TY - JOUR
AB - Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of "fit" or "desirability". We extend the simulation preorder to the quantitative setting by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
ID - 3249
IS - 1
JF - Theoretical Computer Science
TI - Simulation distances
VL - 413
ER -
TY - CONF
AB - The Learning Parity with Noise (LPN) problem has recently found many applications in cryptography as the hardness assumption underlying the constructions of "provably secure" cryptographic schemes like encryption or authentication protocols. Being provably secure means that the scheme comes with a proof showing that the existence of an efficient adversary against the scheme implies that the underlying hardness assumption is wrong. LPN based schemes are appealing for theoretical and practical reasons. On the theoretical side, LPN based schemes offer a very strong security guarantee. The LPN problem is equivalent to the problem of decoding random linear codes, a problem that has been extensively studied in the last half century. The fastest known algorithms run in exponential time and unlike most number-theoretic problems used in cryptography, the LPN problem does not succumb to known quantum algorithms. On the practical side, LPN based schemes are often extremely simple and efficient in terms of code-size as well as time and space requirements. This makes them prime candidates for light-weight devices like RFID tags, which are too weak to implement standard cryptographic primitives like the AES block-cipher. This talk will be a gentle introduction to provable security using simple LPN based schemes as examples. Starting from pseudorandom generators and symmetric key encryption, over secret-key authentication protocols, and, if time admits, touching on recent constructions of public-key identification, commitments and zero-knowledge proofs.
AU - Pietrzak, Krzysztof Z
ID - 3250
TI - Cryptography from learning parity with noise
VL - 7147
ER -
TY - CONF
AB - We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents, the trusted third party (TTP) and the protocols as path formulas in Linear Temporal Logic (LTL) and prove that the satisfaction of the objectives of the agents and the TTP imply satisfaction of the protocol objectives. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail in synthesizing these protocols, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of assume-guarantee synthesis as follows: (a) any solution of assume-guarantee synthesis is attack-free; no subset of participants can violate the objectives of the other participants without violating their own objectives; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has known vulnerabilities is not a solution of AGS; and (c) the Kremer-Markowitch (KM) non-repudiation protocol is a solution of AGS. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can generate correct protocols and automatically discover vulnerabilities. The solution to assume-guarantee synthesis can be computed efficiently as the secure equilibrium solution of three-player graph games. © 2012 Springer-Verlag.
AU - Chatterjee, Krishnendu
AU - Raman, Vishwanath
ID - 3252
TI - Synthesizing protocols for digital contract signing
VL - 7148
ER -
TY - CONF
AB - We describe a framework for reasoning about programs with lists carrying integer numerical data. We use abstract domains to describe and manipulate complex constraints on configurations of these programs mixing constraints on the shape of the heap, sizes of the lists, on the multisets of data stored in these lists, and on the data at their different positions. Moreover, we provide powerful techniques for automatic validation of Hoare-triples and invariant checking, as well as for automatic synthesis of invariants and procedure summaries using modular inter-procedural analysis. The approach has been implemented in a tool called Celia and experimented successfully on a large benchmark of programs.
AU - Bouajjani, Ahmed
AU - Dragoi, Cezara
AU - Enea, Constantin
AU - Sighireanu, Mihaela
ID - 3253
TI - Abstract domains for automated reasoning about list manipulating programs with infinite data
VL - 7148
ER -
TY - JOUR
AB - The theory of graph games with ω-regular winning conditions is the foundation for modeling and synthesizing reactive processes. In the case of stochastic reactive processes, the corresponding stochastic graph games have three players, two of them (System and Environment) behaving adversarially, and the third (Uncertainty) behaving probabilistically. We consider two problems for stochastic graph games: the qualitative problem asks for the set of states from which a player can win with probability 1 (almost-sure winning); and the quantitative problem asks for the maximal probability of winning (optimal winning) from each state. We consider ω-regular winning conditions formalized as Müller winning conditions. We present optimal memory bounds for pure (deterministic) almost-sure winning and optimal winning strategies in stochastic graph games with Müller winning conditions. We also study the complexity of stochastic Müller games and show that both the qualitative and quantitative analysis problems are PSPACE-complete. Our results are relevant in synthesis of stochastic reactive processes.
