--- _id: '13122' abstract: - lang: eng text: Data for submitted article "Entangling microwaves with light" at arXiv:2301.03315v1 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 citation: ama: Sahu R. Entangling microwaves with light. 2023. doi:10.5281/ZENODO.7789417 apa: Sahu, R. (2023). Entangling microwaves with light. Zenodo. https://doi.org/10.5281/ZENODO.7789417 chicago: Sahu, Rishabh. “Entangling Microwaves with Light.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7789417. ieee: R. Sahu, “Entangling microwaves with light.” Zenodo, 2023. ista: Sahu R. 2023. Entangling microwaves with light, Zenodo, 10.5281/ZENODO.7789417. mla: Sahu, Rishabh. Entangling Microwaves with Light. Zenodo, 2023, doi:10.5281/ZENODO.7789417. short: R. Sahu, (2023). date_created: 2023-06-06T06:46:16Z date_published: 2023-03-31T00:00:00Z date_updated: 2023-08-02T06:08:56Z day: '31' department: - _id: JoFi doi: 10.5281/ZENODO.7789417 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7789418 month: '03' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13106' relation: used_in_publication status: public status: public title: Entangling microwaves with light tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13166' abstract: - lang: eng text: Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans. acknowledgement: "We thank N.A. Pertsov White Sea Biological Station of Moscow State University for the help and support in obtaining samples and providing access to all required facilities and equipment of the “Center of Microscopy WSBS MSU”. We are grateful to Dr. Amro Hamdoun for pCS2+8 plasmid (Addgene plasmid # 34931).\r\nWork in the Walentek lab is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Emmy Noether Programme (grant WA3365/2-2) and under Germany’s Excellence Strategy (CIBSS-EXC-2189-Project ID 390939984). SK is supported by the project No. 0088-2021-0009 of the Koltzov Institute of Developmental Biology of the RAS. The study of molecular patterning of D. pumila colony was funded by RFBR, project number 20-04-00978a (to S.K.)." article_number: '9382' article_processing_charge: No article_type: original author: - first_name: Alexandra A. full_name: Vetrova, Alexandra A. last_name: Vetrova - first_name: Daria M. full_name: Kupaeva, Daria M. last_name: Kupaeva - first_name: Alena full_name: Kizenko, Alena id: a521c60b-0815-11ed-9b02-b8bd522477c8 last_name: Kizenko - first_name: Tatiana S. full_name: Lebedeva, Tatiana S. last_name: Lebedeva - first_name: Peter full_name: Walentek, Peter last_name: Walentek - first_name: Nikoloz full_name: Tsikolia, Nikoloz last_name: Tsikolia - first_name: Stanislav V. full_name: Kremnyov, Stanislav V. last_name: Kremnyov citation: ama: Vetrova AA, Kupaeva DM, Kizenko A, et al. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. 2023;13. doi:10.1038/s41598-023-35979-8 apa: Vetrova, A. A., Kupaeva, D. M., Kizenko, A., Lebedeva, T. S., Walentek, P., Tsikolia, N., & Kremnyov, S. V. (2023). The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-023-35979-8 chicago: Vetrova, Alexandra A., Daria M. Kupaeva, Alena Kizenko, Tatiana S. Lebedeva, Peter Walentek, Nikoloz Tsikolia, and Stanislav V. Kremnyov. “The Evolutionary History of Brachyury Genes in Hydrozoa Involves Duplications, Divergence, and Neofunctionalization.” Scientific Reports. Springer Nature, 2023. https://doi.org/10.1038/s41598-023-35979-8. ieee: A. A. Vetrova et al., “The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization,” Scientific Reports, vol. 13. Springer Nature, 2023. ista: Vetrova AA, Kupaeva DM, Kizenko A, Lebedeva TS, Walentek P, Tsikolia N, Kremnyov SV. 2023. The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization. Scientific Reports. 