TY - JOUR AB - RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/-mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host. AU - Khamina, Kseniya AU - Lercher, Alexander AU - Caldera, Michael AU - Schliehe, Christopher AU - Vilagos, Bojan AU - Sahin, Mehmet AU - Kosack, Lindsay AU - Bhattacharya, Anannya AU - Májek, Peter AU - Stukalov, Alexey AU - Sacco, Roberto AU - James, Leo AU - Pinschewer, Daniel AU - Bennett, Keiryn AU - Menche, Jörg AU - Bergthaler, Andreas ID - 540 IS - 12 JF - PLoS Pathogens SN - 15537366 TI - Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein VL - 13 ER - TY - JOUR AB - We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem. AU - Chatterjee, Krishnendu AU - Křetínská, Zuzana AU - Kretinsky, Jan ID - 466 IS - 2 JF - Logical Methods in Computer Science SN - 18605974 TI - Unifying two views on multiple mean-payoff objectives in Markov decision processes VL - 13 ER - TY - JOUR AB - Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata or in any other known decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata, which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in runtime verification. We establish an almost-complete decidability picture for the basic decision problems about nested weighted automata and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Otop, Jan ID - 467 IS - 4 JF - ACM Transactions on Computational Logic (TOCL) SN - 15293785 TI - Nested weighted automata VL - 18 ER - TY - JOUR AB - The edit distance between two words w 1 , w 2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w 1 to w 2 . The edit distance generalizes to languages L 1 , L 2 , where the edit distance from L 1 to L 2 is the minimal number k such that for every word from L 1 there exists a word in L 2 with edit distance at most k . We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1) deciding whether, for a given threshold k , the edit distance from a pushdown automaton to a finite automaton is at most k , and (2) deciding whether the edit distance from a pushdown automaton to a finite automaton is finite. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Ibsen-Jensen, Rasmus AU - Otop, Jan ID - 465 IS - 3 JF - Logical Methods in Computer Science SN - 18605974 TI - Edit distance for pushdown automata VL - 13 ER - TY - JOUR AB - The fixation probability is the probability that a new mutant introduced in a homogeneous population eventually takes over the entire population. The fixation probability is a fundamental quantity of natural selection, and known to depend on the population structure. Amplifiers of natural selection are population structures which increase the fixation probability of advantageous mutants, as compared to the baseline case of well-mixed populations. In this work we focus on symmetric population structures represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known has been the Star graph, and the existence of undirected graphs with stronger amplification properties has remained open for over a decade. In this work we present the Comet and Comet-swarm families of undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Cometswarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for fixed population size and at the limit of large populations, respectively. AU - Pavlogiannis, Andreas AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin ID - 512 IS - 1 JF - Scientific Reports SN - 20452322 TI - Amplification on undirected population structures: Comets beat stars VL - 7 ER - TY - JOUR AB - A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graph where the edges are labeled with different types of opening and closing parentheses, and the reachability information is computed via paths whose parentheses are properly matched. We present new results for Dyck reachability problems with applications to alias analysis and data-dependence analysis. Our main contributions, that include improved upper bounds as well as lower bounds that establish optimality guarantees, are as follows: First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph with n nodes and m edges, we present: (i) an algorithm with worst-case running time O(m + n · α(n)), where α(n) is the inverse Ackermann function, improving the previously known O(n2) time bound; (ii) a matching lower bound that shows that our algorithm is optimal wrt to worst-case complexity; and (iii) an optimal average-case upper bound of O(m) time, improving the previously known O(m · logn) bound. Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is only linear, and only wrt the number of call sites. Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean Matrix Multiplication, which is a long-standing open problem. Thus we establish that the existing combinatorial algorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the same hardness holds for graphs of constant treewidth. Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependence analysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform all existing methods on the two problems, over real-world benchmarks. AU - Chatterjee, Krishnendu AU - Choudhary, Bhavya AU - Pavlogiannis, Andreas ID - 10416 IS - POPL JF - Proceedings of the ACM on Programming Languages TI - Optimal Dyck reachability for data-dependence and Alias analysis VL - 2 ER - TY - GEN AB - A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks. AU - Chatterjee, Krishnendu AU - Choudhary, Bhavya AU - Pavlogiannis, Andreas ID - 5455 SN - 2664-1690 TI - Optimal Dyck reachability for data-dependence and alias analysis ER - TY - GEN AB - In this report the implementation of the institutional data repository IST DataRep at IST Austria will be covered: Starting with the research phase when requirements for a repository were established, the procedure of choosing a repository-software and its customization based on the results of user-testings will be discussed. Followed by reflections on the marketing strategies in regard of impact, and at the end sharing some experiences of one year operating IST DataRep. AU - Barbara Petritsch ID - 5450 TI - Implementing the institutional data repository IST DataRep ER - TY - JOUR AB - We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class. We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence. AU - Chalupa, Marek AU - Chatterjee, Krishnendu AU - Pavlogiannis, Andreas AU - Sinha, Nishant AU - Vaidya, Kapil ID - 10417 IS - POPL JF - Proceedings of the ACM on Programming Languages TI - Data-centric dynamic partial order reduction VL - 2 ER - TY - GEN AB - We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class. We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence. 1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence. 2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence. Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes. AU - Chalupa, Marek AU - Chatterjee, Krishnendu AU - Pavlogiannis, Andreas AU - Sinha, Nishant AU - Vaidya, Kapil ID - 5456 SN - 2664-1690 TI - Data-centric dynamic partial order reduction ER - TY - CONF AB - Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n2/ log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs. AU - Chatterjee, Krishnendu AU - Ibsen-Jensen, Rasmus AU - Nowak, Martin ID - 551 SN - 978-395977046-0 T2 - Leibniz International Proceedings in Informatics TI - Faster Monte Carlo algorithms for fixation probability of the Moran process on undirected graphs VL - 83 ER - TY - CONF AB - Graph games provide the foundation for modeling and synthesis of reactive processes. Such games are played over graphs where the vertices are controlled by two adversarial players. We consider graph games where the objective of the first player is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a meanpayoff condition). There are two variants of the problem, namely, the threshold problem where the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases ensuring the qualitative parity objective. The previous best-known algorithms for game graphs with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value W for mean-payoff objectives, are as follows: O(nd+1 . m . w) for the threshold problem, and O(nd+2 · m · W) for the value problem. Our main contributions are faster algorithms, and the running times of our algorithms are as follows: O(nd-1 · m ·W) for the threshold problem, and O(nd · m · W · log(n · W)) for the value problem. For mean-payoff parity objectives with two priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games (without conjunction with parity objectives). Our results are relevant in synthesis of reactive systems with both functional requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective). AU - Chatterjee, Krishnendu AU - Henzinger, Monika H AU - Svozil, Alexander ID - 552 SN - 978-395977046-0 T2 - Leibniz International Proceedings in Informatics TI - Faster algorithms for mean-payoff parity games VL - 83 ER - TY - CONF AB - We consider two player, zero-sum, finite-state concurrent reachability games, played for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. Player 1 wins iff a designated goal state is eventually visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed. Our main results are as follows: We show that: (i) the optimal bound on the patience of optimal and -optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. AU - Chatterjee, Krishnendu AU - Hansen, Kristofer AU - Ibsen-Jensen, Rasmus ID - 553 SN - 978-395977046-0 T2 - Leibniz International Proceedings in Informatics TI - Strategy complexity of concurrent safety games VL - 83 ER - TY - JOUR AB - In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14, 1477–1500 (doi:10.4310/CMS.2016.v14. n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ? {4, 5, . . .}, there exist d-dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two (d = 2) and three (d = 3) space dimensions. AU - Gerencser, Mate AU - Jentzen, Arnulf AU - Salimova, Diyora ID - 560 IS - 2207 JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences SN - 13645021 TI - On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions VL - 473 ER - TY - BOOK AB - This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. AU - Erdös, László AU - Yau, Horng ID - 567 SN - 9-781-4704-3648-3 TI - A Dynamical Approach to Random Matrix Theory VL - 28 ER - TY - JOUR AB - We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C). AU - Franek, Peter AU - Krcál, Marek ID - 568 IS - 2 JF - Homology, Homotopy and Applications SN - 15320073 TI - Persistence of zero sets VL - 19 ER - TY - JOUR AB - Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independently, and then simultaneously, mutating a transcription factor and the associated promoter it represses. We find that the system distribution exhibits increased phenotypic variation compared to individual component distributions - an effect arising from intermolecular epistasis between the transcription factor and its DNA-binding site. In large part, this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory system and could therefore be a common feature in prokaryotes. Counter-intuitively, intermolecular epistasis can alleviate the constraints of individual components, thereby increasing phenotypic variation that selection could act on and facilitating adaptive evolution. AU - Lagator, Mato AU - Sarikas, Srdjan AU - Acar, Hande AU - Bollback, Jonathan P AU - Guet, Calin C ID - 570 JF - eLife SN - 2050084X TI - Regulatory network structure determines patterns of intermolecular epistasis VL - 6 ER - TY - JOUR AB - The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings. AU - Spira, Felix AU - Cuylen Haering, Sara AU - Mehta, Shalin AU - Samwer, Matthias AU - Reversat, Anne AU - Verma, Amitabh AU - Oldenbourg, Rudolf AU - Sixt, Michael K AU - Gerlich, Daniel ID - 569 JF - eLife SN - 2050084X TI - Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments VL - 6 ER - TY - JOUR AB - Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection. In addition to their role in thrombosis and hemostasis, platelets can also migrate to sites of infection to help trap bacteria and clear the vascular surface. AU - Gärtner, Florian R AU - Ahmad, Zerkah AU - Rosenberger, Gerhild AU - Fan, Shuxia AU - Nicolai, Leo AU - Busch, Benjamin AU - Yavuz, Gökce AU - Luckner, Manja AU - Ishikawa Ankerhold, Hellen AU - Hennel, Roman AU - Benechet, Alexandre AU - Lorenz, Michael AU - Chandraratne, Sue AU - Schubert, Irene AU - Helmer, Sebastian AU - Striednig, Bianca AU - Stark, Konstantin AU - Janko, Marek AU - Böttcher, Ralph AU - Verschoor, Admar AU - Leon, Catherine AU - Gachet, Christian AU - Gudermann, Thomas AU - Mederos Y Schnitzler, Michael AU - Pincus, Zachary AU - Iannacone, Matteo AU - Haas, Rainer AU - Wanner, Gerhard AU - Lauber, Kirsten AU - Sixt, Michael K AU - Massberg, Steffen ID - 571 IS - 6 JF - Cell Press SN - 00928674 TI - Migrating platelets are mechano scavengers that collect and bundle bacteria VL - 171 ER - TY - JOUR AB - In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture. AU - Olatunji, Damilola AU - Geelen, Danny AU - Verstraeten, Inge ID - 572 IS - 12 JF - International Journal of Molecular Sciences TI - Control of endogenous auxin levels in plant root development VL - 18 ER -