r\nIn this work, we investigate the solvability of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length , via a generalisation of Sperner's Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a different class of graphs, which properly contains the class of chordal graphs." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 805223 ScaleML) and under the Marie Skłodowska-Curie grant agreement No. 840605 and from the Natural Sciences and Engineering Research Council of Canada grant RGPIN-2020-04178. Part of this work was done while Faith Ellen was visiting IST Austria. article_number: '113733' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Faith full_name: Ellen, Faith last_name: Ellen - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 citation: ama: Alistarh D-A, Ellen F, Rybicki J. Wait-free approximate agreement on graphs. Theoretical Computer Science. 2023;948(2). doi:10.1016/j.tcs.2023.113733 apa: Alistarh, D.-A., Ellen, F., & Rybicki, J. (2023). Wait-free approximate agreement on graphs. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2023.113733 chicago: Alistarh, Dan-Adrian, Faith Ellen, and Joel Rybicki. “Wait-Free Approximate Agreement on Graphs.” Theoretical Computer Science. Elsevier, 2023. https://doi.org/10.1016/j.tcs.2023.113733. ieee: D.-A. Alistarh, F. Ellen, and J. Rybicki, “Wait-free approximate agreement on graphs,” Theoretical Computer Science, vol. 948, no. 2. Elsevier, 2023. ista: Alistarh D-A, Ellen F, Rybicki J. 2023. Wait-free approximate agreement on graphs. Theoretical Computer Science. 948(2), 113733. mla: Alistarh, Dan-Adrian, et al. “Wait-Free Approximate Agreement on Graphs.” Theoretical Computer Science, vol. 948, no. 2, 113733, Elsevier, 2023, doi:10.1016/j.tcs.2023.113733. short: D.-A. Alistarh, F. Ellen, J. Rybicki, Theoretical Computer Science 948 (2023). date_created: 2023-02-19T23:00:55Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-08-01T13:17:20Z day: '28' ddc: - '000' department: - _id: DaAl doi: 10.1016/j.tcs.2023.113733 ec_funded: 1 external_id: isi: - '000934262700001' file: - access_level: open_access checksum: b27c5290f2f1500c403494364ee39c9f content_type: application/pdf creator: dernst date_created: 2023-02-20T07:30:20Z date_updated: 2023-02-20T07:30:20Z file_id: '12570' file_name: 2023_TheoreticalCompScience_Alistarh.pdf file_size: 602333 relation: main_file success: 1 file_date_updated: 2023-02-20T07:30:20Z has_accepted_license: '1' intvolume: ' 948' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning - _id: 26A5D39A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '840605' name: Coordination in constrained and natural distributed systems publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Wait-free approximate agreement on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 948 year: '2023' ... --- _id: '12681' abstract: - lang: eng text: The dissolution of minute concentration of polymers in wall-bounded flows is well-known for its unparalleled ability to reduce turbulent friction drag. Another phenomenon, elasto-inertial turbulence (EIT), has been far less studied even though elastic instabilities have already been observed in dilute polymer solutions before the discovery of polymer drag reduction. EIT is a chaotic state driven by polymer dynamics that is observed across many orders of magnitude in Reynolds number. It involves energy transfer from small elastic scales to large flow scales. The investigation of the mechanisms of EIT offers the possibility to better understand other complex phenomena such as elastic turbulence and maximum drag reduction. In this review, we survey recent research efforts that are advancing the understanding of the dynamics of EIT. We highlight the fundamental differences between