--- _id: '15020' abstract: - lang: eng text: "This thesis consists of four distinct pieces of work within theoretical biology, with two themes in common: the concept of optimization in biological systems, and the use of information-theoretic tools to quantify biological stochasticity and statistical uncertainty.\r\nChapter 2 develops a statistical framework for studying biological systems which we believe to be optimized for a particular utility function, such as retinal neurons conveying information about visual stimuli. We formalize such beliefs as maximum-entropy Bayesian priors, constrained by the expected utility. We explore how such priors aid inference of system parameters with limited data and enable optimality hypothesis testing: is the utility higher than by chance?\r\nChapter 3 examines the ultimate biological optimization process: evolution by natural selection. As some individuals survive and reproduce more successfully than others, populations evolve towards fitter genotypes and phenotypes. We formalize this as accumulation of genetic information, and use population genetics theory to study how much such information can be accumulated per generation and maintained in the face of random mutation and genetic drift. We identify the population size and fitness variance as the key quantities that control information accumulation and maintenance.\r\nChapter 4 reuses the concept of genetic information from Chapter 3, but from a different perspective: we ask how much genetic information organisms actually need, in particular in the context of gene regulation. For example, how much information is needed to bind transcription factors at correct locations within the genome? Population genetics provides us with a refined answer: with an increasing population size, populations achieve higher fitness by maintaining more genetic information. Moreover, regulatory parameters experience selection pressure to optimize the fitness-information trade-off, i.e. minimize the information needed for a given fitness. This provides an evolutionary derivation of the optimization priors introduced in Chapter 2.\r\nChapter 5 proves an upper bound on mutual information between a signal and a communication channel output (such as neural activity). Mutual information is an important utility measure for biological systems, but its practical use can be difficult due to the large dimensionality of many biological channels. Sometimes, a lower bound on mutual information is computed by replacing the high-dimensional channel outputs with decodes (signal estimates). Our result provides a corresponding upper bound, provided that the decodes are the maximum posterior estimates of the signal." acknowledged_ssus: - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michal full_name: Hledik, Michal id: 4171253A-F248-11E8-B48F-1D18A9856A87 last_name: Hledik citation: ama: Hledik M. Genetic information and biological optimization. 2024. doi:10.15479/at:ista:15020 apa: Hledik, M. (2024). Genetic information and biological optimization. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15020 chicago: Hledik, Michal. “Genetic Information and Biological Optimization.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:15020. ieee: M. Hledik, “Genetic information and biological optimization,” Institute of Science and Technology Austria, 2024. ista: Hledik M. 2024. Genetic information and biological optimization. Institute of Science and Technology Austria. mla: Hledik, Michal. Genetic Information and Biological Optimization. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:15020. short: M. Hledik, Genetic Information and Biological Optimization, Institute of Science and Technology Austria, 2024. date_created: 2024-02-23T14:02:04Z date_published: 2024-02-23T00:00:00Z date_updated: 2024-03-06T14:22:52Z day: '23' ddc: - '576' - '519' degree_awarded: PhD department: - _id: GradSch - _id: NiBa - _id: GaTk doi: 10.15479/at:ista:15020 ec_funded: 1 file: - access_level: open_access checksum: b2d3da47c98d481577a4baf68944fe41 content_type: application/pdf creator: mhledik date_created: 2024-02-23T13:50:53Z date_updated: 2024-02-23T13:50:53Z file_id: '15021' file_name: hledik thesis pdfa 2b.pdf file_size: 7102089 relation: main_file success: 1 - access_level: closed checksum: eda9b9430da2610fee7ce1c1419a479a content_type: application/zip creator: mhledik date_created: 2024-02-23T13:50:54Z date_updated: 2024-02-23T14:20:16Z file_id: '15022' file_name: hledik thesis source.zip file_size: 14014790 relation: source_file file_date_updated: 2024-02-23T14:20:16Z has_accepted_license: '1' keyword: - Theoretical biology - Optimality - Evolution - Information language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '158' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2665AAFE-B435-11E9-9278-68D0E5697425 grant_number: RGP0034/2018 name: Can evolution minimize spurious signaling crosstalk to reach optimal performance? - _id: bd6958e0-d553-11ed-ba76-86eba6a76c00 grant_number: '101055327' name: Understanding the evolution of continuous genomes publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7553' relation: part_of_dissertation status: public - id: '12081' relation: part_of_dissertation status: public - id: '7606' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Genetic information and biological optimization type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '14842' abstract: - lang: eng text: Eva Benkova received a PhD in Biophysics at the Institute of Biophysics of the Czech Academy of Sciences in 1998. After working as a postdoc at the Max Planck Institute in Cologne and the Center for Plant Molecular Biology (ZMBP) in Tübingen, she became a group leader at the Plant Systems Biology Department of the Vlaams Instituut voor Biotechnologie (VIB) in Gent. In 2012, she transitioned to an Assistant Professor position at the Institute of Science and Technology Austria (ISTA) where she was later promoted to Professor. Since 2021, she has served as the Dean of the ISTA Graduate School. As a plant developmental biologist, she focuses on unraveling the molecular mechanisms and principles that underlie hormonal interactions in plants. In her current work, she explores the intricate connections between hormones and regulatory pathways that mediate the perception of environmental stimuli, including abiotic stress and nitrate availability. article_processing_charge: No author: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Benková E. Eva Benkova. Vol 34. Elsevier; 2024:R3-R5. doi:10.1016/j.cub.2023.11.039 apa: Benková, E. (2024). Eva Benkova. Current Biology (Vol. 34, pp. R3–R5). Elsevier. https://doi.org/10.1016/j.cub.2023.11.039 chicago: Benková, Eva. Eva Benkova. Current Biology. Vol. 34. Elsevier, 2024. https://doi.org/10.1016/j.cub.2023.11.039. ieee: E. Benková, Eva Benkova, vol. 34, no. 1. Elsevier, 2024, pp. R3–R5. ista: Benková E. 2024. Eva Benkova, Elsevier,p. mla: Benková, Eva. “Eva Benkova.” Current Biology, vol. 34, no. 1, Elsevier, 2024, pp. R3–5, doi:10.1016/j.cub.2023.11.039. short: E. Benková, Eva Benkova, Elsevier, 2024. date_created: 2024-01-21T23:00:56Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-03-12T12:19:12Z day: '08' department: - _id: EvBe doi: 10.1016/j.cub.2023.11.039 intvolume: ' 34' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cub.2023.11.039 month: '01' oa: 1 oa_version: Published Version page: R3-R5 publication: Current Biology publication_identifier: eissn: - 1879-0445 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Eva Benkova type: other_academic_publication user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2024' ... --- _id: '15084' abstract: - lang: eng text: "GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca\r\n 2+\r\n -dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the “Flash and Freeze-fracture” method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals." acknowledged_ssus: - _id: M-Shop - _id: PreCl - _id: EM-Fac acknowledgement: We thank Erwin Neher and Ipe Ninan for critical comments on the manuscript. This project has received funding from the European Research Council (ERC) and European Commission, under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement no. 694539 to R.S. and the Marie Skłodowska-Curie grant agreement no. 665385 to C.Ö.). This study was supported by the Cooperative Study Program of Center for Animal Resources and Collaborative Study of NINS. We thank Kohgaku Eguchi for statistical analysis, Yu Kasugai for additional EM imaging, Robert Beattie for the design of the slice recovery chamber for Flash and Freeze experiments, Todor Asenov from the ISTA machine shop for custom part preparations for high-pressure freezing, the ISTA preclinical facility for animal caretaking, and the ISTA EM facilities for technical support. article_number: e2301449121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 - first_name: Hüseyin C full_name: Önal, Hüseyin C id: 4659D740-F248-11E8-B48F-1D18A9856A87 last_name: Önal orcid: 0000-0002-2771-2011 - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Utsa full_name: Roy, Utsa id: 4d26cf11-5355-11ee-ae5a-eb05e255b9b2 last_name: Roy - first_name: Yukihiro full_name: Nakamura, Yukihiro last_name: Nakamura - first_name: Tetsushi full_name: Sadakata, Tetsushi last_name: Sadakata - first_name: Makoto full_name: Sanbo, Makoto last_name: Sanbo - first_name: Masumi full_name: Hirabayashi, Masumi last_name: Hirabayashi - first_name: JeongSeop full_name: Rhee, JeongSeop last_name: Rhee - first_name: Nils full_name: Brose, Nils last_name: Brose - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Koppensteiner P, Bhandari P, Önal C, et al. GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. 2024;121(8). doi:10.1073/pnas.2301449121 apa: Koppensteiner, P., Bhandari, P., Önal, C., Borges Merjane, C., Le Monnier, E., Roy, U., … Shigemoto, R. (2024). GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2301449121 chicago: Koppensteiner, Peter, Pradeep Bhandari, Cihan Önal, Carolina Borges Merjane, Elodie Le Monnier, Utsa Roy, Yukihiro Nakamura, et al. “GABAB Receptors Induce Phasic Release from Medial Habenula Terminals through Activity-Dependent Recruitment of Release-Ready Vesicles.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2301449121. ieee: P. Koppensteiner et al., “GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles,” Proceedings of the National Academy of Sciences, vol. 121, no. 8. Proceedings of the National Academy of Sciences, 2024. ista: Koppensteiner P, Bhandari P, Önal C, Borges Merjane C, Le Monnier E, Roy U, Nakamura Y, Sadakata T, Sanbo M, Hirabayashi M, Rhee J, Brose N, Jonas PM, Shigemoto R. 2024. GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. 121(8), e2301449121. mla: Koppensteiner, Peter, et al. “GABAB Receptors Induce Phasic Release from Medial Habenula Terminals through Activity-Dependent Recruitment of Release-Ready Vesicles.” Proceedings of the National Academy of Sciences, vol. 121, no. 8, e2301449121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2301449121. short: P. Koppensteiner, P. Bhandari, C. Önal, C. Borges Merjane, E. Le Monnier, U. Roy, Y. Nakamura, T. Sadakata, M. Sanbo, M. Hirabayashi, J. Rhee, N. Brose, P.M. Jonas, R. Shigemoto, Proceedings of the National Academy of Sciences 121 (2024). date_created: 2024-03-05T09:23:55Z date_published: 2024-02-20T00:00:00Z date_updated: 2024-03-12T13:44:18Z day: '20' ddc: - '570' department: - _id: RySh - _id: PeJo doi: 10.1073/pnas.2301449121 ec_funded: 1 external_id: pmid: - '38346189' file: - access_level: open_access checksum: b25b2a057c266ff317a48b0d54d6fc8a content_type: application/pdf creator: dernst date_created: 2024-03-12T13:42:42Z date_updated: 2024-03-12T13:42:42Z file_id: '15110' file_name: 2024_PNAS_Koppensteiner.pdf file_size: 13648221 relation: main_file success: 1 file_date_updated: 2024-03-12T13:42:42Z has_accepted_license: '1' intvolume: ' 121' issue: '8' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/neuronal-insights-flash-and-freeze-fracture/ record: - id: '13173' relation: research_data status: public status: public title: GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15083' abstract: - lang: eng text: 'Direct reciprocity is a powerful mechanism for cooperation in social dilemmas. The very logic of reciprocity, however, seems to require that individuals are symmetric, and that everyone has the same means to influence each others’ payoffs. Yet in many applications, individuals are asymmetric. Herein, we study the effect of asymmetry in linear public good games. Individuals may differ in their endowments (their ability to contribute to a public good) and in their productivities (how effective their contributions are). Given the individuals’ productivities, we ask which allocation of endowments is optimal for cooperation. To this end, we consider two notions of optimality. The first notion focuses on the resilience of cooperation. The respective endowment distribution ensures that full cooperation is feasible even under the most adverse conditions. The second notion focuses on efficiency. The corresponding endowment distribution maximizes group welfare. Using analytical methods, we fully characterize these two endowment distributions. This analysis reveals that both optimality notions favor some endowment inequality: More productive players ought to get higher endowments. Yet the two notions disagree on how unequal endowments are supposed to be. A focus on resilience results in less inequality. With additional simulations, we show that the optimal endowment allocation needs to account for both the resilience and the efficiency of cooperation.' acknowledgement: 'This work was supported by the European Research Council CoG 863818 (ForM-SMArt) (to K.C.) and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.), the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement #754411 and the French Agence Nationale de la Recherche (under the Investissement d’Avenir Programme, ANR-17-EURE-0010) (to M.K.).' article_number: e2315558121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Valentin full_name: Hübner, Valentin id: 2c8aa207-dc7d-11ea-9b2f-f22972ecd910 last_name: Hübner - first_name: Manuel full_name: Staab, Manuel last_name: Staab - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Maria full_name: Kleshnina, Maria last_name: Kleshnina citation: ama: Hübner V, Staab M, Hilbe C, Chatterjee K, Kleshnina M. Efficiency and resilience of cooperation in asymmetric social dilemmas. Proceedings of the National Academy of Sciences. 2024;121(10). doi:10.1073/pnas.2315558121 apa: Hübner, V., Staab, M., Hilbe, C., Chatterjee, K., & Kleshnina, M. (2024). Efficiency and resilience of cooperation in asymmetric social dilemmas. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2315558121 chicago: Hübner, Valentin, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina. “Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2315558121. ieee: V. Hübner, M. Staab, C. Hilbe, K. Chatterjee, and M. Kleshnina, “Efficiency and resilience of cooperation in asymmetric social dilemmas,” Proceedings of the National Academy of Sciences, vol. 121, no. 10. Proceedings of the National Academy of Sciences, 2024. ista: Hübner V, Staab M, Hilbe C, Chatterjee K, Kleshnina M. 2024. Efficiency and resilience of cooperation in asymmetric social dilemmas. Proceedings of the National Academy of Sciences. 121(10), e2315558121. mla: Hübner, Valentin, et al. “Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.” Proceedings of the National Academy of Sciences, vol. 121, no. 10, e2315558121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2315558121. short: V. Hübner, M. Staab, C. Hilbe, K. Chatterjee, M. Kleshnina, Proceedings of the National Academy of Sciences 121 (2024). date_created: 2024-03-05T09:18:49Z date_published: 2024-03-05T00:00:00Z date_updated: 2024-03-12T13:29:25Z day: '05' ddc: - '000' department: - _id: KrCh doi: 10.1073/pnas.2315558121 ec_funded: 1 external_id: pmid: - '38408249' file: - access_level: open_access checksum: 068520e3efd4d008bb9177e8aedb7d22 content_type: application/pdf creator: dernst date_created: 2024-03-12T13:12:22Z date_updated: 2024-03-12T13:12:22Z file_id: '15109' file_name: 2024_PNAS_Huebner.pdf file_size: 2203220 relation: main_file success: 1 file_date_updated: 2024-03-12T13:12:22Z has_accepted_license: '1' intvolume: ' 121' issue: '10' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/what-math-tells-us-about-social-dilemmas/ record: - id: '15108' relation: research_data status: public status: public title: Efficiency and resilience of cooperation in asymmetric social dilemmas tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15108' abstract: - lang: eng text: "in the research article \"Efficiency and resilience of cooperation in asymmetric social dilemmas\" (by Valentin Hübner, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina).\r\n\r\nWe used different implementations for the case of two and three players, both described below." article_processing_charge: No author: - first_name: Valentin full_name: Hübner, Valentin id: 2c8aa207-dc7d-11ea-9b2f-f22972ecd910 last_name: Hübner - first_name: Maria full_name: Kleshnina, Maria last_name: Kleshnina citation: ama: Hübner V, Kleshnina M. Computer code for “Efficiency and resilience of cooperation in asymmetric social dilemmas.” 2024. doi:10.5281/ZENODO.10639167 apa: Hübner, V., & Kleshnina, M. (2024). Computer code for “Efficiency and resilience of cooperation in asymmetric social dilemmas.” Zenodo. https://doi.org/10.5281/ZENODO.10639167 chicago: Hübner, Valentin, and Maria Kleshnina. “Computer Code for ‘Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.’” Zenodo, 2024. https://doi.org/10.5281/ZENODO.10639167. ieee: V. Hübner and M. Kleshnina, “Computer code for ‘Efficiency and resilience of cooperation in asymmetric social dilemmas.’” Zenodo, 2024. ista: Hübner V, Kleshnina M. 2024. Computer code for ‘Efficiency and resilience of cooperation in asymmetric social dilemmas’, Zenodo, 10.5281/ZENODO.10639167. mla: Hübner, Valentin, and Maria Kleshnina. Computer Code for “Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.” Zenodo, 2024, doi:10.5281/ZENODO.10639167. short: V. Hübner, M. Kleshnina, (2024). date_created: 2024-03-12T13:02:58Z date_published: 2024-02-09T00:00:00Z date_updated: 2024-03-12T13:29:26Z day: '09' ddc: - '000' department: - _id: KrCh doi: 10.5281/ZENODO.10639167 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://10.5281/zenodo.10639167 month: '02' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '15083' relation: used_in_publication status: public status: public title: Computer code for "Efficiency and resilience of cooperation in asymmetric social dilemmas" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15097' abstract: - lang: eng text: Global storm-resolving models (GSRMs) use strongly refined horizontal grids compared with the climate models typically used in the Coupled Model Intercomparison Project (CMIP) but employ comparable vertical grid spacings. Here, we study how changes in the vertical grid spacing and adjustments to the integration time step affect the basic climate quantities simulated by the ICON-Sapphire atmospheric GSRM. Simulations are performed over a 45 d period for five different vertical grids with between 55 and 540 vertical layers and maximum tropospheric vertical grid spacings of between 800 and 50 m, respectively. The effects of changes in the vertical grid spacing are compared with the effects of reducing the horizontal grid spacing from 5 to 2.5 km. For most of the quantities considered, halving the vertical grid spacing has a smaller effect than halving the horizontal grid spacing, but it is not negligible. Each halving of the vertical grid spacing, along with the necessary reductions in time step length, increases cloud liquid water by about 7 %, compared with an approximate 16 % decrease for halving the horizontal grid spacing. The effect is due to both the vertical grid refinement and the time step reduction. There is no tendency toward convergence in the range of grid spacings tested here. The cloud ice amount also increases with a refinement in the vertical grid, but it is hardly affected by the time step length and does show a tendency to converge. While the effect on shortwave radiation is globally dominated by the altered reflection due to the change in the cloud liquid water content, the effect on longwave radiation is more difficult to interpret because changes in the cloud ice concentration and cloud fraction are anticorrelated in some regions. The simulations show that using a maximum tropospheric vertical grid spacing larger than 400 m would increase the truncation error strongly. Computing time investments in a further vertical grid refinement can affect the truncation errors of GSRMs similarly to comparable investments in horizontal refinement, because halving the vertical grid spacing is generally cheaper than halving the horizontal grid spacing. However, convergence of boundary layer cloud properties cannot be expected, even for the smallest maximum tropospheric grid spacing of 50 m used in this study. acknowledgement: "The authors wish to thank Ann Kristin Naumann and three anonymous reviewers for very helpful comments on an earlier version of this paper. We are grateful to René Redler and Karl-Hermann Wieners for useful recommendations regarding running the simulations. We thank Luis Kornblueh for providing an external vertical grid generator and resolving the memory requirements for the very fine vertical grids. We acknowledge Hauke Schulz for providing the radiosonde data. The simulations were run at the German Climate Computing Center (DKRZ), and we thank the DKRZ staff for their support.\r\nHauke Schmidt and Diego Jimenez-de la Cuesta received financial support from the SOCTOC project within the framework of the ROMIC program, funded by the German Ministry of Education and Research (BMBF) (grant no. 01LG1903A).\r\nThe article processing charges for this open-access publication were covered by the Max Planck Society." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Hauke full_name: Schmidt, Hauke last_name: Schmidt - first_name: Sebastian full_name: Rast, Sebastian last_name: Rast - first_name: Jiawei full_name: Bao, Jiawei id: bb9a7399-fefd-11ed-be3c-ae648fd1d160 last_name: Bao - first_name: Amrit full_name: Cassim, Amrit last_name: Cassim - first_name: Shih Wei full_name: Fang, Shih Wei last_name: Fang - first_name: Diego full_name: Jimenez-De La Cuesta, Diego last_name: Jimenez-De La Cuesta - first_name: Paul full_name: Keil, Paul last_name: Keil - first_name: Lukas full_name: Kluft, Lukas last_name: Kluft - first_name: Clarissa full_name: Kroll, Clarissa last_name: Kroll - first_name: Theresa full_name: Lang, Theresa last_name: Lang - first_name: Ulrike full_name: Niemeier, Ulrike last_name: Niemeier - first_name: Andrea full_name: Schneidereit, Andrea last_name: Schneidereit - first_name: Andrew I.L. full_name: Williams, Andrew I.L. last_name: Williams - first_name: Bjorn full_name: Stevens, Bjorn last_name: Stevens citation: ama: Schmidt H, Rast S, Bao J, et al. Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development. 2024;17(4):1563-1584. doi:10.5194/gmd-17-1563-2024 apa: Schmidt, H., Rast, S., Bao, J., Cassim, A., Fang, S. W., Jimenez-De La Cuesta, D., … Stevens, B. (2024). Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development. European Geosciences Union. https://doi.org/10.5194/gmd-17-1563-2024 chicago: Schmidt, Hauke, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih Wei Fang, Diego Jimenez-De La Cuesta, Paul Keil, et al. “Effects of Vertical Grid Spacing on the Climate Simulated in the ICON-Sapphire Global Storm-Resolving Model.” Geoscientific Model Development. European Geosciences Union, 2024. https://doi.org/10.5194/gmd-17-1563-2024. ieee: H. Schmidt et al., “Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model,” Geoscientific Model Development, vol. 17, no. 4. European Geosciences Union, pp. 1563–1584, 2024. ista: Schmidt H, Rast S, Bao J, Cassim A, Fang SW, Jimenez-De La Cuesta D, Keil P, Kluft L, Kroll C, Lang T, Niemeier U, Schneidereit A, Williams AIL, Stevens B. 2024. Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development. 17(4), 1563–1584. mla: Schmidt, Hauke, et al. “Effects of Vertical Grid Spacing on the Climate Simulated in the ICON-Sapphire Global Storm-Resolving Model.” Geoscientific Model Development, vol. 17, no. 4, European Geosciences Union, 2024, pp. 1563–84, doi:10.5194/gmd-17-1563-2024. short: H. Schmidt, S. Rast, J. Bao, A. Cassim, S.W. Fang, D. Jimenez-De La Cuesta, P. Keil, L. Kluft, C. Kroll, T. Lang, U. Niemeier, A. Schneidereit, A.I.L. Williams, B. Stevens, Geoscientific Model Development 17 (2024) 1563–1584. date_created: 2024-03-10T23:00:53Z date_published: 2024-02-22T00:00:00Z date_updated: 2024-03-13T09:01:20Z day: '22' ddc: - '550' department: - _id: CaMu doi: 10.5194/gmd-17-1563-2024 file: - access_level: open_access checksum: 270d2340402729b0532f7072ea914cae content_type: application/pdf creator: dernst date_created: 2024-03-13T08:59:21Z date_updated: 2024-03-13T08:59:21Z file_id: '15111' file_name: 2024_GeoscientificModelDev_Schmidt.pdf file_size: 13364601 relation: main_file success: 1 file_date_updated: 2024-03-13T08:59:21Z has_accepted_license: '1' intvolume: ' 17' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1563-1584 publication: Geoscientific Model Development publication_identifier: eissn: - 1991-9603 issn: - 1991-959X publication_status: published publisher: European Geosciences Union quality_controlled: '1' scopus_import: '1' status: public title: Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2024' ... --- _id: '12311' abstract: - lang: eng text: In this note, we prove a formula for the cancellation exponent kv,n between division polynomials ψn and ϕn associated with a sequence {nP}n∈N of points on an elliptic curve E defined over a discrete valuation field K. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields. acknowledgement: Silverman, and Paul Voutier for the comments on the earlier version of this paper. The first author acknowledges the support by Dioscuri programme initiated by the Max Planck Society, jointly managed with the National Science Centre (Poland), and mutually funded by the Polish Ministry of Science and Higher Education and the German Federal Ministry of Education and Research. The second author has been supported by MIUR (Italy) through PRIN 2017 ‘Geometric, algebraic and analytic methods in arithmetic’ and has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. article_number: '2203.02015' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Bartosz full_name: Naskręcki, Bartosz last_name: Naskręcki - first_name: Matteo full_name: Verzobio, Matteo id: 7aa8f170-131e-11ed-88e1-a9efd01027cb last_name: Verzobio orcid: 0000-0002-0854-0306 citation: ama: 'Naskręcki B, Verzobio M. Common valuations of division polynomials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 2024. doi:10.1017/prm.2024.7' apa: 'Naskręcki, B., & Verzobio, M. (2024). Common valuations of division polynomials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Cambridge University Press. https://doi.org/10.1017/prm.2024.7' chicago: 'Naskręcki, Bartosz, and Matteo Verzobio. “Common Valuations of Division Polynomials.” Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Cambridge University Press, 2024. https://doi.org/10.1017/prm.2024.7.' ieee: 'B. Naskręcki and M. Verzobio, “Common valuations of division polynomials,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Cambridge University Press, 2024.' ista: 'Naskręcki B, Verzobio M. 2024. Common valuations of division polynomials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics., 2203.02015.' mla: 'Naskręcki, Bartosz, and Matteo Verzobio. “Common Valuations of Division Polynomials.” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2203.02015, Cambridge University Press, 2024, doi:10.1017/prm.2024.7.' short: 'B. Naskręcki, M. Verzobio, Proceedings of the Royal Society of Edinburgh Section A: Mathematics (2024).' date_created: 2023-01-16T11:45:22Z date_published: 2024-02-26T00:00:00Z date_updated: 2024-03-13T11:55:21Z day: '26' ddc: - '510' department: - _id: TiBr doi: 10.1017/prm.2024.7 ec_funded: 1 external_id: arxiv: - '2203.02015' has_accepted_license: '1' keyword: - Elliptic curves - Néron models - division polynomials - height functions - discrete valuation rings language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1017/prm.2024.7 month: '02' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: 'Proceedings of the Royal Society of Edinburgh Section A: Mathematics' publication_identifier: eissn: - 1473-7124 issn: - 0308-2105 publication_status: epub_ahead publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Common valuations of division polynomials tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15099' abstract: - lang: eng text: Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems. acknowledgement: KJ, MR, and RKB were supported by grants from the Swedish Research Council (2021-0419, 2021-05243, and 2018-03695, respectively). RKB was also supported by the Leverhulme Trust (RPG-2021-141), RF by FCT- Portuguese Science Foundation (PTDC/BIA-EVL/1614/2021 and 2020.00275.CEECIND), and AMW by Norwegian Research Council RCN (Project number 315287). We thank the members of the Integration of Speciation Research network for stimulating discussions, the Littorina research community for important contributions of data and analyses, and Cynthia Riginos for useful comments on an earlier draft. article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski citation: ama: Johannesson K, Faria R, Le Moan A, et al. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. 2024. doi:10.1016/j.tig.2024.01.002 apa: Johannesson, K., Faria, R., Le Moan, A., Rafajlović, M., Westram, A. M., Butlin, R. K., & Stankowski, S. (2024). Diverse pathways to speciation revealed by marine snails. Trends in Genetics. Cell Press. https://doi.org/10.1016/j.tig.2024.01.002 chicago: Johannesson, Kerstin, Rui Faria, Alan Le Moan, Marina Rafajlović, Anja M Westram, Roger K. Butlin, and Sean Stankowski. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics. Cell Press, 2024. https://doi.org/10.1016/j.tig.2024.01.002. ieee: K. Johannesson et al., “Diverse pathways to speciation revealed by marine snails,” Trends in Genetics. Cell Press, 2024. ista: Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. 2024. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. mla: Johannesson, Kerstin, et al. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics, Cell Press, 2024, doi:10.1016/j.tig.2024.01.002. short: K. Johannesson, R. Faria, A. Le Moan, M. Rafajlović, A.M. Westram, R.K. Butlin, S. Stankowski, Trends in Genetics (2024). date_created: 2024-03-10T23:00:54Z date_published: 2024-02-22T00:00:00Z date_updated: 2024-03-13T12:08:57Z day: '22' ddc: - '570' department: - _id: NiBa doi: 10.1016/j.tig.2024.01.002 external_id: pmid: - '38395682' has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.tig.2024.01.002 month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Trends in Genetics publication_identifier: eissn: - 1362-4555 issn: - 0168-9525 publication_status: epub_ahead publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Diverse pathways to speciation revealed by marine snails tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15098' abstract: - lang: eng text: The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force. acknowledgement: The authors thank Professor Franco Flandoli for useful discussions and valuable insight into the subject. In particular, A.A. would like to thank professor Franco Flandoli for hosting and financially contributing to his research visit at Scuola Normale di Pisa in January 2023, where this work started. E.L. would like to express sincere gratitude to Professor Marco Fuhrman for igniting his interest in this particular field of research. E.L. want to thank Professor Matthias Hieber and Dr. Martin Saal for useful discussions. Finally, the authors thank the anonymous referee for helpful comments which improved the paper from its initial version.Open access funding provided by Scuola Normale Superiore within the CRUI-CARE Agreement. A. Agresti has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 948819). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Antonio full_name: Agresti, Antonio id: 673cd0cc-9b9a-11eb-b144-88f30e1fbb72 last_name: Agresti orcid: 0000-0002-9573-2962 - first_name: Eliseo full_name: Luongo, Eliseo last_name: Luongo citation: ama: Agresti A, Luongo E. Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions. Mathematische Annalen. 2024. doi:10.1007/s00208-024-02812-0 apa: Agresti, A., & Luongo, E. (2024). Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions. Mathematische Annalen. Springer Nature. https://doi.org/10.1007/s00208-024-02812-0 chicago: Agresti, Antonio, and Eliseo Luongo. “Global Well-Posedness and Interior Regularity of 2D Navier-Stokes Equations with Stochastic Boundary Conditions.” Mathematische Annalen. Springer Nature, 2024. https://doi.org/10.1007/s00208-024-02812-0. ieee: A. Agresti and E. Luongo, “Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions,” Mathematische Annalen. Springer Nature, 2024. ista: Agresti A, Luongo E. 2024. Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions. Mathematische Annalen. mla: Agresti, Antonio, and Eliseo Luongo. “Global Well-Posedness and Interior Regularity of 2D Navier-Stokes Equations with Stochastic Boundary Conditions.” Mathematische Annalen, Springer Nature, 2024, doi:10.1007/s00208-024-02812-0. short: A. Agresti, E. Luongo, Mathematische Annalen (2024). date_created: 2024-03-10T23:00:54Z date_published: 2024-02-27T00:00:00Z date_updated: 2024-03-13T12:20:23Z day: '27' department: - _id: JuFi doi: 10.1007/s00208-024-02812-0 ec_funded: 1 external_id: arxiv: - '2306.11081' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00208-024-02812-0 month: '02' oa: 1 oa_version: Published Version project: - _id: 0aa76401-070f-11eb-9043-b5bb049fa26d call_identifier: H2020 grant_number: '948819' name: Bridging Scales in Random Materials publication: Mathematische Annalen publication_identifier: eissn: - 1432-1807 issn: - 0025-5831 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '14843' abstract: - lang: eng text: The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission. acknowledged_ssus: - _id: EM-Fac - _id: PreCl - _id: M-Shop acknowledgement: We thank Drs. David DiGregorio and Erwin Neher for critically reading an earlier version of the manuscript, Ralf Schneggenburger for helpful discussions, Benjamin Suter and Katharina Lichter for support with image analysis, Chris Wojtan for advice on numerical solution of partial differential equations, Maria Reva for help with Ripley analysis, Alois Schlögl for programming, and Akari Hagiwara and Toshihisa Ohtsuka for anti-ELKS antibody. We are grateful to Florian Marr, Christina Altmutter, and Vanessa Zheden for excellent technical assistance and to Eleftheria Kralli-Beller for manuscript editing. This research was supported by the Scientific Services Units (SSUs) of ISTA (Electron Microscopy Facility, Preclinical Facility, and Machine Shop). The project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 692692), the Fonds zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award; P 36232-B), all to P.J., and a DOC fellowship of the Austrian Academy of Sciences to J.-J.C. article_processing_charge: No article_type: original author: - first_name: JingJing full_name: Chen, JingJing id: 2C4E65C8-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Chong full_name: Chen, Chong id: 3DFD581A-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Itaru full_name: Arai, Itaru id: 32A73F6C-F248-11E8-B48F-1D18A9856A87 last_name: Arai - first_name: Olena full_name: Kim, Olena id: 3F8ABDDA-F248-11E8-B48F-1D18A9856A87 last_name: Kim - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Chen J, Kaufmann W, Chen C, et al. Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. doi:10.1016/j.neuron.2023.12.002 apa: Chen, J., Kaufmann, W., Chen, C., Arai, itaru, Kim, O., Shigemoto, R., & Jonas, P. M. (n.d.). Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2023.12.002 chicago: Chen, JingJing, Walter Kaufmann, Chong Chen, itaru Arai, Olena Kim, Ryuichi Shigemoto, and Peter M Jonas. “Developmental Transformation of Ca2+ Channel-Vesicle Nanotopography at a Central GABAergic Synapse.” Neuron. Elsevier, n.d. https://doi.org/10.1016/j.neuron.2023.12.002. ieee: J. Chen et al., “Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse,” Neuron. Elsevier. ista: Chen J, Kaufmann W, Chen C, Arai itaru, Kim O, Shigemoto R, Jonas PM. Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse. Neuron. mla: Chen, JingJing, et al. “Developmental Transformation of Ca2+ Channel-Vesicle Nanotopography at a Central GABAergic Synapse.” Neuron, Elsevier, doi:10.1016/j.neuron.2023.12.002. short: J. Chen, W. Kaufmann, C. Chen, itaru Arai, O. Kim, R. Shigemoto, P.M. Jonas, Neuron (n.d.). date_created: 2024-01-21T23:00:56Z date_published: 2024-01-11T00:00:00Z date_updated: 2024-03-14T13:14:18Z day: '11' department: - _id: PeJo - _id: EM-Fac - _id: RySh doi: 10.1016/j.neuron.2023.12.002 ec_funded: 1 external_id: pmid: - '38215739' language: - iso: eng month: '01' oa_version: None pmid: 1 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: bd88be38-d553-11ed-ba76-81d5a70a6ef5 grant_number: P36232 name: Mechanisms of GABA release in hippocampal circuits - _id: 26B66A3E-B435-11E9-9278-68D0E5697425 grant_number: '25383' name: Development of nanodomain coupling between Ca2+ channels and release sensors at a central inhibitory synapse publication: Neuron publication_identifier: eissn: - 1097-4199 issn: - 0896-6273 publication_status: inpress publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/synapses-brought-to-the-point/ record: - id: '15101' relation: dissertation_contains status: public scopus_import: '1' status: public title: Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15101' acknowledged_ssus: - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: JingJing full_name: Chen, JingJing id: 2C4E65C8-F248-11E8-B48F-1D18A9856A87 last_name: Chen citation: ama: Chen J. Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse. 2024. doi:10.15479/at:ista:15101 apa: Chen, J. (2024). Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15101 chicago: Chen, JingJing. “Developmental Transformation of Nanodomain Coupling between Ca2+ Channels and Release Sensors at a Central GABAergic Synapse.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:15101. ieee: J. Chen, “Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse,” Institute of Science and Technology Austria, 2024. ista: Chen J. 2024. Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse. Institute of Science and Technology Austria. mla: Chen, JingJing. Developmental Transformation of Nanodomain Coupling between Ca2+ Channels and Release Sensors at a Central GABAergic Synapse. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:15101. short: J. Chen, Developmental Transformation of Nanodomain Coupling between Ca2+ Channels and Release Sensors at a Central GABAergic Synapse, Institute of Science and Technology Austria, 2024. date_created: 2024-03-11T10:09:54Z date_published: 2024-03-11T00:00:00Z date_updated: 2024-03-14T13:14:19Z day: '11' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: PeJo doi: 10.15479/at:ista:15101 ec_funded: 1 file: - access_level: closed checksum: db4947474ffa271e66c254b6fe876a55 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jchen date_created: 2024-03-11T14:10:58Z date_updated: 2024-03-12T07:12:17Z file_id: '15104' file_name: Thesis_Jingjing CHEN.docx file_size: 11271363 relation: source_file - access_level: closed checksum: a5eeae8b5702cd540f5d03469bc33dde content_type: application/pdf creator: jchen date_created: 2024-03-11T14:11:06Z date_updated: 2024-03-11T14:11:06Z embargo: 2024-04-01 embargo_to: open_access file_id: '15105' file_name: Thesis_Jingjing CHEN_merged.pdf file_size: 16627311 relation: main_file file_date_updated: 2024-03-12T07:12:17Z has_accepted_license: '1' language: - iso: eng month: '03' oa_version: Published Version page: '84' project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: bd88be38-d553-11ed-ba76-81d5a70a6ef5 grant_number: P36232 name: Mechanisms of GABA release in hippocampal circuits - _id: 26B66A3E-B435-11E9-9278-68D0E5697425 grant_number: '25383' name: Development of nanodomain coupling between Ca2+ channels and release sensors at a central inhibitory synapse publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '14843' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '15122' abstract: - lang: eng text: Quantum computers are increasing in size and quality but are still very noisy. Error mitigation extends the size of the quantum circuits that noisy devices can meaningfully execute. However, state-of-the-art error mitigation methods are hard to implement and the limited qubit connectivity in superconducting qubit devices restricts most applications to the hardware's native topology. Here we show a quantum approximate optimization algorithm (QAOA) on nonplanar random regular graphs with up to 40 nodes enabled by a machine learning-based error mitigation. We use a swap network with careful decision-variable-to-qubit mapping and a feed-forward neural network to optimize a depth-two QAOA on up to 40 qubits. We observe a meaningful parameter optimization for the largest graph which requires running quantum circuits with 958 two-qubit gates. Our paper emphasizes the need to mitigate samples, and not only expectation values, in quantum approximate optimization. These results are a step towards executing quantum approximate optimization at a scale that is not classically simulable. Reaching such system sizes is key to properly understanding the true potential of heuristic algorithms like QAOA. acknowledgement: S.H.S. acknowledges support from the IBM Ph.D. fellowship 2022 in quantum computing. The authors also thank M. Serbyn, R. Kueng, R. A. Medina, and S. Woerner for fruitful discussions. article_number: '013223' article_processing_charge: Yes article_type: original author: - first_name: Stefan full_name: Sack, Stefan id: dd622248-f6e0-11ea-865d-ce382a1c81a5 last_name: Sack orcid: 0000-0001-5400-8508 - first_name: Daniel J. full_name: Egger, Daniel J. last_name: Egger citation: ama: Sack S, Egger DJ. Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation. Physical Review Research. 2024;6(1). doi:10.1103/PhysRevResearch.6.013223 apa: Sack, S., & Egger, D. J. (2024). Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.6.013223 chicago: Sack, Stefan, and Daniel J. Egger. “Large-Scale Quantum Approximate Optimization on Nonplanar Graphs with Machine Learning Noise Mitigation.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/PhysRevResearch.6.013223. ieee: S. Sack and D. J. Egger, “Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Sack S, Egger DJ. 2024. Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation. Physical Review Research. 6(1), 013223. mla: Sack, Stefan, and Daniel J. Egger. “Large-Scale Quantum Approximate Optimization on Nonplanar Graphs with Machine Learning Noise Mitigation.” Physical Review Research, vol. 6, no. 1, 013223, American Physical Society, 2024, doi:10.1103/PhysRevResearch.6.013223. short: S. Sack, D.J. Egger, Physical Review Research 6 (2024). date_created: 2024-03-17T23:00:59Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-19T07:24:03Z day: '01' ddc: - '530' department: - _id: MaSe doi: 10.1103/PhysRevResearch.6.013223 external_id: arxiv: - '2307.14427' file: - access_level: open_access checksum: 274c9f1b15b3547a10a03f39e4ccc582 content_type: application/pdf creator: dernst date_created: 2024-03-19T07:16:38Z date_updated: 2024-03-19T07:16:38Z file_id: '15123' file_name: 2024_PhysicalReviewResearch_Sack.pdf file_size: 2777593 relation: main_file success: 1 file_date_updated: 2024-03-19T07:16:38Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: bd660c93-d553-11ed-ba76-fb0fb6f49c0d name: Quantum_Quantum Circuits and Software_Variational quantum algorithms on NISQ devices publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '15118' abstract: - lang: eng text: Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea. acknowledged_ssus: - _id: LifeSc acknowledgement: We thank X. Ye (ISTA) for providing the His–SUMO expression plasmid pSVA13429. pCDB302 was a gift from C. Bahl (Addgene plasmid number 113673; http://n2t.net/addgene:113673; RRID Addgene_113673). We thank B. Ahsan, G. Sharov, G. Cannone and S. Chen from the Medical Research Council (MRC) LMB Electron Microscopy Facility for help and support. We thank Scientific Computing at the MRC LMB for their support. We thank L. Trübestein and N. Krasnici of the protein service unit of the ISTA Lab Support Facility for help with the SEC coupled with multi-angle light scattering experiments. We thank D. Grohmann and R. Reichelt from the Archaea Centre at the University of Regensburg for providing the P. furiosus cell material. P.N. and S.-V.A. were supported by a Momentum grant from the Volkswagen (VW) Foundation (grant number 94933). D.K.-C. and D.B. were supported by the VW Stiftung ‘Life?’ programme (to J.L.; grant number Az 96727) and by the MRC, as part of UK Research and Innovation (UKRI), MRC file reference number U105184326 (to J.L.). N.T. and S.G. acknowledge support from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant number ANR-10-LABX-62-IBEID), and the computational and storage services (Maestro cluster) provided by the IT department at Institut Pasteur. M.K. and M.L. were supported by the Austrian Science Fund (FWF) Stand-Alone P34607. For the purpose of open access, the MRC Laboratory of Molecular Biology has applied a CC BY public copyright licence to any author accepted manuscript version arising. article_processing_charge: No article_type: original author: - first_name: Phillip full_name: Nußbaum, Phillip last_name: Nußbaum - first_name: Danguole full_name: Kureisaite-Ciziene, Danguole last_name: Kureisaite-Ciziene - first_name: Dom full_name: Bellini, Dom last_name: Bellini - first_name: Chris full_name: Van Der Does, Chris last_name: Van Der Does - first_name: Marko full_name: Kojic, Marko id: 73e7ecd4-dc85-11ea-9058-88a16394b160 last_name: Kojic - first_name: Najwa full_name: Taib, Najwa last_name: Taib - first_name: Anna full_name: Yeates, Anna last_name: Yeates - first_name: Maxime full_name: Tourte, Maxime last_name: Tourte - first_name: Simonetta full_name: Gribaldo, Simonetta last_name: Gribaldo - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Jan full_name: Löwe, Jan last_name: Löwe - first_name: Sonja Verena full_name: Albers, Sonja Verena last_name: Albers citation: ama: Nußbaum P, Kureisaite-Ciziene D, Bellini D, et al. Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division. Nature Microbiology. 2024;9(3):698-711. doi:10.1038/s41564-024-01600-5 apa: Nußbaum, P., Kureisaite-Ciziene, D., Bellini, D., Van Der Does, C., Kojic, M., Taib, N., … Albers, S. V. (2024). Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division. Nature Microbiology. Springer Nature. https://doi.org/10.1038/s41564-024-01600-5 chicago: Nußbaum, Phillip, Danguole Kureisaite-Ciziene, Dom Bellini, Chris Van Der Does, Marko Kojic, Najwa Taib, Anna Yeates, et al. “Proteins Containing Photosynthetic Reaction Centre Domains Modulate FtsZ-Based Archaeal Cell Division.” Nature Microbiology. Springer Nature, 2024. https://doi.org/10.1038/s41564-024-01600-5. ieee: P. Nußbaum et al., “Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division,” Nature Microbiology, vol. 9, no. 3. Springer Nature, pp. 698–711, 2024. ista: Nußbaum P, Kureisaite-Ciziene D, Bellini D, Van Der Does C, Kojic M, Taib N, Yeates A, Tourte M, Gribaldo S, Loose M, Löwe J, Albers SV. 2024. Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division. Nature Microbiology. 9(3), 698–711. mla: Nußbaum, Phillip, et al. “Proteins Containing Photosynthetic Reaction Centre Domains Modulate FtsZ-Based Archaeal Cell Division.” Nature Microbiology, vol. 9, no. 3, Springer Nature, 2024, pp. 698–711, doi:10.1038/s41564-024-01600-5. short: P. Nußbaum, D. Kureisaite-Ciziene, D. Bellini, C. Van Der Does, M. Kojic, N. Taib, A. Yeates, M. Tourte, S. Gribaldo, M. Loose, J. Löwe, S.V. Albers, Nature Microbiology 9 (2024) 698–711. date_created: 2024-03-17T23:00:58Z date_published: 2024-03-04T00:00:00Z date_updated: 2024-03-19T07:30:53Z day: '04' department: - _id: MaLo doi: 10.1038/s41564-024-01600-5 external_id: pmid: - '38443575' intvolume: ' 9' issue: '3' language: - iso: eng month: '03' oa_version: None page: 698-711 pmid: 1 project: - _id: fc38323b-9c52-11eb-aca3-ff8afb4a011d grant_number: P34607 name: "Understanding bacterial cell division by in vitro\r\nreconstitution" publication: Nature Microbiology publication_identifier: eissn: - 2058-5276 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2024' ... --- _id: '15119' abstract: - lang: eng text: In this paper we consider an SPDE where the leading term is a second order operator with periodic boundary conditions, coefficients which are measurable in (t,ω) , and Hölder continuous in space. Assuming stochastic parabolicity conditions, we prove Lp((0,T)×Ω,tκdt;Hσ,q(Td)) -estimates. The main novelty is that we do not require p=q . Moreover, we allow arbitrary σ∈R and weights in time. Such mixed regularity estimates play a crucial role in applications to nonlinear SPDEs which is clear from our previous work. To prove our main results we develop a general perturbation theory for SPDEs. Moreover, we prove a new result on pointwise multiplication in spaces with fractional smoothness. acknowledgement: The first author has been partially supported by the Nachwuchsring – Network for the promotion of young scientists – at TU Kaiserslautern. The second author is supported by the VIDI subsidy 639.032.427 of the Netherlands Organisation for Scientific Research (NWO). The authors thank the anonymous referees and Max Sauerbrey for careful reading and helpful suggestions. article_processing_charge: No article_type: original author: - first_name: Antonio full_name: Agresti, Antonio id: 673cd0cc-9b9a-11eb-b144-88f30e1fbb72 last_name: Agresti orcid: 0000-0002-9573-2962 - first_name: Mark full_name: Veraar, Mark last_name: Veraar citation: ama: Agresti A, Veraar M. Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions. Annales de l’institut Henri Poincare Probability and Statistics. 2024;60(1):413-430. doi:10.1214/22-AIHP1333 apa: Agresti, A., & Veraar, M. (2024). Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions. Annales de l’institut Henri Poincare Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AIHP1333 chicago: Agresti, Antonio, and Mark Veraar. “Stochastic Maximal Lp(Lq)-Regularity for Second Order Systems with Periodic Boundary Conditions.” Annales de l’institut Henri Poincare Probability and Statistics. Institute of Mathematical Statistics, 2024. https://doi.org/10.1214/22-AIHP1333. ieee: A. Agresti and M. Veraar, “Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions,” Annales de l’institut Henri Poincare Probability and Statistics, vol. 60, no. 1. Institute of Mathematical Statistics, pp. 413–430, 2024. ista: Agresti A, Veraar M. 2024. Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions. Annales de l’institut Henri Poincare Probability and Statistics. 60(1), 413–430. mla: Agresti, Antonio, and Mark Veraar. “Stochastic Maximal Lp(Lq)-Regularity for Second Order Systems with Periodic Boundary Conditions.” Annales de l’institut Henri Poincare Probability and Statistics, vol. 60, no. 1, Institute of Mathematical Statistics, 2024, pp. 413–30, doi:10.1214/22-AIHP1333. short: A. Agresti, M. Veraar, Annales de l’institut Henri Poincare Probability and Statistics 60 (2024) 413–430. date_created: 2024-03-17T23:00:58Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-03-19T08:14:17Z day: '01' department: - _id: JuFi doi: 10.1214/22-AIHP1333 external_id: arxiv: - '2106.01274' intvolume: ' 60' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2106.01274 month: '02' oa: 1 oa_version: Preprint page: 413-430 publication: Annales de l'institut Henri Poincare Probability and Statistics publication_identifier: issn: - 0246-0203 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 60 year: '2024' ... --- _id: '14478' abstract: - lang: eng text: Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungusMetarhizium robertsiiduring experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome – but no other – was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment betweenM. robertsiiand another congeneric insect pathogen,M. guizhouense. Hence horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The transferred accessory chromosome contains genes that might be involved in its preferential horizontal transfer, encoding putative histones and histone-modifying enzymes, but also putative virulence factors that may support its establishment. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.Significance StatementThe enormous success of bacterial pathogens has been attributed to their ability to exchange genetic material between one another. Similarly, in eukaryotes, horizontal transfer of genetic material allowed the spread of virulence factors across species. The horizontal transfer of whole chromosomes could be an important pathway for such exchange of genetic material, but little is known about the origin of transferable chromosomes and how frequently they are exchanged. Here, we show that the transfer of accessory chromosomes - chromosomes that are non-essential but may provide fitness benefits - is common during fungal co-infections and is even possible between distant pathogenic species, highlighting the importance of horizontal gene transfer via chromosome transfer also for the evolution and function of eukaryotic pathogens. acknowledgement: We thank Bernhardt Steinwender, Jorgen Eilenberg, and Nicolai V. Meyling for the fungal strains. We further thank Chengshu Wang for providing the short sequencing reads for M. guizhouense ARESF977 he used for his published genome assembly, and Kristian Ullrich for help in the bioinformatics analysis for methylation pattern in Nanopore reads, and the VBC and the Max Planck Society for the use of their sequencing centers. We thank Barbara Milutinović and Hinrich Schulenburg for discussion, and Tal Dagan and Jens Rolff for comments on a previous version of the manuscript. Fig. 1A was created with BioRender.com. This study received funding by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (No. 771402; EPIDEMICSonCHIP) to S.C. and by the German Research Foundation (DFG grant HA9263/1-1) to M.H. article_number: e2316284121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Michael full_name: Habig, Michael last_name: Habig - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Judith full_name: Müller, Judith last_name: Müller - first_name: Eva H. full_name: Stukenbrock, Eva H. last_name: Stukenbrock - first_name: Hanna full_name: Leitner, Hanna id: 8fc5c6f6-5903-11ec-abad-c83f046253e7 last_name: Leitner - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(11). doi:10.1073/pnas.2316284121 apa: Habig, M., Grasse, A. V., Müller, J., Stukenbrock, E. H., Leitner, H., & Cremer, S. (2024). Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2316284121 chicago: Habig, Michael, Anna V Grasse, Judith Müller, Eva H. Stukenbrock, Hanna Leitner, and Sylvia Cremer. “Frequent Horizontal Chromosome Transfer between Asexual Fungal Insect Pathogens.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2316284121. ieee: M. Habig, A. V. Grasse, J. Müller, E. H. Stukenbrock, H. Leitner, and S. Cremer, “Frequent horizontal chromosome transfer between asexual fungal insect pathogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11. Proceedings of the National Academy of Sciences, 2024. ista: Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. 2024. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2316284121. mla: Habig, Michael, et al. “Frequent Horizontal Chromosome Transfer between Asexual Fungal Insect Pathogens.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11, e2316284121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2316284121. short: M. Habig, A.V. Grasse, J. Müller, E.H. Stukenbrock, H. Leitner, S. Cremer, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2023-10-31T13:30:00Z date_published: 2024-03-12T00:00:00Z date_updated: 2024-03-19T09:07:20Z day: '12' ddc: - '570' department: - _id: SyCr doi: 10.1073/pnas.2316284121 ec_funded: 1 external_id: pmid: - '38442176' file: - access_level: open_access checksum: f5e871db617b682edc71fcd08670dc81 content_type: application/pdf creator: dernst date_created: 2024-03-19T09:02:57Z date_updated: 2024-03-19T09:02:57Z file_id: '15124' file_name: 2024_PNAS_Habig.pdf file_size: 5750361 relation: main_file success: 1 file_date_updated: 2024-03-19T09:02:57Z has_accepted_license: '1' intvolume: ' 121' issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Frequent horizontal chromosome transfer between asexual fungal insect pathogens tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '10045' abstract: - lang: eng text: "Given a fixed finite metric space (V,μ), the {\\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs.\r\n" acknowledgement: We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. Open access funding provided by Institute of Science and Technology (IST Austria). article_number: '2109.10203' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Martin full_name: Dvorak, Martin id: 40ED02A8-C8B4-11E9-A9C0-453BE6697425 last_name: Dvorak orcid: 0000-0001-5293-214X - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov citation: ama: Dvorak M, Kolmogorov V. Generalized minimum 0-extension problem and discrete convexity. Mathematical Programming. 2024. doi:10.1007/s10107-024-02064-5 apa: Dvorak, M., & Kolmogorov, V. (2024). Generalized minimum 0-extension problem and discrete convexity. Mathematical Programming. Springer Nature. https://doi.org/10.1007/s10107-024-02064-5 chicago: Dvorak, Martin, and Vladimir Kolmogorov. “Generalized Minimum 0-Extension Problem and Discrete Convexity.” Mathematical Programming. Springer Nature, 2024. https://doi.org/10.1007/s10107-024-02064-5. ieee: M. Dvorak and V. Kolmogorov, “Generalized minimum 0-extension problem and discrete convexity,” Mathematical Programming. Springer Nature, 2024. ista: Dvorak M, Kolmogorov V. 2024. Generalized minimum 0-extension problem and discrete convexity. Mathematical Programming., 2109.10203. mla: Dvorak, Martin, and Vladimir Kolmogorov. “Generalized Minimum 0-Extension Problem and Discrete Convexity.” Mathematical Programming, 2109.10203, Springer Nature, 2024, doi:10.1007/s10107-024-02064-5. short: M. Dvorak, V. Kolmogorov, Mathematical Programming (2024). date_created: 2021-09-27T10:48:23Z date_published: 2024-03-07T00:00:00Z date_updated: 2024-03-19T08:20:31Z day: '07' ddc: - '004' department: - _id: GradSch - _id: VlKo doi: 10.1007/s10107-024-02064-5 external_id: arxiv: - '2109.10203' file: - access_level: open_access checksum: e7e83065f7bc18b9c188bf93b5ca5db6 content_type: application/pdf creator: mdvorak date_created: 2021-09-27T10:54:51Z date_updated: 2021-09-27T10:54:51Z file_id: '10046' file_name: Generalized-0-Ext.pdf file_size: 603672 relation: main_file success: 1 file_date_updated: 2021-09-27T10:54:51Z has_accepted_license: '1' keyword: - minimum 0-extension problem - metric labeling problem - discrete metric spaces - metric extensions - computational complexity - valued constraint satisfaction problems - discrete convex analysis - L-convex functions language: - iso: eng month: '03' oa: 1 oa_version: Preprint publication: Mathematical Programming publication_identifier: eissn: - 1436-4646 issn: - 0025-5610 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Generalized minimum 0-extension problem and discrete convexity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15121' abstract: - lang: eng text: We present an auction algorithm using multiplicative instead of constant weight updates to compute a (1-E)-approximate maximum weight matching (MWM) in a bipartite graph with n vertices and m edges in time 0(mE-1), beating the running time of the fastest known approximation algorithm of Duan and Pettie [JACM ’14] that runs in 0(mE-1 log E-1). Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a (1-E)-approximate maximum weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided vertex insertions (with incident edges sorted by weight) to the other side. The total time time used is 0(mE-1), where m is the sum of the number of initially existing and inserted edges. acknowledgement: The first author thanks Chandra Chekuri for useful discussions about this paper. This work was done in part at the University of Vienna. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the Austrian Science Fund (FWF) project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024. article_processing_charge: No article_type: original author: - first_name: Da Wei full_name: Zheng, Da Wei last_name: Zheng - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 citation: ama: Zheng DW, Henzinger MH. Multiplicative auction algorithm for approximate maximum weight bipartite matching. Mathematical Programming. 2024. doi:10.1007/s10107-024-02066-3 apa: Zheng, D. W., & Henzinger, M. H. (2024). Multiplicative auction algorithm for approximate maximum weight bipartite matching. Mathematical Programming. Springer Nature. https://doi.org/10.1007/s10107-024-02066-3 chicago: Zheng, Da Wei, and Monika H Henzinger. “Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching.” Mathematical Programming. Springer Nature, 2024. https://doi.org/10.1007/s10107-024-02066-3. ieee: D. W. Zheng and M. H. Henzinger, “Multiplicative auction algorithm for approximate maximum weight bipartite matching,” Mathematical Programming. Springer Nature, 2024. ista: Zheng DW, Henzinger MH. 2024. Multiplicative auction algorithm for approximate maximum weight bipartite matching. Mathematical Programming. mla: Zheng, Da Wei, and Monika H. Henzinger. “Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching.” Mathematical Programming, Springer Nature, 2024, doi:10.1007/s10107-024-02066-3. short: D.W. Zheng, M.H. Henzinger, Mathematical Programming (2024). date_created: 2024-03-17T23:00:58Z date_published: 2024-03-06T00:00:00Z date_updated: 2024-03-19T08:32:32Z day: '06' department: - _id: MoHe doi: 10.1007/s10107-024-02066-3 ec_funded: 1 external_id: arxiv: - '2301.09217' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.09217 month: '03' oa: 1 oa_version: Preprint project: - _id: bd9ca328-d553-11ed-ba76-dc4f890cfe62 call_identifier: H2020 grant_number: '101019564' name: The design and evaluation of modern fully dynamic data structures - _id: bd9e3a2e-d553-11ed-ba76-8aa684ce17fe grant_number: 'P33775 ' name: Fast Algorithms for a Reactive Network Layer publication: Mathematical Programming publication_identifier: eissn: - 1436-4646 issn: - 0025-5610 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13236' relation: earlier_version status: public scopus_import: '1' status: public title: Multiplicative auction algorithm for approximate maximum weight bipartite matching type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15114' abstract: - lang: eng text: As a key liquid organic hydrogen carrier, investigating the decomposition of formic acid (HCOOH) on the Pd (1 1 1) transition metal surface is imperative for harnessing hydrogen energy. Despite a multitude of studies, the major mechanisms and key intermediates involved in the dehydrogenation process of formic acid remain a great topic of debate due to ambiguous adsorbate interactions. In this research, we develop an advanced microkinetic model based on first-principles calculations, accounting for adsorbate–adsorbate interactions. Our study unveils a comprehensive mechanism for the Pd (1 1 1) surface, highlighting the significance of coverage effects in formic acid dehydrogenation. Our findings unequivocally demonstrate that H coverage on the Pd (1 1 1) surface renders formic acid more susceptible to decompose into H2 and CO2 through COOH intermediates. Consistent with experimental results, the selectivity of H2 in the decomposition of formic acid on the Pd (1 1 1) surface approaches 100 %. Considering the influence of H coverage, our kinetic analysis aligns perfectly with experimental values at a temperature of 373 K. acknowledgement: The authors acknowledge the financial support from the National Key Research and Development Project of China (2021YFA1500900, 2022YFE0113800), the National Natural Science Foundation of China (22141001, U21A20298), Zhejiang Innovation Team (2017R5203). article_number: '119959' article_processing_charge: No article_type: original author: - first_name: Zihao full_name: Yao, Zihao last_name: Yao - first_name: Xu full_name: Liu, Xu last_name: Liu - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: Jianguo full_name: Wang, Jianguo last_name: Wang citation: ama: 'Yao Z, Liu X, Bunting R, Wang J. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 2024;291. doi:10.1016/j.ces.2024.119959' apa: 'Yao, Z., Liu, X., Bunting, R., & Wang, J. (2024). Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. Elsevier. https://doi.org/10.1016/j.ces.2024.119959' chicago: 'Yao, Zihao, Xu Liu, Rhys Bunting, and Jianguo Wang. “Unravelling the Reaction Mechanism for H2 Production via Formic Acid Decomposition over Pd: Coverage-Dependent Microkinetic Modeling.” Chemical Engineering Science. Elsevier, 2024. https://doi.org/10.1016/j.ces.2024.119959.' ieee: 'Z. Yao, X. Liu, R. Bunting, and J. Wang, “Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling,” Chemical Engineering Science, vol. 291. Elsevier, 2024.' ista: 'Yao Z, Liu X, Bunting R, Wang J. 2024. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 291, 119959.' mla: 'Yao, Zihao, et al. “Unravelling the Reaction Mechanism for H2 Production via Formic Acid Decomposition over Pd: Coverage-Dependent Microkinetic Modeling.” Chemical Engineering Science, vol. 291, 119959, Elsevier, 2024, doi:10.1016/j.ces.2024.119959.' short: Z. Yao, X. Liu, R. Bunting, J. Wang, Chemical Engineering Science 291 (2024). date_created: 2024-03-17T23:00:57Z date_published: 2024-03-04T00:00:00Z date_updated: 2024-03-19T08:47:42Z day: '04' department: - _id: MaIb doi: 10.1016/j.ces.2024.119959 intvolume: ' 291' language: - iso: eng month: '03' oa_version: None publication: Chemical Engineering Science publication_identifier: issn: - 0009-2509 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 291 year: '2024' ... --- _id: '15116' abstract: - lang: eng text: Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water–collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H2O/D2O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H2O and D2O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D2O than in H2O, and collagen in D2O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H2O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D2O is less hydrated than in H2O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen–water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly. acknowledgement: We thank Dr. Steven Roeters (Aarhus University), Dr. Federica Burla, and Prof. Dr. Mischa Bonn (Institute for Polymer Research, Mainz, Germany) for the useful discussions. We thank Dr. Wim Roeterdink and Michiel Hilberts for technical support. G.H.K. acknowledges financial support by the “BaSyC Building a Synthetic Cell” Gravitation grant (024.003.019) of The Netherlands Ministry of Education, Culture and Science (OCW) and The Netherlands Organization for Scientific Research and from NWO grant OCENW.GROOT.2019.022. This work has received support from the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT, under Grant No. 2022K1A3A1A04062969. This publication is part of the project (with Project Number VI.Veni.212.240) of the research programme NWO Talent Programme Veni 2021, which is financed by the Dutch Research Council (NWO). I.M.I. acknowledges support from the Sectorplan Bèta & Techniek of the Dutch Government and the Dementia Research - Synapsis Foundation Switzerland. A.Š. and K.K. acknowledge support from Royal Society and European Research Council Starting Grant. G. Giubertoni kindly thanks to the Care4Bones community and the Collagen Café community for reminding that we do not own the knowledge we create, but it is, rather, a collective resource intended for the advancement of human progress. article_number: e2313162121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Giulia full_name: Giubertoni, Giulia last_name: Giubertoni - first_name: Liru full_name: Feng, Liru last_name: Feng - first_name: Kevin full_name: Klein, Kevin last_name: Klein - first_name: Guido full_name: Giannetti, Guido last_name: Giannetti - first_name: Luco full_name: Rutten, Luco last_name: Rutten - first_name: Yeji full_name: Choi, Yeji last_name: Choi - first_name: Anouk full_name: Van Der Net, Anouk last_name: Van Der Net - first_name: Gerard full_name: Castro-Linares, Gerard last_name: Castro-Linares - first_name: Federico full_name: Caporaletti, Federico last_name: Caporaletti - first_name: Dimitra full_name: Micha, Dimitra last_name: Micha - first_name: Johannes full_name: Hunger, Johannes last_name: Hunger - first_name: Antoine full_name: Deblais, Antoine last_name: Deblais - first_name: Daniel full_name: Bonn, Daniel last_name: Bonn - first_name: Nico full_name: Sommerdijk, Nico last_name: Sommerdijk - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Ioana M. full_name: Ilie, Ioana M. last_name: Ilie - first_name: Gijsje H. full_name: Koenderink, Gijsje H. last_name: Koenderink - first_name: Sander full_name: Woutersen, Sander last_name: Woutersen citation: ama: Giubertoni G, Feng L, Klein K, et al. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(11). doi:10.1073/pnas.2313162121 apa: Giubertoni, G., Feng, L., Klein, K., Giannetti, G., Rutten, L., Choi, Y., … Woutersen, S. (2024). Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2313162121 chicago: Giubertoni, Giulia, Liru Feng, Kevin Klein, Guido Giannetti, Luco Rutten, Yeji Choi, Anouk Van Der Net, et al. “Elucidating the Role of Water in Collagen Self-Assembly by Isotopically Modulating Collagen Hydration.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2313162121. ieee: G. Giubertoni et al., “Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11. Proceedings of the National Academy of Sciences, 2024. ista: Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, Van Der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. 2024. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2313162121. mla: Giubertoni, Giulia, et al. “Elucidating the Role of Water in Collagen Self-Assembly by Isotopically Modulating Collagen Hydration.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11, e2313162121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2313162121. short: G. Giubertoni, L. Feng, K. Klein, G. Giannetti, L. Rutten, Y. Choi, A. Van Der Net, G. Castro-Linares, F. Caporaletti, D. Micha, J. Hunger, A. Deblais, D. Bonn, N. Sommerdijk, A. Šarić, I.M. Ilie, G.H. Koenderink, S. Woutersen, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2024-03-17T23:00:57Z date_published: 2024-03-12T00:00:00Z date_updated: 2024-03-19T11:41:32Z day: '12' ddc: - '550' department: - _id: AnSa doi: 10.1073/pnas.2313162121 external_id: pmid: - '38451946' file: - access_level: open_access checksum: a3f7fdc29dd9f0a38952ab4e322b3a05 content_type: application/pdf creator: dernst date_created: 2024-03-19T10:22:42Z date_updated: 2024-03-19T10:22:42Z file_id: '15125' file_name: 2024_PNAS_Giubertoni.pdf file_size: 12952586 relation: main_file success: 1 file_date_updated: 2024-03-19T10:22:42Z has_accepted_license: '1' intvolume: ' 121' issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: record: - id: '15126' relation: research_data status: public scopus_import: '1' status: public title: Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15117' abstract: - lang: eng text: 'The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and “flash-and-freeze” electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.' acknowledgement: "We thank previous students, postdocs, and collaborators, particularly J. Geiger, and (in alphabetical order) H. Alle, J. Bischofberger, C. Borges-Merjane, D. Engel, M. Frotscher, S. Hallermann, M. Heckmann, S. Jamrichova, O. Kim, L. Li, K. Lichter, P. Lin, J. Lübke, Y. Okamoto, C. Pawlu, C. Schmidt-Hieber, N. Spruston, and N. Vyleta for their outstanding experimental contributions. We also thank P. Castillo, J. Geiger, T. Sakaba, S. Siegert, T. Vogels, and J. Watson for critically reading the manuscript, E. Kralli-Beller for text editing, and J. Malikovic and L. Slomianka for useful discussions. We apologize that, due to space constraints, not all relevant papers could be cited.\r\nThis project was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 692692, AdG “GIANTSYN”) and the Fonds zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein Award; P 36232-B, stand-alone grant), both to P.J." article_processing_charge: No article_type: review author: - first_name: David H full_name: Vandael, David H id: 3AE48E0A-F248-11E8-B48F-1D18A9856A87 last_name: Vandael orcid: 0000-0001-7577-1676 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Vandael DH, Jonas PM. Structure, biophysics, and circuit function of a “giant” cortical presynaptic terminal. Science. 2024;383(6687):eadg6757. doi:10.1126/science.adg6757 apa: Vandael, D. H., & Jonas, P. M. (2024). Structure, biophysics, and circuit function of a “giant” cortical presynaptic terminal. Science. AAAS. https://doi.org/10.1126/science.adg6757 chicago: Vandael, David H, and Peter M Jonas. “Structure, Biophysics, and Circuit Function of a ‘Giant’ Cortical Presynaptic Terminal.” Science. AAAS, 2024. https://doi.org/10.1126/science.adg6757. ieee: D. H. Vandael and P. M. Jonas, “Structure, biophysics, and circuit function of a ‘giant’ cortical presynaptic terminal,” Science, vol. 383, no. 6687. AAAS, p. eadg6757, 2024. ista: Vandael DH, Jonas PM. 2024. Structure, biophysics, and circuit function of a ‘giant’ cortical presynaptic terminal. Science. 383(6687), eadg6757. mla: Vandael, David H., and Peter M. Jonas. “Structure, Biophysics, and Circuit Function of a ‘Giant’ Cortical Presynaptic Terminal.” Science, vol. 383, no. 6687, AAAS, 2024, p. eadg6757, doi:10.1126/science.adg6757. short: D.H. Vandael, P.M. Jonas, Science 383 (2024) eadg6757. date_created: 2024-03-17T23:00:57Z date_published: 2024-03-08T00:00:00Z date_updated: 2024-03-20T07:42:52Z day: '08' department: - _id: PeJo doi: 10.1126/science.adg6757 ec_funded: 1 external_id: pmid: - '38452088' intvolume: ' 383' issue: '6687' language: - iso: eng month: '03' oa_version: None page: eadg6757 pmid: 1 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: bd88be38-d553-11ed-ba76-81d5a70a6ef5 grant_number: P36232 name: Mechanisms of GABA release in hippocampal circuits publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: AAAS quality_controlled: '1' scopus_import: '1' status: public title: Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2024' ...