--- _id: '7214' abstract: - lang: eng text: "Background: Many cancer genomes are extensively rearranged with highly aberrant chromosomal karyotypes. Structural and copy number variations in cancer genomes can be determined via abnormal mapping of sequenced reads to the reference genome. Recently it became possible to reconcile both of these types of large-scale variations into a karyotype graph representation of the rearranged cancer genomes. Such a representation, however, does not directly describe the linear and/or circular structure of the underlying rearranged cancer chromosomes, thus limiting possible analysis of cancer genomes somatic evolutionary process as well as functional genomic changes brought by the large-scale genome rearrangements.\r\n\r\nResults: Here we address the aforementioned limitation by introducing a novel methodological framework for recovering rearranged cancer chromosomes from karyotype graphs. For a cancer karyotype graph we formulate an Eulerian Decomposition Problem (EDP) of finding a collection of linear and/or circular rearranged cancer chromosomes that are determined by the graph. We derive and prove computational complexities for several variations of the EDP. We then demonstrate that Eulerian decomposition of the cancer karyotype graphs is not always unique and present the Consistent Contig Covering Problem (CCCP) of recovering unambiguous cancer contigs from the cancer karyotype graph, and describe a novel algorithm CCR capable of solving CCCP in polynomial time. We apply CCR on a prostate cancer dataset and demonstrate that it is capable of consistently recovering large cancer contigs even when underlying cancer genomes are highly rearranged.\r\n\r\nConclusions: CCR can recover rearranged cancer contigs from karyotype graphs thereby addressing existing limitation in inferring chromosomal structures of rearranged cancer genomes and advancing our understanding of both patient/cancer-specific as well as the overall genetic instability in cancer." article_number: '641' article_processing_charge: No article_type: original author: - first_name: Sergey full_name: Aganezov, Sergey last_name: Aganezov - first_name: Ilya full_name: Zban, Ilya last_name: Zban - first_name: Vitalii full_name: Aksenov, Vitalii id: 2980135A-F248-11E8-B48F-1D18A9856A87 last_name: Aksenov - first_name: Nikita full_name: Alexeev, Nikita last_name: Alexeev - first_name: Michael C. full_name: Schatz, Michael C. last_name: Schatz citation: ama: Aganezov S, Zban I, Aksenov V, Alexeev N, Schatz MC. Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. 2019;20. doi:10.1186/s12859-019-3208-4 apa: Aganezov, S., Zban, I., Aksenov, V., Alexeev, N., & Schatz, M. C. (2019). Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. BMC. https://doi.org/10.1186/s12859-019-3208-4 chicago: Aganezov, Sergey, Ilya Zban, Vitalii Aksenov, Nikita Alexeev, and Michael C. Schatz. “Recovering Rearranged Cancer Chromosomes from Karyotype Graphs.” BMC Bioinformatics. BMC, 2019. https://doi.org/10.1186/s12859-019-3208-4. ieee: S. Aganezov, I. Zban, V. Aksenov, N. Alexeev, and M. C. Schatz, “Recovering rearranged cancer chromosomes from karyotype graphs,” BMC Bioinformatics, vol. 20. BMC, 2019. ista: Aganezov S, Zban I, Aksenov V, Alexeev N, Schatz MC. 2019. Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. 20, 641. mla: Aganezov, Sergey, et al. “Recovering Rearranged Cancer Chromosomes from Karyotype Graphs.” BMC Bioinformatics, vol. 20, 641, BMC, 2019, doi:10.1186/s12859-019-3208-4. short: S. Aganezov, I. Zban, V. Aksenov, N. Alexeev, M.C. Schatz, BMC Bioinformatics 20 (2019). date_created: 2019-12-29T23:00:46Z date_published: 2019-12-17T00:00:00Z date_updated: 2023-09-06T14:51:06Z day: '17' ddc: - '570' department: - _id: DaAl doi: 10.1186/s12859-019-3208-4 external_id: isi: - '000511618800007' file: - access_level: open_access checksum: 7a30357efdcf8f66587ed495c0927724 content_type: application/pdf creator: dernst date_created: 2020-01-02T16:10:58Z date_updated: 2020-07-14T12:47:54Z file_id: '7221' file_name: 2019_BMCBioinfo_Aganezov.pdf file_size: 1917374 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 20' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '12' oa: 1 oa_version: Published Version publication: BMC Bioinformatics publication_identifier: eissn: - '14712105' publication_status: published publisher: BMC quality_controlled: '1' scopus_import: '1' status: public title: Recovering rearranged cancer chromosomes from karyotype graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 20 year: '2019' ... --- _id: '7225' abstract: - lang: eng text: "This is a literature teaching resource review for biologically inspired microfluidics courses\r\nor exploring the diverse applications of microfluidics. The structure is around key papers and model\r\norganisms. While courses gradually change over time, a focus remains on understanding how\r\nmicrofluidics has developed as well as what it can and cannot do for researchers. As a primary\r\nstarting point, we cover micro-fluid mechanics principles and microfabrication of devices. A variety\r\nof applications are discussed using model prokaryotic and eukaryotic organisms from the set\r\nof bacteria (Escherichia coli), trypanosomes (Trypanosoma brucei), yeast (Saccharomyces cerevisiae),\r\nslime molds (Physarum polycephalum), worms (Caenorhabditis elegans), flies (Drosophila melangoster),\r\nplants (Arabidopsis thaliana), and mouse immune cells (Mus musculus). Other engineering and\r\nbiochemical methods discussed include biomimetics, organ on a chip, inkjet, droplet microfluidics,\r\nbiotic games, and diagnostics. While we have not yet reached the end-all lab on a chip,\r\nmicrofluidics can still be used effectively for specific applications." article_number: '109' article_processing_charge: Yes article_type: review author: - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 citation: ama: Merrin J. Frontiers in microfluidics, a teaching resource review. Bioengineering. 2019;6(4). doi:10.3390/bioengineering6040109 apa: Merrin, J. (2019). Frontiers in microfluidics, a teaching resource review. Bioengineering. MDPI. https://doi.org/10.3390/bioengineering6040109 chicago: Merrin, Jack. “Frontiers in Microfluidics, a Teaching Resource Review.” Bioengineering. MDPI, 2019. https://doi.org/10.3390/bioengineering6040109. ieee: J. Merrin, “Frontiers in microfluidics, a teaching resource review,” Bioengineering, vol. 6, no. 4. MDPI, 2019. ista: Merrin J. 2019. Frontiers in microfluidics, a teaching resource review. Bioengineering. 6(4), 109. mla: Merrin, Jack. “Frontiers in Microfluidics, a Teaching Resource Review.” Bioengineering, vol. 6, no. 4, 109, MDPI, 2019, doi:10.3390/bioengineering6040109. short: J. Merrin, Bioengineering 6 (2019). date_created: 2020-01-05T23:00:45Z date_published: 2019-12-03T00:00:00Z date_updated: 2023-09-06T14:52:49Z day: '03' ddc: - '620' department: - _id: NanoFab doi: 10.3390/bioengineering6040109 external_id: isi: - '000505590000024' pmid: - '31816954' file: - access_level: open_access checksum: 80f1499e2a4caccdf3aa54b137fd99a0 content_type: application/pdf creator: dernst date_created: 2020-01-07T14:49:59Z date_updated: 2020-07-14T12:47:54Z file_id: '7243' file_name: 2019_Bioengineering_Merrin.pdf file_size: 2660780 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '4' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: Bioengineering publication_identifier: eissn: - '23065354' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Frontiers in microfluidics, a teaching resource review tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2019' ... --- _id: '7228' abstract: - lang: eng text: "Traditional concurrent programming involves manipulating shared mutable state. Alternatives to this programming style are communicating sequential processes (CSP) and actor models, which share data via explicit communication. These models have been known for almost half a century, and have recently had started to gain significant traction among modern programming languages. The common abstraction for communication between several processes is the channel. Although channels are similar to producer-consumer data structures, they have different semantics and support additional operations, such as the select expression. Despite their growing popularity, most known implementations of channels use lock-based data structures and can be rather inefficient.