AU - Chatterjee, Krishnendu
ID - 3254
JF - Information and Computation
TI - The complexity of stochastic Müller games
VL - 211
ER -
TY - CONF
AB - In this paper we survey results of two-player games on graphs and Markov decision processes with parity, mean-payoff and energy objectives, and the combination of mean-payoff and energy objectives with parity objectives. These problems have applications in verification and synthesis of reactive systems in resource-constrained environments.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
ID - 3255
TI - Games and Markov decision processes with mean payoff parity and energy parity objectives
VL - 7119
ER -
TY - JOUR
AB - We use a distortion to define the dual complex of a cubical subdivision of ℝ n as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated by the topological analysis of high-dimensional digital image data, we consider such subdivisions defined by generalizations of quad- and oct-trees to n dimensions. Assuming the subdivision is balanced, we show that mapping each vertex to the center of the corresponding n-cube gives a geometric realization of the dual complex in ℝ n.
AU - Edelsbrunner, Herbert
AU - Kerber, Michael
ID - 3256
IS - 2
JF - Discrete & Computational Geometry
TI - Dual complexes of cubical subdivisions of ℝn
VL - 47
ER -
TY - JOUR
AB - Consider a convex relaxation f̂ of a pseudo-Boolean function f. We say that the relaxation is totally half-integral if f̂(x) is a polyhedral function with half-integral extreme points x, and this property is preserved after adding an arbitrary combination of constraints of the form x i=x j, x i=1-x j, and x i=γ where γ∈{0,1,1/2} is a constant. A well-known example is the roof duality relaxation for quadratic pseudo-Boolean functions f. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-Boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f̂ by establishing a one-to-one correspondence with bisubmodular functions. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality. On the conceptual level, our results show that bisubmodular functions provide a natural generalization of the roof duality approach to higher-order terms. This can be viewed as a non-submodular analogue of the fact that submodular functions generalize the s-t minimum cut problem with non-negative weights to higher-order terms.
AU - Kolmogorov, Vladimir
ID - 3257
IS - 4-5
JF - Discrete Applied Mathematics
TI - Generalized roof duality and bisubmodular functions
VL - 160
ER -
TY - JOUR
AB - CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network.
AU - Kim, Sooyun
AU - Guzmán, José
AU - Hu, Hua
AU - Jonas, Peter M
ID - 3258
IS - 4
JF - Nature Neuroscience
TI - Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons
VL - 15
ER -
TY - JOUR
AB - Many scenarios in the living world, where individual organisms compete for winning positions (or resources), have properties of auctions. Here we study the evolution of bids in biological auctions. For each auction, n individuals are drawn at random from a population of size N. Each individual makes a bid which entails a cost. The winner obtains a benefit of a certain value. Costs and benefits are translated into reproductive success (fitness). Therefore, successful bidding strategies spread in the population. We compare two types of auctions. In “biological all-pay auctions”, the costs are the bid for every participating individual. In “biological second price all-pay auctions”, the cost for everyone other than the winner is the bid, but the cost for the winner is the second highest bid. Second price all-pay auctions are generalizations of the “war of attrition” introduced by Maynard Smith. We study evolutionary dynamics in both types of auctions. We calculate pairwise invasion plots and evolutionarily stable distributions over the continuous strategy space. We find that the average bid in second price all-pay auctions is higher than in all-pay auctions, but the average cost for the winner is similar in both auctions. In both cases, the average bid is a declining function of the number of participants, n. The more individuals participate in an auction the smaller is the chance of winning, and thus expensive bids must be avoided.
AU - Chatterjee, Krishnendu
AU - Reiter, Johannes
AU - Nowak, Martin
ID - 3260
IS - 1
JF - Theoretical Population Biology
TI - Evolutionary dynamics of biological auctions
VL - 81
ER -
TY - JOUR
AB - Living cells must control the reading out or "expression" of information encoded in their genomes, and this regulation often is mediated by transcription factors--proteins that bind to DNA and either enhance or repress the expression of nearby genes. But the expression of transcription factor proteins is itself regulated, and many transcription factors regulate their own expression in addition to responding to other input signals. Here we analyze the simplest of such self-regulatory circuits, asking how parameters can be chosen to optimize information transmission from inputs to outputs in the steady state. Some nonzero level of self-regulation is almost always optimal, with self-activation dominant when transcription factor concentrations are low and self-repression dominant when concentrations are high. In steady state the optimal self-activation is never strong enough to induce bistability, although there is a limit in which the optimal parameters are very close to the critical point.