EIT and Newtonian/inertial turbulence from the perspective of experiments, numerical simulations, instabilities, and coherent structures. Finally, we discuss the possible links between EIT and elastic turbulence and polymer drag reduction, as well as the remaining challenges in unraveling the self-sustaining mechanism of EIT. acknowledgement: Part of the material presented here is based upon work supported by the National Science Foundation CBET (Chemical, Bioengineering, Environmental and Transport Systems) award 1805636 (to Y.D.), the Binational Science Foundation award 2016145 (to Y.D. and Victor Steinberg), a FRIA (Fund for Research Training in Industry and Agriculture) grant of the Belgian F.R.S.-FNRS (National Fund for Scientific Research) (to V.E.T.), the Marie Curie FP7 Career Integration grant PCIG10-GA-2011-304073 (to V.E.T.), and the Fonds spéciaux pour la recherche grant C-13/19 of the University of Liege (to V.E.T.). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CECI) funded by the Belgian F.R.S.-FNRS, the Vermont Advanced Computing Center (VACC), the Partnership for Advanced Computing in Europe (PRACE), and the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (grant agreement 117545). article_processing_charge: No article_type: original author: - first_name: Yves full_name: Dubief, Yves last_name: Dubief - first_name: Vincent E. full_name: Terrapon, Vincent E. last_name: Terrapon - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Dubief Y, Terrapon VE, Hof B. Elasto-inertial turbulence. Annual Review of Fluid Mechanics. 2023;55(1):675-705. doi:10.1146/annurev-fluid-032822-025933 apa: Dubief, Y., Terrapon, V. E., & Hof, B. (2023). Elasto-inertial turbulence. Annual Review of Fluid Mechanics. Annual Reviews. https://doi.org/10.1146/annurev-fluid-032822-025933 chicago: Dubief, Yves, Vincent E. Terrapon, and Björn Hof. “Elasto-Inertial Turbulence.” Annual Review of Fluid Mechanics. Annual Reviews, 2023. https://doi.org/10.1146/annurev-fluid-032822-025933. ieee: Y. Dubief, V. E. Terrapon, and B. Hof, “Elasto-inertial turbulence,” Annual Review of Fluid Mechanics, vol. 55, no. 1. Annual Reviews, pp. 675–705, 2023. ista: Dubief Y, Terrapon VE, Hof B. 2023. Elasto-inertial turbulence. Annual Review of Fluid Mechanics. 55(1), 675–705. mla: Dubief, Yves, et al. “Elasto-Inertial Turbulence.” Annual Review of Fluid Mechanics, vol. 55, no. 1, Annual Reviews, 2023, pp. 675–705, doi:10.1146/annurev-fluid-032822-025933. short: Y. Dubief, V.E. Terrapon, B. Hof, Annual Review of Fluid Mechanics 55 (2023) 675–705. date_created: 2023-02-26T23:01:01Z date_published: 2023-01-19T00:00:00Z date_updated: 2023-08-01T13:19:47Z day: '19' ddc: - '530' department: - _id: BjHo doi: 10.1146/annurev-fluid-032822-025933 external_id: isi: - '000915418100026' file: - access_level: open_access checksum: 2666aa3af2a25252d35eb8681d3edff7 content_type: application/pdf creator: dernst date_created: 2023-02-27T09:23:02Z date_updated: 2023-02-27T09:23:02Z file_id: '12690' file_name: 2023_AnnReviewFluidMech_Dubief.pdf file_size: 4036706 relation: main_file success: 1 file_date_updated: 2023-02-27T09:23:02Z has_accepted_license: '1' intvolume: ' 55' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 675-705 publication: Annual Review of Fluid Mechanics publication_identifier: eissn: - 1545-4479 issn: - 0066-4189 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Elasto-inertial turbulence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 55 year: '2023' ... --- _id: '12682' abstract: - lang: eng text: 'Since the seminal studies by Osborne Reynolds in the nineteenth century, pipe flow has served as a primary prototype for investigating the transition to turbulence in wall-bounded flows. Despite the apparent