13, 9382. mla: Vetrova, Alexandra A., et al. “The Evolutionary History of Brachyury Genes in Hydrozoa Involves Duplications, Divergence, and Neofunctionalization.” Scientific Reports, vol. 13, 9382, Springer Nature, 2023, doi:10.1038/s41598-023-35979-8. short: A.A. Vetrova, D.M. Kupaeva, A. Kizenko, T.S. Lebedeva, P. Walentek, N. Tsikolia, S.V. Kremnyov, Scientific Reports 13 (2023). date_created: 2023-06-25T22:00:46Z date_published: 2023-06-09T00:00:00Z date_updated: 2023-08-02T06:17:18Z day: '09' ddc: - '570' department: - _id: GradSch doi: 10.1038/s41598-023-35979-8 external_id: isi: - '001006690200045' pmid: - '37296138' file: - access_level: open_access checksum: baddf6b2fa9adf88263d4a3b0998f0f2 content_type: application/pdf creator: dernst date_created: 2023-06-26T09:58:53Z date_updated: 2023-06-26T09:58:53Z file_id: '13170' file_name: 2023_ScientificReports_Vetrova.pdf file_size: 4844149 relation: main_file success: 1 file_date_updated: 2023-06-26T09:58:53Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_identifier: eissn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2023' ... --- _id: '13138' abstract: - lang: eng text: "We consider the spin-\r\n1\r\n2\r\n Heisenberg chain (XXX model) weakly perturbed away from integrability by an isotropic next-to-nearest neighbor exchange interaction. Recently, it was conjectured that this model possesses an infinite tower of quasiconserved integrals of motion (charges) [D. Kurlov et al., Phys. Rev. B 105, 104302 (2022)]. In this work we first test this conjecture by investigating how the norm of the adiabatic gauge potential (AGP) scales with the system size, which is known to be a remarkably accurate measure of chaos. We find that for the perturbed XXX chain the behavior of the AGP norm corresponds to neither an integrable nor a chaotic regime, which supports the conjectured quasi-integrability of the model. We then prove the conjecture and explicitly construct the infinite set of quasiconserved charges. Our proof relies on the fact that the XXX chain perturbed by next-to-nearest exchange interaction can be viewed as a truncation of an integrable long-range deformation of the Heisenberg spin chain." acknowledgement: "The numerical computations in this work were performed using QuSpin [83, 84]. We acknowledge useful discussions with Igor Aleiner, Boris Altshuler, Jacopo de Nardis, Anatoli Polkovnikov, and Gora Shlyapnikov. We thank Piotr Sierant and Dario Rosa for drawing our attention to Refs. [31, 42, 46] and Ref. [47], respectively. We are grateful to an anonymous referee for very useful comments and for drawing our attention to Refs. [80, 81]. The work of VG is part of the DeltaITP consortium, a program of the Netherlands Organization for Scientific\r\nResearch (NWO) funded by the Dutch Ministry of Education, Culture and Science (OCW). VG is also partially supported by RSF 19-71-10092. The work of AT was supported by the ERC Starting Grant 101042293 (HEPIQ). RS acknowledges support from Slovenian Research Agency (ARRS) - research programme P1-0402. " article_number: '184312' article_processing_charge: No article_type: original author: - first_name: Pavel full_name: Orlov, Pavel last_name: Orlov - first_name: Anastasiia full_name: Tiutiakina, Anastasiia last_name: Tiutiakina - first_name: Rustem full_name: Sharipov, Rustem last_name: Sharipov - first_name: Elena full_name: Petrova, Elena id: 0ac84990-897b-11ed-a09c-f5abb56a4ede last_name: Petrova - first_name: Vladimir full_name: Gritsev, Vladimir last_name: Gritsev - first_name: Denis V. full_name: Kurlov, Denis V. last_name: Kurlov citation: ama: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 2023;107(18). doi:10.1103/PhysRevB.107.184312 apa: Orlov, P., Tiutiakina, A., Sharipov, R., Petrova, E., Gritsev, V., & Kurlov, D. V. (2023). Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.184312 chicago: Orlov, Pavel, Anastasiia Tiutiakina, Rustem Sharipov, Elena Petrova, Vladimir Gritsev, and Denis V. Kurlov. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.184312. ieee: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, and D. V. Kurlov, “Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain,” Physical Review B, vol. 107, no. 18. American Physical Society, 2023. ista: Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. 2023. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 107(18), 184312. mla: Orlov, Pavel, et al. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B, vol. 107, no. 18, 184312, American Physical Society, 2023, doi:10.1103/PhysRevB.107.184312. short: P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, D.V. Kurlov, Physical Review B 107 (2023). date_created: 2023-06-18T22:00:46Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-08-02T06:16:02Z day: '01' department: - _id: GradSch doi: 10.1103/PhysRevB.107.184312 external_id: arxiv: - '2303.00729' isi: - '001003686900004' intvolume: ' 107' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2303.00729 month: '05' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13213' abstract: - lang: eng text: The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis–cortex and cortex–endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth. acknowledgement: We thank Dong liu for offering iron staining technique; ZhiChang Chen and Zhenbiao Yang for discussion; Dandan Zheng for earlier attempt; Liwen Jiang and Dingquan Huang for initial tests of the TEM experiment; John C. Sedbrook for a donation of sku5 and pSKU5::SKU5-GFP seeds; Catherine Perrot-Rechenmann and Ke Zhou for the donation of sks1, sks2, and sku5 sks1 seeds; Zengyu Liu and Zhongquan Lin for live-imaging microscopy assistance. We are grateful to Can Peng, and Xixia Li for helping with sample preparation, and taking TEM images, at the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science. article_processing_charge: No article_type: original author: - first_name: C full_name: Chen, C last_name: Chen - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: J full_name: Cai, J last_name: Cai - first_name: Y full_name: Qiu, Y last_name: Qiu - first_name: L full_name: Li, L last_name: Li - first_name: C full_name: Gao, C last_name: Gao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: M full_name: Ke, M last_name: Ke - first_name: S full_name: Wu, S last_name: Wu - first_name: C full_name: Wei, C last_name: Wei - first_name: J full_name: Chen, J last_name: Chen - first_name: T full_name: Xu, T last_name: Xu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Wang, J last_name: Wang - first_name: R full_name: Li, R last_name: Li - first_name: D full_name: Chao, D last_name: Chao - first_name: B full_name: Zhang, B last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen - first_name: Z full_name: Gao, Z last_name: Gao citation: ama: Chen C, Zhang Y, Cai J, et al. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 2023;192(3):2243-2260. doi:10.1093/plphys/kiad207 apa: Chen, C., Zhang, Y., Cai, J., Qiu, Y., Li, L., Gao, C., … Gao, Z. (2023). Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1093/plphys/kiad207 chicago: Chen, C, Y Zhang, J Cai, Y Qiu, L Li, C Gao, Y Gao, et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology. American Society of Plant Biologists, 2023. https://doi.org/10.1093/plphys/kiad207. ieee: C. Chen et al., “Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots,” Plant Physiology, vol. 192, no. 3. American Society of Plant Biologists, pp. 2243–2260, 2023. ista: Chen C, Zhang Y, Cai J, Qiu Y, Li L, Gao C, Gao Y, Ke M, Wu S, Wei C, Chen J, Xu T, Friml J, Wang J, Li R, Chao D, Zhang B, Chen X, Gao Z. 2023. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 192(3), 2243–2260. mla: Chen, C., et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology, vol. 192, no. 3, American Society of Plant Biologists, 2023, pp. 2243–60, doi:10.1093/plphys/kiad207. short: C. Chen, Y. Zhang, J. Cai, Y. Qiu, L. Li, C. Gao, Y. Gao, M. Ke, S. Wu, C. Wei, J. Chen, T. Xu, J. Friml, J. Wang, R. Li, D. Chao, B. Zhang, X. Chen, Z. Gao, Plant Physiology 192 (2023) 2243–2260. date_created: 2023-07-12T07:32:58Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:27:55Z day: '01' ddc: - '575' department: - _id: JiFr doi: 10.1093/plphys/kiad207 external_id: isi: - '000971795800001' pmid: - '37010107' file: - access_level: open_access checksum: 5492e1d18ac3eaf202633d210fa0fb75 content_type: application/pdf creator: cchlebak date_created: 2023-07-13T13:26:33Z date_updated: 2023-07-13T13:26:33Z file_id: '13220' file_name: 2023_PlantPhys_Chen.pdf file_size: 2076977 relation: main_file success: 1 file_date_updated: 2023-07-13T13:26:33Z has_accepted_license: '1' intvolume: ' 192' isi: 1 issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2243-2260 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 192 year: '2023' ... --- _id: '12478' abstract: - lang: eng text: In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype. acknowledgement: This work was supported by NIH P50 award P50GM081892-02 to the University of Chicago, a catalyst grant from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust to PC, and a Yen Fellowship to CCG. MA was partially supported by PAPIIT-UNAM grant IN-11322. article_number: '1049255' article_processing_charge: Yes article_type: original author: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: L full_name: Bruneaux, L last_name: Bruneaux - first_name: P full_name: Oikonomou, P last_name: Oikonomou - first_name: M full_name: Aldana, M last_name: Aldana - first_name: P full_name: Cluzel, P last_name: Cluzel citation: ama: Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 2023;14. doi:10.3389/fmicb.2023.1049255 apa: Guet, C. C., Bruneaux, L., Oikonomou, P., Aldana, M., & Cluzel, P. (2023). Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2023.1049255 chicago: Guet, Calin C, L Bruneaux, P Oikonomou, M Aldana, and P Cluzel. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology. Frontiers, 2023. https://doi.org/10.3389/fmicb.2023.1049255. ieee: C. C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, and P. Cluzel, “Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression,” Frontiers in Microbiology, vol. 14. Frontiers, 2023. ista: Guet CC, Bruneaux L, Oikonomou P, Aldana M, Cluzel P. 2023. Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. Frontiers in Microbiology. 14, 1049255. mla: Guet, Calin C., et al. “Monitoring Lineages of Growing and Dividing Bacteria Reveals an Inducible Memory of Mar Operon Expression.” Frontiers in Microbiology, vol. 14, 1049255, Frontiers, 2023, doi:10.3389/fmicb.2023.1049255. short: C.C. Guet, L. Bruneaux, P. Oikonomou, M. Aldana, P. Cluzel, Frontiers in Microbiology 14 (2023). date_created: 2023-02-02T08:13:28Z date_published: 2023-06-20T00:00:00Z date_updated: 2023-08-02T06:25:04Z day: '20' ddc: - '570' department: - _id: CaGu doi: 10.3389/fmicb.2023.1049255 external_id: isi: - '001030002600001' pmid: - '37485524' file: - access_level: open_access checksum: 7dd322347512afaa5daf72a0154f2f07 content_type: application/pdf creator: dernst date_created: 2023-07-31T07:16:34Z date_updated: 2023-07-31T07:16:34Z file_id: '13322' file_name: 2023_FrontiersMicrobiology_Guet.pdf file_size: 6452841 relation: main_file success: 1 file_date_updated: 2023-07-31T07:16:34Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13237' abstract: - lang: eng text: The formation of amyloid fibrils is a general class of protein self-assembly behaviour, which is associated with both functional biology and the development of a number of disorders, such as Alzheimer and Parkinson diseases. In this Review, we discuss how general physical concepts from the study of phase transitions can be used to illuminate the fundamental mechanisms of amyloid self-assembly. We summarize progress in the efforts to describe the essential biophysical features of amyloid self-assembly as a nucleation-and-growth process and discuss how master equation approaches can reveal the key molecular pathways