AU - Tkacik, Gasper
AU - Walczak, Aleksandra
AU - Bialek, William
ID - 3262
IS - 4
JF - Physical Review E statistical nonlinear and soft matter physics
TI - Optimizing information flow in small genetic networks. III. A self-interacting gene
VL - 85
ER -
TY - CONF
AB - We propose a mid-level statistical model for image segmentation that composes multiple figure-ground hypotheses (FG) obtained by applying constraints at different locations and scales, into larger interpretations (tilings) of the entire image. Inference is cast as optimization over sets of maximal cliques sampled from a graph connecting all non-overlapping figure-ground segment hypotheses. Potential functions over cliques combine unary, Gestalt-based figure qualities, and pairwise compatibilities among spatially neighboring segments, constrained by T-junctions and the boundary interface statistics of real scenes. Learning the model parameters is based on maximum likelihood, alternating between sampling image tilings and optimizing their potential function parameters. State of the art results are reported on the Berkeley and Stanford segmentation datasets, as well as VOC2009, where a 28% improvement was achieved.
AU - Ion, Adrian
AU - Carreira, Joao
AU - Sminchisescu, Cristian
ID - 3265
TI - Image segmentation by figure-ground composition into maximal cliques
ER -
TY - JOUR
AB - A boundary element model of a tunnel running through horizontally layered soil with anisotropic material properties is presented. Since there is no analytical fundamental solution for wave propagation inside a layered orthotropic medium in 3D, the fundamental displacements and stresses have to be calculated numerically. In our model this is done in the Fourier domain with respect to space and time. The assumption of a straight tunnel with infinite extension in the x direction makes it possible to decouple the system for every wave number kx, leading to a 2.5D-problem, which is suited for parallel computation. The special form of the fundamental solution, resulting from our Fourier ansatz, and the fact, that the calculation of the boundary integral equation is performed in the Fourier domain, enhances the stability and efficiency of the numerical calculations.
AU - Rieckh, Georg
AU - Kreuzer, Wolfgang
AU - Waubke, Holger
AU - Balazs, Peter
ID - 3274
IS - 6
JF - Engineering Analysis with Boundary Elements
TI - A 2.5D-Fourier-BEM model for vibrations in a tunnel running through layered anisotropic soil
VL - 36
ER -
TY - CHAP
AB - The problem of the origin of metazoa is becoming more urgent in the context of astrobiology. By now it is clear that clues to the understanding of this crucial transition in the evolution of life can arise in a fourth pathway besides the three possibilities in the quest for simplicity outlined by Bonner in his classical book. In other words, solar system exploration seems to be one way in the long-term to elucidate the simplicity of evolutionary development. We place these ideas in the context of different inheritance systems, namely the genotypic and phenotypic replicators with limited or unlimited heredity, and ask which of these can support multicellular development, and to which degree of complexity. However, the quest for evidence on the evolution of biotas from planets around other stars does not seem to be feasible with present technology with direct visualization of living organisms on exoplanets. But this may be attempted on the Galilean moons of Jupiter where there is a possibility of detecting reliable biomarkers in the next decade with the Europa Jupiter System Mission, in view of recent progress by landing micropenetrators on planetary, or satellite surfaces. Mars is a second possibility in the inner Solar System, in spite of the multiple difficulties faced by the fleet of past, present and future missions. We discuss a series of preliminary ideas for elucidating the origin of metazoan analogues with available instrumentation in potential payloads of feasible space missions to the Galilean moons.
AU - de Vladar, Harold
AU - Chela Flores, Julian
ID - 3277
T2 - Life on Earth and other planetary bodies
TI - Can the evolution of multicellularity be anticipated in the exploration of the solar system?
VL - 24
ER -
TY - CONF
AB - We show a hardness-preserving construction of a PRF from any length doubling PRG which improves upon known constructions whenever we can put a non-trivial upper bound q on the number of queries to the PRF. Our construction requires only O(logq) invocations to the underlying PRG with each query. In comparison, the number of invocations by the best previous hardness-preserving construction (GGM using Levin's trick) is logarithmic in the hardness of the PRG. For example, starting from an exponentially secure PRG {0,1} n → {0,1} 2n, we get a PRF which is exponentially secure if queried at most q = exp(√n)times and where each invocation of the PRF requires Θ(√n) queries to the underlying PRG. This is much less than the Θ(n) required by known constructions.
AU - Jain, Abhishek
AU - Pietrzak, Krzysztof Z
AU - Tentes, Aris
ID - 3279
TI - Hardness preserving constructions of pseudorandom functions
VL - 7194
ER -
TY - CONF
AB - The (decisional) learning with errors problem (LWE) asks to distinguish "noisy" inner products of a secret vector with random vectors from uniform. The learning parities with noise problem (LPN) is the special case where the elements of the vectors are bits. In recent years, the LWE and LPN problems have found many applications in cryptography. In this paper we introduce a (seemingly) much stronger adaptive assumption, called "subspace LWE" (SLWE), where the adversary can learn the inner product of the secret and random vectors after they were projected into an adaptively and adversarially chosen subspace. We prove that, surprisingly, the SLWE problem mapping into subspaces of dimension d is almost as hard as LWE using secrets of length d (the other direction is trivial.) This result immediately implies that several existing cryptosystems whose security is based on the hardness of the LWE/LPN problems are provably secure in a much stronger sense than anticipated. As an illustrative example we show that the standard way of using LPN for symmetric CPA secure encryption is even secure against a very powerful class of related key attacks.
AU - Pietrzak, Krzysztof Z
ID - 3280
TI - Subspace LWE
VL - 7194
ER -
TY - CONF
AB - We consider the problem of amplifying the "lossiness" of functions. We say that an oracle circuit C*: {0,1} m → {0,1}* amplifies relative lossiness from ℓ/n to L/m if for every function f:{0,1} n → {0,1} n it holds that 1 If f is injective then so is C f. 2 If f has image size of at most 2 n-ℓ, then C f has image size at most 2 m-L. The question is whether such C* exists for L/m ≫ ℓ/n. This problem arises naturally in the context of cryptographic "lossy functions," where the relative lossiness is the key parameter. We show that for every circuit C* that makes at most t queries to f, the relative lossiness of C f is at most L/m ≤ ℓ/n + O(log t)/n. In particular, no black-box method making a polynomial t = poly(n) number of queries can amplify relative lossiness by more than an O(logn)/n additive term. We show that this is tight by giving a simple construction (cascading with some randomization) that achieves such amplification.
AU - Pietrzak, Krzysztof Z
AU - Rosen, Alon
AU - Segev, Gil
ID - 3281
TI - Lossy functions do not amplify well
VL - 7194
ER -
TY - CONF
AB - Traditionally, symmetric-key message authentication codes (MACs) are easily built from pseudorandom functions (PRFs). In this work we propose a wide variety of other approaches to building efficient MACs, without going through a PRF first. In particular, unlike deterministic PRF-based MACs, where each message has a unique valid tag, we give a number of probabilistic MAC constructions from various other primitives/assumptions. Our main results are summarized as follows: We show several new probabilistic MAC constructions from a variety of general assumptions, including CCA-secure encryption, Hash Proof Systems and key-homomorphic weak PRFs. By instantiating these frameworks under concrete number theoretic assumptions, we get several schemes which are more efficient than just using a state-of-the-art PRF instantiation under the corresponding assumption. For probabilistic MACs, unlike deterministic ones, unforgeability against a chosen message attack (uf-cma ) alone does not imply security if the adversary can additionally make verification queries (uf-cmva ). We give an efficient generic transformation from any uf-cma secure MAC which is "message-hiding" into a uf-cmva secure MAC. This resolves the main open problem of Kiltz et al. from Eurocrypt'11; By using our transformation on their constructions, we get the first efficient MACs from the LPN assumption. While all our new MAC constructions immediately give efficient actively secure, two-round symmetric-key identification schemes, we also show a very simple, three-round actively secure identification protocol from any weak PRF. In particular, the resulting protocol is much more efficient than the trivial approach of building a regular PRF from a weak PRF. © 2012 International Association for Cryptologic Research.
AU - Dodis, Yevgeniy
AU - Pietrzak, Krzysztof Z
AU - Kiltz, Eike
AU - Wichs, Daniel
ID - 3282
TI - Message authentication, revisited
VL - 7237
ER -
TY - JOUR
AB - Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)-c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection.
AU - Pereira, Anna
AU - Leite, Flávia
AU - Brasil, Bruno
AU - Soares Martins, Jamaria
AU - Torres, Alice
AU - Pimenta, Paulo
AU - Souto Padrón, Thais
AU - Tranktman, Paula
AU - Ferreira, Paulo
AU - Kroon, Erna
AU - Bonjardim, Cláudio
ID - 3289
IS - 1
JF - Journal of Virology
TI - A vaccinia virus-driven interplay between the MKK4/7-JNK1/2 pathway and cytoskeleton reorganization
VL - 86
ER -
TY - JOUR
AB - The theory of persistent homology opens up the possibility to reason about topological features of a space or a function quantitatively and in combinatorial terms. We refer to this new angle at a classical subject within algebraic topology as a point calculus, which we present for the family of interlevel sets of a real-valued function. Our account of the subject is expository, devoid of proofs, and written for non-experts in algebraic topology.
AU - Bendich, Paul
AU - Cabello, Sergio
AU - Edelsbrunner, Herbert
ID - 3310
IS - 11
JF - Pattern Recognition Letters
TI - A point calculus for interlevel set homology
VL - 33
ER -