simplicity of this flow, various facets of this problem have occupied researchers for more than a century. Here we review insights from three distinct perspectives: (a) stability and susceptibility of laminar flow, (b) phase transition and spatiotemporal dynamics, and (c) dynamical systems analysis of the Navier—Stokes equations. We show how these perspectives have led to a profound understanding of the onset of turbulence in pipe flow. Outstanding open points, applications to flows of complex fluids, and similarities with other wall-bounded flows are discussed.' acknowledgement: 'The authors are very grateful to Laurette Tuckerman for her helpful comments. This work was supported by grants from the Simons Foundation (grant numbers 662985, D.B., and 662960, B.H.) and the Priority Programme “SPP 1881: Turbulent Superstructures” of the Deutsche Forschungsgemeinschaft (grant number AV120/3-2 to M.A.).' article_processing_charge: No article_type: original author: - first_name: Marc full_name: Avila, Marc last_name: Avila - first_name: Dwight full_name: Barkley, Dwight last_name: Barkley - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Avila M, Barkley D, Hof B. Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics. 2023;55:575-602. doi:10.1146/annurev-fluid-120720-025957 apa: Avila, M., Barkley, D., & Hof, B. (2023). Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics. Annual Reviews. https://doi.org/10.1146/annurev-fluid-120720-025957 chicago: Avila, Marc, Dwight Barkley, and Björn Hof. “Transition to Turbulence in Pipe Flow.” Annual Review of Fluid Mechanics. Annual Reviews, 2023. https://doi.org/10.1146/annurev-fluid-120720-025957. ieee: M. Avila, D. Barkley, and B. Hof, “Transition to turbulence in pipe flow,” Annual Review of Fluid Mechanics, vol. 55. Annual Reviews, pp. 575–602, 2023. ista: Avila M, Barkley D, Hof B. 2023. Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics. 55, 575–602. mla: Avila, Marc, et al. “Transition to Turbulence in Pipe Flow.” Annual Review of Fluid Mechanics, vol. 55, Annual Reviews, 2023, pp. 575–602, doi:10.1146/annurev-fluid-120720-025957. short: M. Avila, D. Barkley, B. Hof, Annual Review of Fluid Mechanics 55 (2023) 575–602. date_created: 2023-02-26T23:01:01Z date_published: 2023-01-19T00:00:00Z date_updated: 2023-08-01T13:20:30Z day: '19' ddc: - '530' department: - _id: BjHo doi: 10.1146/annurev-fluid-120720-025957 external_id: isi: - '000915418100023' file: - access_level: open_access checksum: f99ef30f76cabc9e5e1946b380c16db4 content_type: application/pdf creator: dernst date_created: 2023-02-27T09:35:52Z date_updated: 2023-02-27T09:35:52Z file_id: '12691' file_name: 2023_AnnReviewFluidMech_Avila.pdf file_size: 4769537 relation: main_file success: 1 file_date_updated: 2023-02-27T09:35:52Z has_accepted_license: '1' intvolume: ' 55' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 575-602 project: - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Annual Review of Fluid Mechanics publication_identifier: issn: - 0066-4189 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Transition to turbulence in pipe flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 55 year: '2023' ... --- _id: '12708' abstract: - lang: eng text: Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter. acknowledgement: 'All authors are grateful to the Lorentz Center for providing a venue for stimulating scientific discussions and to sponsor a workshop on the topic of “Self-organisation under confinement” along with the 4TU Federation, the J. M. Burgers Center for Fluid Dynamics and the MESA+ Institute for Nanotechnology at the University of Twente. The authors are also grateful to Paolo Malgaretti, Federico Toschi, Twan Wilting and Jaap den Toonder for valuable feedback. N. A. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contracts no. PTDC/FIS-MAC/28146/2017 (LISBOA-01-0145-FEDER-028146), UIDB/00618/2020, and UIDP/00618/2020. L. M. C. J. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) through a START-UP, Physics Projectruimte, and Vidi grant. I. C. was supported in part by a grant from by the Army Research Office (ARO W911NF-18-1-0032) and the Cornell Center for Materials Research (DMR-1719875). O. D. acknowledges funding by the Agence Nationale pour la Recherche under Grant No ANR-18-CE33-0006 MSR. M. D. acknowledges financial support from the European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). W. M. D. acknowledges funding from a BBSRC New Investigator Grant (BB/R018383/1). S. G. was supported by DARPA Young Faculty Award # D19AP00046, and NSF IIS grant # 1955210. H. G. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) through Veni Grant No. 680-47-451. R. G. acknowledges support from the Max Planck School Matter to Life and the MaxSynBio Consortium, which are jointly funded by the Federal Ministry of Education and Research (BMBF) of Germany, and the Max Planck Society. L. I. acknowledges funding from the Horizon Europe ERC Consolidator Grant ACTIVE_ ADAPTIVE (Grant No. 101001514). G. H. K. gratefully acknowledges the NWO Talent Programme which is financed by the Dutch Research Council (project number VI.C.182.004). H. L. and N. V. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) under grant numbers VO 1824/8-1 and LO 418/22-1. R. M. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) under grant number ME 1535/13-1 and ME 1535/16-1. M. P. acknowledges funding from the Ramón y Cajal Program, grant no. RYC-2018-02534, and the Leverhulme Trust, grant no. RPG-2018-345. A. Š. acknowledges financial support from the European Research Council (Grant No. ERC-2018-STG-H2020 802960 NEPA). A. S. acknowledges funding from an ATTRACT Investigator Grant (No. A17/MS/11572821/MBRACE) from the Luxembourg National Research Fund. C. S. acknowledges funding from the French Agence Nationale pour la Recherche (ANR), grant ANR-14-CE090006 and ANR-12-BSV5001401, by the Fondation pour la Recherche Médicale (FRM), grant DEQ20120323737, and from the PIC3I of Institut Curie, France. I. T. acknowledges funding from grant IED2019-00058I/AEI/10.13039/501100011033. M. P. and I. T. also acknowledge funding from grant PID2019-104232B-I00/AEI/10.13039/501100011033 and from the H2020 MSCA ITN PHYMOT (Grant agreement No 95591). I. Z. acknowledges funding from Project PID2020-114839GB-I00 MINECO/AEI/FEDER, UE. A. M. acknowledges funding from the European Research Council, Starting Grant No. 678573 NanoPacks. G. V. acknowledges sponsorship for this work by the US Office of Naval Research Global (Award No. N62909-18-1-2170).' article_processing_charge: No article_type: original author: - first_name: Nuno A.M. full_name: Araújo, Nuno A.M. last_name: Araújo - first_name: Liesbeth M.C. full_name: Janssen, Liesbeth M.C. last_name: Janssen - first_name: Thomas full_name: Barois, Thomas last_name: Barois - first_name: Guido full_name: Boffetta, Guido last_name: Boffetta - first_name: Itai full_name: Cohen, Itai last_name: Cohen - first_name: Alessandro full_name: Corbetta, Alessandro last_name: Corbetta - first_name: Olivier full_name: Dauchot, Olivier last_name: Dauchot - first_name: Marjolein full_name: Dijkstra, Marjolein last_name: Dijkstra - first_name: William M. full_name: Durham, William M. last_name: Durham - first_name: Audrey full_name: Dussutour, Audrey last_name: Dussutour - first_name: Simon full_name: Garnier, Simon last_name: Garnier - first_name: Hanneke full_name: Gelderblom, Hanneke last_name: Gelderblom - first_name: Ramin full_name: Golestanian, Ramin