\r\n\r\nIn this paper, we present the first efficient lock-free algorithm for implementing a communication channel for CSP programming. We provide implementations and experimental results in the Kotlin and Go programming languages. Our new algorithm outperforms existing implementations on many workloads, while providing non-blocking progress guarantee. Our design can serve as an example of how to construct general communication data structures for CSP and actor models. " alternative_title: - LNCS article_processing_charge: No author: - first_name: Nikita full_name: Koval, Nikita id: 2F4DB10C-F248-11E8-B48F-1D18A9856A87 last_name: Koval - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Roman full_name: Elizarov, Roman last_name: Elizarov citation: ama: 'Koval N, Alistarh D-A, Elizarov R. Scalable FIFO channels for programming via communicating sequential processes. In: 25th Anniversary of Euro-Par. Vol 11725. Springer Nature; 2019:317-333. doi:10.1007/978-3-030-29400-7_23' apa: 'Koval, N., Alistarh, D.-A., & Elizarov, R. (2019). Scalable FIFO channels for programming via communicating sequential processes. In 25th Anniversary of Euro-Par (Vol. 11725, pp. 317–333). Göttingen, Germany: Springer Nature. https://doi.org/10.1007/978-3-030-29400-7_23' chicago: Koval, Nikita, Dan-Adrian Alistarh, and Roman Elizarov. “Scalable FIFO Channels for Programming via Communicating Sequential Processes.” In 25th Anniversary of Euro-Par, 11725:317–33. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29400-7_23. ieee: N. Koval, D.-A. Alistarh, and R. Elizarov, “Scalable FIFO channels for programming via communicating sequential processes,” in 25th Anniversary of Euro-Par, Göttingen, Germany, 2019, vol. 11725, pp. 317–333. ista: 'Koval N, Alistarh D-A, Elizarov R. 2019. Scalable FIFO channels for programming via communicating sequential processes. 25th Anniversary of Euro-Par. Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11725, 317–333.' mla: Koval, Nikita, et al. “Scalable FIFO Channels for Programming via Communicating Sequential Processes.” 25th Anniversary of Euro-Par, vol. 11725, Springer Nature, 2019, pp. 317–33, doi:10.1007/978-3-030-29400-7_23. short: N. Koval, D.-A. Alistarh, R. Elizarov, in:, 25th Anniversary of Euro-Par, Springer Nature, 2019, pp. 317–333. conference: end_date: 2019-08-30 location: Göttingen, Germany name: 'Euro-Par: European Conference on Parallel Processing' start_date: 2019-08-26 date_created: 2020-01-05T23:00:46Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:53:59Z day: '13' department: - _id: DaAl doi: 10.1007/978-3-030-29400-7_23 external_id: isi: - '000851061400023' intvolume: ' 11725' isi: 1 language: - iso: eng month: '08' oa_version: None page: 317-333 publication: 25th Anniversary of Euro-Par publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9399-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Scalable FIFO channels for programming via communicating sequential processes type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11725 year: '2019' ... --- _id: '7216' abstract: - lang: eng text: 'We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.' article_number: '8917514' article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: James full_name: Cook, James last_name: Cook - first_name: Alex full_name: Fabrikant, Alex last_name: Fabrikant - first_name: Marco full_name: Gruteser, Marco last_name: Gruteser citation: ama: 'Osang GF, Cook J, Fabrikant A, Gruteser M. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In: 2019 IEEE Intelligent Transportation Systems Conference. IEEE; 2019. doi:10.1109/ITSC.2019.8917514' apa: 'Osang, G. F., Cook, J., Fabrikant, A., & Gruteser, M. (2019). LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE. https://doi.org/10.1109/ITSC.2019.8917514' chicago: 'Osang, Georg F, James Cook, Alex Fabrikant, and Marco Gruteser. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” In 2019 IEEE Intelligent Transportation Systems Conference. IEEE, 2019. https://doi.org/10.1109/ITSC.2019.8917514.' ieee: 'G. F. Osang, J. Cook, A. Fabrikant, and M. Gruteser, “LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale,” in 2019 IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 2019.' ista: 'Osang GF, Cook J, Fabrikant A, Gruteser M. 2019. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. 2019 IEEE Intelligent Transportation Systems Conference. ITSC: Intelligent Transportation Systems Conference, 8917514.' mla: 'Osang, Georg F., et al. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” 2019 IEEE Intelligent Transportation Systems Conference, 8917514, IEEE, 2019, doi:10.1109/ITSC.2019.8917514.' short: G.F. Osang, J. Cook, A. Fabrikant, M. Gruteser, in:, 2019 IEEE Intelligent Transportation Systems Conference, IEEE, 2019. conference: end_date: 2019-10-30 location: Auckland, New Zealand name: 'ITSC: Intelligent Transportation Systems Conference' start_date: 2019-10-27 date_created: 2019-12-29T23:00:47Z date_published: 2019-11-28T00:00:00Z date_updated: 2023-09-06T14:50:28Z day: '28' department: - _id: HeEd doi: 10.1109/ITSC.2019.8917514 external_id: isi: - '000521238102050' isi: 1 language: - iso: eng month: '11' oa_version: None publication: 2019 IEEE Intelligent Transportation Systems Conference publication_identifier: isbn: - '9781538670248' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7231' abstract: - lang: eng text: Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature. alternative_title: - LNCS article_processing_charge: No author: - first_name: Hui full_name: Kong, Hui id: 3BDE25AA-F248-11E8-B48F-1D18A9856A87 last_name: Kong orcid: 0000-0002-3066-6941 - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Yu full_name: Jiang, Yu last_name: Jiang - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Kong H, Bartocci E, Jiang Y, Henzinger TA. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems. Vol 11750. Springer Nature; 2019:123-141. doi:10.1007/978-3-030-29662-9_8' apa: 'Kong, H., Bartocci, E., Jiang, Y., & Henzinger, T. A. (2019). Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In 17th International Conference on Formal Modeling and Analysis of Timed Systems (Vol. 11750, pp. 123–141). Amsterdam, The Netherlands: Springer Nature. https://doi.org/10.1007/978-3-030-29662-9_8' chicago: Kong, Hui, Ezio Bartocci, Yu Jiang, and Thomas A Henzinger. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” In 17th International Conference on Formal Modeling and Analysis of Timed Systems, 11750:123–41. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29662-9_8. ieee: H. Kong, E. Bartocci, Y. Jiang, and T. A. Henzinger, “Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty,” in 17th International Conference on Formal Modeling and Analysis of Timed Systems, Amsterdam, The Netherlands, 2019, vol. 11750, pp. 123–141. ista: 'Kong H, Bartocci E, Jiang Y, Henzinger TA. 2019. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. 17th International Conference on Formal Modeling and Analysis of Timed Systems. FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS, vol. 11750, 123–141.' mla: Kong, Hui, et al. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” 17th International Conference on Formal Modeling and Analysis of Timed Systems, vol. 11750, Springer Nature, 2019, pp. 123–41, doi:10.1007/978-3-030-29662-9_8. short: H. Kong, E. Bartocci, Y. Jiang, T.A. Henzinger, in:, 17th International Conference on Formal Modeling and Analysis of Timed Systems, Springer Nature, 2019, pp. 123–141. conference: end_date: 2019-08-29 location: Amsterdam, The Netherlands name: 'FORMATS: Formal Modeling and Analysis of Timed Systems' start_date: 2019-08-27 date_created: 2020-01-05T23:00:47Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:55:15Z day: '13' department: - _id: ToHe doi: 10.1007/978-3-030-29662-9_8 external_id: arxiv: - '1907.11514' isi: - '000611677700008' intvolume: ' 11750' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.11514 month: '08' oa: 1 oa_version: Preprint page: 123-141 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 17th International Conference on Formal Modeling and Analysis of Timed Systems publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9661-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11750 year: '2019' ... --- _id: '7340' abstract: - lang: eng text: Coupling of endoplasmic reticulum stress to dimerisation‑dependent activation of the UPR transducer IRE1 is incompletely understood. Whilst the luminal co-chaperone ERdj4 promotes a complex between the Hsp70 BiP and IRE1's stress-sensing luminal domain (IRE1LD) that favours the latter's monomeric inactive state and loss of ERdj4 de-represses IRE1, evidence linking these cellular and in vitro observations is presently lacking. We report that enforced loading of endogenous BiP onto endogenous IRE1α repressed UPR signalling in CHO cells and deletions in the IRE1α locus that de-repressed the UPR in cells, encode flexible regions of IRE1LD that mediated BiP‑induced monomerisation in vitro. Changes in the hydrogen exchange mass spectrometry profile of IRE1LD induced by ERdj4 and BiP confirmed monomerisation and were consistent with active destabilisation of the IRE1LD dimer. Together, these observations support a competition model whereby waning ER stress passively partitions ERdj4 and BiP to IRE1LD to initiate active repression of UPR signalling. acknowledgement: We thank the CIMR flow cytometry core facility team (Reiner Schulte, Chiara Cossetti and Gabriela Grondys-Kotarba) for assistance with FACS, the Huntington lab for access to the Octet machine, Steffen Preissler for advice on data interpretation, Roman Kityk and Nicole Luebbehusen for help and advice with HX-MS experiments. article_number: e50793 article_processing_charge: No article_type: original author: - first_name: Niko Paresh full_name: Amin-Wetzel, Niko Paresh id: E95D3014-9D8C-11E9-9C80-D2F8E5697425 last_name: Amin-Wetzel - first_name: Lisa full_name: Neidhardt, Lisa last_name: Neidhardt - first_name: Yahui full_name: Yan, Yahui last_name: Yan - first_name: Matthias P. full_name: Mayer, Matthias P. last_name: Mayer - first_name: David full_name: Ron, David last_name: Ron citation: ama: Amin-Wetzel NP, Neidhardt L, Yan Y, Mayer MP, Ron D. Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. eLife. 2019;8. doi:10.7554/eLife.50793 apa: Amin-Wetzel, N. P., Neidhardt, L., Yan, Y., Mayer, M. P., & Ron, D. (2019). Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.50793 chicago: Amin-Wetzel, Niko Paresh, Lisa Neidhardt, Yahui Yan, Matthias P. Mayer, and David Ron. “Unstructured Regions in IRE1α Specify BiP-Mediated Destabilisation of the Luminal Domain Dimer and Repression of the UPR.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.50793. ieee: N. P. Amin-Wetzel, L. Neidhardt, Y. Yan, M. P. Mayer, and D. Ron, “Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Amin-Wetzel NP, Neidhardt L, Yan Y, Mayer MP, Ron D. 2019. Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. eLife. 8, e50793. mla: Amin-Wetzel, Niko Paresh, et al. “Unstructured Regions in IRE1α Specify BiP-Mediated Destabilisation of the Luminal Domain Dimer and Repression of the UPR.” ELife, vol. 8, e50793, eLife Sciences Publications, 2019, doi:10.7554/eLife.50793. short: N.P. Amin-Wetzel, L. Neidhardt, Y. Yan, M.P. Mayer, D. Ron, ELife 8 (2019). date_created: 2020-01-19T23:00:39Z date_published: 2019-12-24T00:00:00Z date_updated: 2023-09-06T14:58:02Z day: '24' ddc: - '570' department: - _id: MaDe doi: 10.7554/eLife.50793 external_id: isi: - '000512303700001' pmid: - '31873072' file: - access_level: open_access checksum: 29fcbcd8c1fc7f11a596ed7f14ea1c82 content_type: application/pdf creator: dernst date_created: 2020-11-19T11:37:41Z date_updated: 2020-11-19T11:37:41Z file_id: '8777' file_name: 2019_eLife_AminWetzel.pdf file_size: 4817384 relation: main_file success: 1 file_date_updated: 2020-11-19T11:37:41Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2019' ... --- _id: '7422' abstract: - lang: eng text: Biochemical reactions often occur at low copy numbers but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. While particle-based models guarantee the level of detail necessary to accurately describe the microscopic dynamics at very low copy numbers, the algorithms used to simulate them typically imply trade-offs between computational efficiency and biochemical accuracy. eGFRD (enhanced Green’s Function Reaction Dynamics) is an exact algorithm that evades such trade-offs by partitioning the N-particle system into M ≤ N analytically tractable one- and two-particle systems; the analytical solutions (Green’s functions) then are used to implement an event-driven particle-based scheme that allows particles to make large jumps in time and space while retaining access to their state variables at arbitrary simulation times. Here we present “eGFRD2,” a new eGFRD version that implements the principle of eGFRD in all dimensions, thus enabling efficient particle-based simulation of biochemical reaction-diffusion processes in the 3D cytoplasm, on 2D planes representing membranes, and on 1D elongated cylinders representative of, e.g., cytoskeletal tracks or DNA; in 1D, it also incorporates convective motion used to model active transport. We find that, for low particle densities, eGFRD2 is up to 6 orders of magnitude faster than conventional Brownian dynamics. We exemplify the capabilities of eGFRD2 by simulating an idealized model of Pom1 gradient formation, which involves 3D diffusion, active transport on microtubules, and autophosphorylation on the membrane, confirming recent experimental and theoretical results on this system to hold under genuinely stochastic conditions. article_number: '054108' article_processing_charge: No article_type: original author: - first_name: Thomas R full_name: Sokolowski, Thomas R id: 3E999752-F248-11E8-B48F-1D18A9856A87 last_name: Sokolowski orcid: 0000-0002-1287-3779 - first_name: Joris full_name: Paijmans, Joris last_name: Paijmans - first_name: Laurens full_name: Bossen, Laurens last_name: Bossen - first_name: Thomas full_name: Miedema, Thomas last_name: Miedema - first_name: Martijn full_name: Wehrens, Martijn last_name: Wehrens - first_name: Nils B. full_name: Becker, Nils B. last_name: Becker - first_name: Kazunari full_name: Kaizu, Kazunari last_name: Kaizu - first_name: Koichi full_name: Takahashi, Koichi last_name: Takahashi - first_name: Marileen full_name: Dogterom, Marileen last_name: Dogterom - first_name: Pieter Rein full_name: ten Wolde, Pieter Rein last_name: ten Wolde citation: ama: Sokolowski TR, Paijmans J, Bossen L, et al. eGFRD in all dimensions. The Journal of Chemical Physics. 2019;150(5). doi:10.1063/1.5064867 apa: Sokolowski, T. R., Paijmans, J., Bossen, L., Miedema, T., Wehrens, M., Becker, N. B., … ten Wolde, P. R. (2019). eGFRD in all dimensions. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.5064867 chicago: Sokolowski, Thomas R, Joris Paijmans, Laurens Bossen, Thomas Miedema, Martijn Wehrens, Nils B. Becker, Kazunari Kaizu, Koichi Takahashi, Marileen Dogterom, and Pieter Rein ten Wolde. “EGFRD in All Dimensions.” The Journal of Chemical Physics. AIP Publishing, 2019. https://doi.org/10.1063/1.5064867. ieee: T. R. Sokolowski et al., “eGFRD in all dimensions,” The Journal of Chemical Physics, vol. 150, no. 5. AIP Publishing, 2019. ista: Sokolowski TR, Paijmans J, Bossen L, Miedema T, Wehrens M, Becker NB, Kaizu K, Takahashi K, Dogterom M, ten Wolde PR. 2019. eGFRD in all dimensions. The Journal of Chemical Physics. 150(5), 054108. mla: Sokolowski, Thomas R., et al. “EGFRD in All Dimensions.” The Journal of Chemical Physics, vol. 150, no. 5, 054108, AIP Publishing, 2019, doi:10.1063/1.5064867. short: T.R. Sokolowski, J. Paijmans, L. Bossen, T. Miedema, M. Wehrens, N.B. Becker, K. Kaizu, K. Takahashi, M. Dogterom, P.R. ten Wolde, The Journal of Chemical Physics 150 (2019). date_created: 2020-01-30T10:34:36Z date_published: 2019-02-07T00:00:00Z date_updated: 2023-09-06T14:59:28Z day: '07' department: - _id: GaTk doi: 10.1063/1.5064867 external_id: arxiv: - '1708.09364' isi: - '000458109300009' intvolume: ' 150' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1708.09364 month: '02' oa: 1 oa_version: Preprint publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' status: public title: eGFRD in all dimensions type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 150 year: '2019' ... --- _id: '7230' abstract: - lang: eng text: Simple drawings of graphs are those in which each pair of edges share at most one point, either a common endpoint or a proper crossing. In this paper we study the problem of extending a simple drawing D(G) of a graph G by inserting a set of edges from the complement of G into D(G) such that the result is a simple drawing. In the context of rectilinear drawings, the problem is trivial. For pseudolinear drawings, the existence of such an extension follows from Levi’s enlargement lemma. In contrast, we prove that deciding if a given set of edges can be inserted into a simple drawing is NP-complete. Moreover, we show that the maximization version of the problem is APX-hard. We also present a polynomial-time algorithm for deciding whether one edge uv can be inserted into D(G) when {u,v} is a dominating set for the graph G. alternative_title: - LNCS article_processing_charge: No author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Martin full_name: Derka, Martin last_name: Derka - first_name: Irene full_name: Parada, Irene last_name: Parada citation: ama: 'Arroyo Guevara AM, Derka M, Parada I. Extending simple drawings. In: 27th International Symposium on Graph Drawing and Network Visualization. Vol 11904. Springer Nature; 2019:230-243. doi:10.1007/978-3-030-35802-0_18' apa: 'Arroyo Guevara, A. M., Derka, M., & Parada, I. (2019). Extending simple drawings. In 27th International Symposium on Graph Drawing and Network Visualization (Vol. 11904, pp. 230–243). Prague, Czech Republic: Springer Nature. https://doi.org/10.1007/978-3-030-35802-0_18' chicago: Arroyo Guevara, Alan M, Martin Derka, and Irene Parada. “Extending Simple Drawings.” In 27th International Symposium on Graph Drawing and Network Visualization, 11904:230–43. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-35802-0_18. ieee: A. M. Arroyo Guevara, M. Derka, and I. Parada, “Extending simple drawings,” in 27th International Symposium on Graph Drawing and Network Visualization, Prague, Czech Republic, 2019, vol. 11904, pp. 230–243. ista: 'Arroyo Guevara AM, Derka M, Parada I. 2019. Extending simple drawings. 27th International Symposium on Graph Drawing and Network Visualization. GD: Graph Drawing and Network Visualization, LNCS, vol. 11904, 230–243.' mla: Arroyo Guevara, Alan M., et al. “Extending Simple Drawings.” 27th International Symposium on Graph Drawing and Network Visualization, vol. 11904, Springer Nature, 2019, pp. 230–43, doi:10.1007/978-3-030-35802-0_18. short: A.M. Arroyo Guevara, M. Derka, I. Parada, in:, 27th International Symposium on Graph Drawing and Network Visualization, Springer Nature, 2019, pp. 230–243. conference: end_date: 2019-09-20 location: Prague, Czech Republic name: 'GD: Graph Drawing and Network Visualization' start_date: 2019-09-17 date_created: 2020-01-05T23:00:47Z date_published: 2019-11-28T00:00:00Z date_updated: 2023-09-06T14:56:00Z day: '28' department: - _id: UlWa doi: 10.1007/978-3-030-35802-0_18 ec_funded: 1 external_id: arxiv: - '1908.08129' isi: - '000612918800018' intvolume: ' 11904' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.08129 month: '11' oa: 1 oa_version: Preprint page: 230-243 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 27th International Symposium on Graph Drawing and Network Visualization publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0303-5801-3 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Extending simple drawings type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11904 year: '2019' ... --- _id: '7232' abstract: - lang: eng text: 'We present Mixed-time Signal Temporal Logic (STL−MX), a specification formalism which extends STL by capturing the discrete/ continuous time duality found in many cyber-physical systems (CPS), as well as mixed-signal electronic designs. In STL−MX, properties of components with continuous dynamics are expressed in STL, while specifications of components with discrete dynamics are written in LTL. To combine the two layers, we evaluate formulas on two traces, discrete- and continuous-time, and introduce two interface operators that map signals, properties and their satisfaction signals across the two time domains. We show that STL-mx has the expressive power of STL supplemented with an implicit T-periodic clock signal. We develop and implement an algorithm for monitoring STL-mx formulas and illustrate the approach using a mixed-signal example. ' alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic citation: ama: 'Ferrere T, Maler O, Nickovic D. Mixed-time signal temporal logic. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems. Vol 11750. Springer Nature; 2019:59-75. doi:10.1007/978-3-030-29662-9_4' apa: 'Ferrere, T., Maler, O., & Nickovic, D. (2019). Mixed-time signal temporal logic. In 17th International Conference on Formal Modeling and Analysis of Timed Systems (Vol. 11750, pp. 59–75). Amsterdam, The Netherlands: Springer Nature. https://doi.org/10.1007/978-3-030-29662-9_4' chicago: Ferrere, Thomas, Oded Maler, and Dejan Nickovic. “Mixed-Time Signal Temporal Logic.” In 17th International Conference on Formal Modeling and Analysis of Timed Systems, 11750:59–75. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29662-9_4. ieee: T. Ferrere, O. Maler, and D. Nickovic, “Mixed-time signal temporal logic,” in 17th International Conference on Formal Modeling and Analysis of Timed Systems, Amsterdam, The Netherlands, 2019, vol. 11750, pp. 59–75. ista: 'Ferrere T, Maler O, Nickovic D. 2019. Mixed-time signal temporal logic. 17th International Conference on Formal Modeling and Analysis of Timed Systems. FORMATS: Formal Modeling and Anaysis of Timed Systems, LNCS, vol. 11750, 59–75.' mla: Ferrere, Thomas, et al. “Mixed-Time Signal Temporal Logic.” 17th International Conference on Formal Modeling and Analysis of Timed Systems, vol. 11750, Springer Nature, 2019, pp. 59–75, doi:10.1007/978-3-030-29662-9_4. short: T. Ferrere, O. Maler, D. Nickovic, in:, 17th International Conference on Formal Modeling and Analysis of Timed Systems, Springer Nature, 2019, pp. 59–75. conference: end_date: 2019-08-29 location: Amsterdam, The Netherlands name: 'FORMATS: Formal Modeling and Anaysis of Timed Systems' start_date: 2019-08-27 date_created: 2020-01-05T23:00:48Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:57:17Z day: '13' department: - _id: ToHe doi: 10.1007/978-3-030-29662-9_4 external_id: isi: - '000611677700004' intvolume: ' 11750' isi: 1 language: - iso: eng month: '08' oa_version: None page: 59-75 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 17th International Conference on Formal Modeling and Analysis of Timed Systems publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9661-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Mixed-time signal temporal logic type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11750 year: '2019' ... --- _id: '7420' abstract: - lang: eng text: β1-integrins mediate cell–matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic. article_number: jcs233387 article_processing_charge: No article_type: original author: - first_name: Pranshu full_name: Sahgal, Pranshu last_name: Sahgal - first_name: Jonna H full_name: Alanko, Jonna H id: 2CC12E8C-F248-11E8-B48F-1D18A9856A87 last_name: Alanko orcid: 0000-0002-7698-3061 - first_name: Jaroslav full_name: Icha, Jaroslav last_name: Icha - first_name: Ilkka full_name: Paatero, Ilkka last_name: Paatero - first_name: Hellyeh full_name: Hamidi, Hellyeh last_name: Hamidi - first_name: Antti full_name: Arjonen, Antti last_name: Arjonen - first_name: Mika full_name: Pietilä, Mika last_name: Pietilä - first_name: Anne full_name: Rokka, Anne last_name: Rokka - first_name: Johanna full_name: Ivaska, Johanna last_name: Ivaska citation: ama: Sahgal P, Alanko JH, Icha J, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. Journal of Cell Science. 2019;132(11). doi:10.1242/jcs.233387 apa: Sahgal, P., Alanko, J. H., Icha, J., Paatero, I., Hamidi, H., Arjonen, A., … Ivaska, J. (2019). GGA2 and RAB13 promote activity-dependent β1-integrin recycling. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.233387 chicago: Sahgal, Pranshu, Jonna H Alanko, Jaroslav Icha, Ilkka Paatero, Hellyeh Hamidi, Antti Arjonen, Mika Pietilä, Anne Rokka, and Johanna Ivaska. “GGA2 and RAB13 Promote Activity-Dependent Β1-Integrin Recycling.” Journal of Cell Science. The Company of Biologists, 2019. https://doi.org/10.1242/jcs.233387. ieee: P. Sahgal et al., “GGA2 and RAB13 promote activity-dependent β1-integrin recycling,” Journal of Cell Science, vol. 132, no. 11. The Company of Biologists, 2019. ista: Sahgal P, Alanko JH, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. 2019. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. Journal of Cell Science. 132(11), jcs233387. mla: Sahgal, Pranshu, et al. “GGA2 and RAB13 Promote Activity-Dependent Β1-Integrin Recycling.” Journal of Cell Science, vol. 132, no. 11, jcs233387, The Company of Biologists, 2019, doi:10.1242/jcs.233387. short: P. Sahgal, J.H. Alanko, J. Icha, I. Paatero, H. Hamidi, A. Arjonen, M. Pietilä, A. Rokka, J. Ivaska, Journal of Cell Science 132 (2019). date_created: 2020-01-30T10:31:42Z date_published: 2019-06-07T00:00:00Z date_updated: 2023-09-06T15:01:00Z day: '07' department: - _id: MiSi doi: 10.1242/jcs.233387 external_id: isi: - '000473327900017' pmid: - '31076515' intvolume: ' 132' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1242/jcs.233387 month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' status: public title: GGA2 and RAB13 promote activity-dependent β1-integrin recycling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 132 year: '2019' ...