underlying this process, including the role of secondary nucleation. Additionally, we outline how non-classical aspects of aggregate formation involving oligomers or biomolecular condensates have emerged, inspiring developments in understanding, modelling and modulating complex protein assembly pathways. Finally, we consider how these concepts can be applied to kinetics-based drug discovery and therapeutic design to develop treatments for protein aggregation diseases. acknowledgement: The authors acknowledge support from the Institute for the Physics of Living Systems, University College London (T.C.T.M.), the Swedish Research Council (2015-00143) (S.L.), the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the ERC grant PhysProt (agreement no. 337969) (T.P.J.K.), the BBSRC (T.P.J.K.), the Newman Foundation (T.P.J.K.) and the Wellcome Trust Collaborative Award 203249/Z/16/Z (T.P.J.K.). The authors thank C. Flandoli for help with illustrations. article_processing_charge: No article_type: original author: - first_name: Thomas C.T. full_name: Michaels, Thomas C.T. last_name: Michaels - first_name: Daoyuan full_name: Qian, Daoyuan last_name: Qian - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Michele full_name: Vendruscolo, Michele last_name: Vendruscolo - first_name: Sara full_name: Linse, Sara last_name: Linse - first_name: Tuomas P.J. full_name: Knowles, Tuomas P.J. last_name: Knowles citation: ama: Michaels TCT, Qian D, Šarić A, Vendruscolo M, Linse S, Knowles TPJ. Amyloid formation as a protein phase transition. Nature Reviews Physics. 2023;5:379–397. doi:10.1038/s42254-023-00598-9 apa: Michaels, T. C. T., Qian, D., Šarić, A., Vendruscolo, M., Linse, S., & Knowles, T. P. J. (2023). Amyloid formation as a protein phase transition. Nature Reviews Physics. Springer Nature. https://doi.org/10.1038/s42254-023-00598-9 chicago: Michaels, Thomas C.T., Daoyuan Qian, Anđela Šarić, Michele Vendruscolo, Sara Linse, and Tuomas P.J. Knowles. “Amyloid Formation as a Protein Phase Transition.” Nature Reviews Physics. Springer Nature, 2023. https://doi.org/10.1038/s42254-023-00598-9. ieee: T. C. T. Michaels, D. Qian, A. Šarić, M. Vendruscolo, S. Linse, and T. P. J. Knowles, “Amyloid formation as a protein phase transition,” Nature Reviews Physics, vol. 5. Springer Nature, pp. 379–397, 2023. ista: Michaels TCT, Qian D, Šarić A, Vendruscolo M, Linse S, Knowles TPJ. 2023. Amyloid formation as a protein phase transition. Nature Reviews Physics. 5, 379–397. mla: Michaels, Thomas C. T., et al. “Amyloid Formation as a Protein Phase Transition.” Nature Reviews Physics, vol. 5, Springer Nature, 2023, pp. 379–397, doi:10.1038/s42254-023-00598-9. short: T.C.T. Michaels, D. Qian, A. Šarić, M. Vendruscolo, S. Linse, T.P.J. Knowles, Nature Reviews Physics 5 (2023) 379–397. date_created: 2023-07-16T22:01:12Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:28:38Z day: '01' department: - _id: AnSa doi: 10.1038/s42254-023-00598-9 external_id: isi: - '001017539800001' intvolume: ' 5' isi: 1 language: - iso: eng month: '07' oa_version: None page: 379–397 publication: Nature Reviews Physics publication_identifier: eissn: - 2522-5820 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Amyloid formation as a protein phase transition type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2023' ... --- _id: '13229' abstract: - lang: eng text: Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation. acknowledgement: This work was supported by funding from the European Union (European Research Council Advanced grant 742573) to C.-P.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Laura full_name: Hofmann, Laura id: b88d43f2-dc74-11ea-a0a7-e41b7912e031 last_name: Hofmann - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg C-PJ. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. 2023;21(6):e3002146. doi:10.1371/journal.pbio.3002146 apa: Shamipour, S., Hofmann, L., Steccari, I., Kardos, R., & Heisenberg, C.-P. J. (2023). Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.3002146 chicago: Shamipour, Shayan, Laura Hofmann, Irene Steccari, Roland Kardos, and Carl-Philipp J Heisenberg. “Yolk Granule Fusion and Microtubule Aster Formation Regulate Cortical Granule Translocation and Exocytosis in Zebrafish Oocytes.” PLoS Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pbio.3002146. ieee: S. Shamipour, L. Hofmann, I. Steccari, R. Kardos, and C.-P. J. Heisenberg, “Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes,” PLoS Biology, vol. 21, no. 6. Public Library of Science, p. e3002146, 2023. ista: Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg C-PJ. 2023. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biology. 21(6), e3002146. mla: Shamipour, Shayan, et al. “Yolk Granule Fusion and Microtubule Aster Formation Regulate Cortical Granule Translocation and Exocytosis in Zebrafish Oocytes.” PLoS Biology, vol. 21, no. 6, Public Library of Science, 2023, p. e3002146, doi:10.1371/journal.pbio.3002146. short: S. Shamipour, L. Hofmann, I. Steccari, R. Kardos, C.-P.J. Heisenberg, PLoS Biology 21 (2023) e3002146. date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:14Z day: '08' ddc: - '570' department: - _id: CaHe doi: 10.1371/journal.pbio.3002146 ec_funded: 1 external_id: isi: - '001003199100005' pmid: - '37289834' file: - access_level: open_access checksum: 8e88cb0e5a6433a2f1939a9030bed384 content_type: application/pdf creator: dernst date_created: 2023-07-18T07:59:58Z date_updated: 2023-07-18T07:59:58Z file_id: '13246' file_name: 2023_PloSBiology_Shamipour.pdf file_size: 4431723 relation: main_file success: 1 file_date_updated: 2023-07-18T07:59:58Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: e3002146 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation publication: PLoS Biology publication_identifier: eissn: - 1545-7885 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2023' ... --- _id: '13197' abstract: - lang: eng text: "Nominally identical materials exchange net electric charge during contact through a mechanism that is still debated. ‘Mosaic models’, in which surfaces are presumed to consist of a random patchwork of microscopic donor/acceptor sites, offer an appealing explanation for this phenomenon. However, recent experiments have shown that global differences persist even between same-material samples, which the standard mosaic framework does not account for. Here, we expand the mosaic framework by incorporating global differences in the densities of donor/acceptor sites. We develop\r\nan analytical model, backed by numerical simulations, that smoothly connects the global and deterministic charge transfer of different materials to the local and stochastic mosaic picture normally associated with identical materials. Going further, we extend our model to explain the effect of contact asymmetries during sliding, providing a plausible explanation for reversal of charging sign that has been observed experimentally." acknowledgement: "This project has received funding from the European Research Council Grant Agreement No. 949120 and from\r\nthe European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant\r\nAgreement No. 754411. " article_number: '065601' article_processing_charge: No article_type: original author: - first_name: Galien M full_name: Grosjean, Galien M id: 0C5FDA4A-9CF6-11E9-8939-FF05E6697425 last_name: Grosjean orcid: 0000-0001-5154-417X - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 citation: ama: 'Grosjean GM, Waitukaitis SR. Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. 2023;7(6). doi:10.1103/physrevmaterials.7.065601' apa: 'Grosjean, G. M., & Waitukaitis, S. R. (2023). Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. American Physical Society. https://doi.org/10.1103/physrevmaterials.7.065601' chicago: 'Grosjean, Galien M, and Scott R Waitukaitis. “Asymmetries in Triboelectric Charging: Generalizing Mosaic Models to Different-Material Samples and Sliding Contacts.” Physical Review Materials. American Physical Society, 2023. https://doi.org/10.1103/physrevmaterials.7.065601.' ieee: 'G. M. Grosjean and S. R. Waitukaitis, “Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts,” Physical Review Materials, vol. 7, no. 6. American Physical Society, 2023.' ista: 'Grosjean GM, Waitukaitis SR. 2023. Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts. Physical Review Materials. 7(6), 065601.' mla: 'Grosjean, Galien M., and Scott R. Waitukaitis. “Asymmetries in Triboelectric Charging: Generalizing Mosaic Models to Different-Material Samples and Sliding Contacts.” Physical Review Materials, vol. 7, no. 6, 065601, American Physical Society, 2023, doi:10.1103/physrevmaterials.7.065601.' short: G.M. Grosjean, S.R. Waitukaitis, Physical Review Materials 7 (2023). date_created: 2023-07-07T12:48:01Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-08-02T06:34:47Z day: '13' ddc: - '537' department: - _id: ScWa doi: 10.1103/physrevmaterials.7.065601 ec_funded: 1 external_id: arxiv: - '2304.12861' isi: - '001019565900002' file: - access_level: open_access checksum: 75584730d9cdd50eeccb4c52c509776d content_type: application/pdf creator: ggrosjea date_created: 2023-07-07T12:49:51Z date_updated: 2023-07-07T12:49:51Z file_id: '13198' file_name: Mosaic_asymmetries.pdf file_size: 1127040 relation: main_file success: 1 file_date_updated: 2023-07-07T12:49:51Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '6' keyword: - Physics and Astronomy (miscellaneous) - General Materials Science language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version project: - _id: 0aa60e99-070f-11eb-9043-a6de6bdc3afa call_identifier: H2020 grant_number: '949120' name: 'Tribocharge: a multi-scale approach to an enduring problem in physics' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Materials publication_identifier: issn: - 2475-9953 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: 'Asymmetries in triboelectric charging: Generalizing mosaic models to different-material samples and sliding contacts' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2023' ... --- _id: '13230' abstract: - lang: eng text: 'To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals.' acknowledgement: The authors thank Corey Ziemba and Zoe Boundy-Singer for valuable discussion and feedback. article_number: e1011104 article_processing_charge: No article_type: original author: - first_name: Julie A. full_name: Charlton, Julie A. last_name: Charlton - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Yoon H. full_name: Bai, Yoon H. last_name: Bai - first_name: Ann M. full_name: Hermundstad, Ann M. last_name: Hermundstad - first_name: Robbe L.T. full_name: Goris, Robbe L.T. last_name: Goris citation: ama: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 2023;19(6). doi:10.1371/journal.pcbi.1011104 apa: Charlton, J. A., Mlynarski, W. F., Bai, Y. H., Hermundstad, A. M., & Goris, R. L. T. (2023). Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011104 chicago: Charlton, Julie A., Wiktor F Mlynarski, Yoon H. Bai, Ann M. Hermundstad, and Robbe L.T. Goris. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1011104. ieee: J. A. Charlton, W. F. Mlynarski, Y. H. Bai, A. M. Hermundstad, and R. L. T. Goris, “Environmental dynamics shape perceptual decision bias,” PLoS Computational Biology, vol. 19, no. 6. Public Library of Science, 2023. ista: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. 2023. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 19(6), e1011104. mla: Charlton, Julie A., et al. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology, vol. 19, no. 6, e1011104, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1011104. short: J.A. Charlton, W.F. Mlynarski, Y.H. Bai, A.M. Hermundstad, R.L.T. Goris, PLoS Computational Biology 19 (2023). date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:50Z day: '08' ddc: - '570' department: - _id: MaJö doi: 10.1371/journal.pcbi.1011104 external_id: isi: - '001003410200003' pmid: - '37289753' file: - access_level: open_access checksum: 800761fa2c647fabd6ad034589bc526e content_type: application/pdf creator: dernst date_created: 2023-07-18T08:07:59Z date_updated: 2023-07-18T08:07:59Z file_id: '13247' file_name: 2023_PloSCompBio_Charlton.pdf file_size: 2281868 relation: main_file success: 1 file_date_updated: 2023-07-18T08:07:59Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Environmental dynamics shape perceptual decision bias tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '13232' abstract: - lang: eng text: The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study. acknowledgement: The authors declare that this study received funding from Immunofusion. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication. The authors express their gratitude to the Institute of Physiology of the National Academy of Sciences of Belarus for providing assistance in keeping laboratory animals. article_number: '1014' article_processing_charge: No article_type: original author: - first_name: Dmitri full_name: Dormeshkin, Dmitri last_name: Dormeshkin - first_name: Mikalai full_name: Katsin, Mikalai last_name: Katsin - first_name: Maria full_name: Stegantseva, Maria last_name: Stegantseva - first_name: Sergey full_name: Golenchenko, Sergey last_name: Golenchenko - first_name: Michail full_name: Shapira, Michail last_name: Shapira - first_name: Simon full_name: Dubovik, Simon last_name: Dubovik - first_name: Dzmitry full_name: Lutskovich, Dzmitry last_name: Lutskovich - first_name: Anton full_name: Kavaleuski, Anton id: 62304f89-eb97-11eb-a6c2-8903dd183976 last_name: Kavaleuski orcid: 0000-0003-2091-526X - first_name: Alexander full_name: Meleshko, Alexander last_name: Meleshko citation: ama: Dormeshkin D, Katsin M, Stegantseva M, et al. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 2023;11(6). doi:10.3390/vaccines11061014 apa: Dormeshkin, D., Katsin, M., Stegantseva, M., Golenchenko, S., Shapira, M., Dubovik, S., … Meleshko, A. (2023). Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. MDPI. https://doi.org/10.3390/vaccines11061014 chicago: Dormeshkin, Dmitri, Mikalai Katsin, Maria Stegantseva, Sergey Golenchenko, Michail Shapira, Simon Dubovik, Dzmitry Lutskovich, Anton Kavaleuski, and Alexander Meleshko. “Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein.” Vaccines. MDPI, 2023. https://doi.org/10.3390/vaccines11061014. ieee: D. Dormeshkin et al., “Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein,” Vaccines, vol. 11, no. 6. MDPI, 2023. ista: Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, Lutskovich D, Kavaleuski A, Meleshko A. 2023. Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein. Vaccines. 11(6), 1014. mla: Dormeshkin, Dmitri, et al. “Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein.” Vaccines, vol. 11, no. 6, 1014, MDPI, 2023, doi:10.3390/vaccines11061014. short: D. Dormeshkin, M. Katsin, M. Stegantseva, S. Golenchenko, M. Shapira, S. Dubovik, D. Lutskovich, A. Kavaleuski, A. Meleshko, Vaccines 11 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-01T00:00:00Z date_updated: 2023-08-02T06:31:19Z day: '01' ddc: - '570' department: - _id: LeSa doi: 10.3390/vaccines11061014 external_id: isi: - '001017740000001' file: - access_level: open_access checksum: 8f484c0f30f8699c589b1c29a0fd7d7f content_type: application/pdf creator: dernst date_created: 2023-07-18T07:25:43Z date_updated: 2023-07-18T07:25:43Z file_id: '13244' file_name: 2023_Vaccines_Dormeshkin.pdf file_size: 2339746 relation: main_file success: 1 file_date_updated: 2023-07-18T07:25:43Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Vaccines publication_identifier: eissn: - 2076-393X publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2023' ...