last_name: Golestanian - first_name: Lucio full_name: Isa, Lucio last_name: Isa - first_name: Gijsje H. full_name: Koenderink, Gijsje H. last_name: Koenderink - first_name: Hartmut full_name: Löwen, Hartmut last_name: Löwen - first_name: Ralf full_name: Metzler, Ralf last_name: Metzler - first_name: Marco full_name: Polin, Marco last_name: Polin - first_name: C. Patrick full_name: Royall, C. Patrick last_name: Royall - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Anupam full_name: Sengupta, Anupam last_name: Sengupta - first_name: Cécile full_name: Sykes, Cécile last_name: Sykes - first_name: Vito full_name: Trianni, Vito last_name: Trianni - first_name: Idan full_name: Tuval, Idan last_name: Tuval - first_name: Nicolas full_name: Vogel, Nicolas last_name: Vogel - first_name: Julia M. full_name: Yeomans, Julia M. last_name: Yeomans - first_name: Iker full_name: Zuriguel, Iker last_name: Zuriguel - first_name: Alvaro full_name: Marin, Alvaro last_name: Marin - first_name: Giorgio full_name: Volpe, Giorgio last_name: Volpe citation: ama: Araújo NAM, Janssen LMC, Barois T, et al. Steering self-organisation through confinement. Soft Matter. 2023;19:1695-1704. doi:10.1039/d2sm01562e apa: Araújo, N. A. M., Janssen, L. M. C., Barois, T., Boffetta, G., Cohen, I., Corbetta, A., … Volpe, G. (2023). Steering self-organisation through confinement. Soft Matter. Royal Society of Chemistry. https://doi.org/10.1039/d2sm01562e chicago: Araújo, Nuno A.M., Liesbeth M.C. Janssen, Thomas Barois, Guido Boffetta, Itai Cohen, Alessandro Corbetta, Olivier Dauchot, et al. “Steering Self-Organisation through Confinement.” Soft Matter. Royal Society of Chemistry, 2023. https://doi.org/10.1039/d2sm01562e. ieee: N. A. M. Araújo et al., “Steering self-organisation through confinement,” Soft Matter, vol. 19. Royal Society of Chemistry, pp. 1695–1704, 2023. ista: Araújo NAM, Janssen LMC, Barois T, Boffetta G, Cohen I, Corbetta A, Dauchot O, Dijkstra M, Durham WM, Dussutour A, Garnier S, Gelderblom H, Golestanian R, Isa L, Koenderink GH, Löwen H, Metzler R, Polin M, Royall CP, Šarić A, Sengupta A, Sykes C, Trianni V, Tuval I, Vogel N, Yeomans JM, Zuriguel I, Marin A, Volpe G. 2023. Steering self-organisation through confinement. Soft Matter. 19, 1695–1704. mla: Araújo, Nuno A. M., et al. “Steering Self-Organisation through Confinement.” Soft Matter, vol. 19, Royal Society of Chemistry, 2023, pp. 1695–704, doi:10.1039/d2sm01562e. short: N.A.M. Araújo, L.M.C. Janssen, T. Barois, G. Boffetta, I. Cohen, A. Corbetta, O. Dauchot, M. Dijkstra, W.M. Durham, A. Dussutour, S. Garnier, H. Gelderblom, R. Golestanian, L. Isa, G.H. Koenderink, H. Löwen, R. Metzler, M. Polin, C.P. Royall, A. Šarić, A. Sengupta, C. Sykes, V. Trianni, I. Tuval, N. Vogel, J.M. Yeomans, I. Zuriguel, A. Marin, G. Volpe, Soft Matter 19 (2023) 1695–1704. date_created: 2023-03-05T23:01:06Z date_published: 2023-02-06T00:00:00Z date_updated: 2023-08-01T13:28:39Z day: '06' ddc: - '540' department: - _id: AnSa doi: 10.1039/d2sm01562e ec_funded: 1 external_id: arxiv: - '2204.10059' isi: - '000940388100001' file: - access_level: open_access checksum: af95aa18b9b01e32fb8f13477c0e2687 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T09:19:41Z date_updated: 2023-03-07T09:19:41Z file_id: '12711' file_name: 2023_SoftMatter_Araujo.pdf file_size: 3581939 relation: main_file success: 1 file_date_updated: 2023-03-07T09:19:41Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1695-1704 project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Soft Matter publication_identifier: eissn: - 1744-6848 issn: - 1744-683X publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Steering self-organisation through confinement tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ...