TY - JOUR
AB - Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
AU - Milutinovic, Barbara
AU - Stock, Miriam
AU - Grasse, Anna V
AU - Naderlinger, Elisabeth
AU - Hilbe, Christian
AU - Cremer, Sylvia
ID - 7343
JF - Ecology Letters
SN - 1461-023X
TI - Social immunity modulates competition between coinfecting pathogens
ER -
TY - CONF
AB - The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature.
AU - Schmid, Laura
AU - Chatterjee, Krishnendu
AU - Schmid, Stefan
ID - 7346
T2 - Proceedings of the 23rd International Conference on Principles of Distributed Systems
TI - The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game
VL - 153
ER -
TY - CONF
AB - The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above example it would require as many counters as there are clients. In this paper, we propose the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the most common event) and the median of an event sequence. We define a logic to express composite frequency properties as a combination of atomic frequency properties. Our main contribution is an algorithm that, under suitable probabilistic assumptions, can be used to monitor these important frequency properties with four counters, independent of the number of different events. Our algorithm samples longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence.
AU - Ferrere, Thomas
AU - Henzinger, Thomas A
AU - Kragl, Bernhard
ID - 7348
SN - 1868-8969
T2 - 28th EACSL Annual Conference on Computer Science Logic
TI - Monitoring event frequencies
VL - 152
ER -
TY - JOUR
AB - The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.
AU - Nibau, Candida
AU - Gallemi, Marçal
AU - Dadarou, Despoina
AU - Doonan, John H.
AU - Cavallari, Nicola
ID - 7350
JF - Frontiers in Plant Science
SN - 1664-462X
TI - Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2
VL - 10
ER -
TY - JOUR
AB - We present nsCouette, a highly scalable software tool to solve the Navier–Stokes equations for incompressible fluid flow between differentially heated and independently rotating, concentric cylinders. It is based on a pseudospectral spatial discretization and dynamic time-stepping. It is implemented in modern Fortran with a hybrid MPI-OpenMP parallelization scheme and thus designed to compute turbulent flows at high Reynolds and Rayleigh numbers. An additional GPU implementation (C-CUDA) for intermediate problem sizes and a version for pipe flow (nsPipe) are also provided.
AU - Lopez Alonso, Jose M
AU - Feldmann, Daniel
AU - Rampp, Markus
AU - Vela-Martín, Alberto
AU - Shi, Liang
AU - Avila, Marc
ID - 7364
JF - SoftwareX
TI - nsCouette – A high-performance code for direct numerical simulations of turbulent Taylor–Couette flow
VL - 11
ER -
TY - JOUR
AB - Neuronal responses to complex stimuli and tasks can encompass a wide range of time scales. Understanding these responses requires measures that characterize how the information on these response patterns are represented across multiple temporal resolutions. In this paper we propose a metric – which we call multiscale relevance (MSR) – to capture the dynamical variability of the activity of single neurons across different time scales. The MSR is a non-parametric, fully featureless indicator in that it uses only the time stamps of the firing activity without resorting to any a priori covariate or invoking any specific structure in the tuning curve for neural activity. When applied to neural data from the mEC and from the ADn and PoS regions of freely-behaving rodents, we found that neurons having low MSR tend to have low mutual information and low firing sparsity across the correlates that are believed to be encoded by the region of the brain where the recordings were made. In addition, neurons with high MSR contain significant information on spatial navigation and allow to decode spatial position or head direction as efficiently as those neurons whose firing activity has high mutual information with the covariate to be decoded and significantly better than the set of neurons with high local variations in their interspike intervals. Given these results, we propose that the MSR can be used as a measure to rank and select neurons for their information content without the need to appeal to any a priori covariate.
AU - Cubero, Ryan J
AU - Marsili, Matteo
AU - Roudi, Yasser
ID - 7369
JF - Journal of Computational Neuroscience
KW - Time series analysis
KW - Multiple time scale analysis
KW - Spike train data
KW - Information theory
KW - Bayesian decoding
SN - 0929-5313
TI - Multiscale relevance and informative encoding in neuronal spike trains
ER -
TY - JOUR
AB - We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of linear identities for the renormalisation constants.
AU - Gerencser, Mate
ID - 7388
JF - Annales de l'Institut Henri Poincaré C, Analyse non linéaire
SN - 0294-1449
TI - Nondivergence form quasilinear heat equations driven by space-time white noise
ER -
TY - JOUR
AB - Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space
W_p(R) for all p \in [1,\infty) \setminus {2}. We show that W_2(R) is also exceptional regarding the
parameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying
space, we prove that the exceptionality of p = 2 disappears if we replace R by the compact
interval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if
p is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1]))
cannot be embedded into Isom(W_1(R)).
AU - Geher, Gyorgy Pal
AU - Titkos, Tamas
AU - Virosztek, Daniel
ID - 7389
IS - 8
JF - Transactions of the American Mathematical Society
KW - Wasserstein space
KW - isometric embeddings
KW - isometric rigidity
KW - exotic isometry flow
SN - 00029947
TI - Isometric study of Wasserstein spaces - the real line
VL - 373
ER -
TY - CHAP
AB - We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ED - Klartag, Bo'az
ED - Milman, Emanuel
ID - 74
SN - 00758434
T2 - Geometric Aspects of Functional Analysis
TI - Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures
VL - 2256
ER -
TY - JOUR
AB - Earlier, we demonstrated that transcript levels of METAL TOLERANCE PROTEIN2 (MTP2) and of HEAVY METAL ATPase2 (HMA2) increase strongly in roots of Arabidopsis upon prolonged zinc (Zn) deficiency and respond to shoot physiological Zn status, and not to the local Zn status in roots. This provided evidence for shoot-to-root communication in the acclimation of plants to Zn deficiency. Zn-deficient soils limit both the yield and quality of agricultural crops and can result in clinically relevant nutritional Zn deficiency in human populations. Implementing Zn deficiency during cultivation of the model plant Arabidopsis thaliana on agar-solidified media is difficult because trace element contaminations are present in almost all commercially available agars. Here, we demonstrate root morphological acclimations to Zn deficiency on agar-solidified medium following the effective removal of contaminants. These advancements allow reproducible phenotyping toward understanding fundamental plant responses to deficiencies of Zn and other essential trace elements.
AU - Sinclair, Scott A
AU - Krämer, U.
ID - 7416
IS - 1
JF - Plant Signaling & Behavior
SN - 1559-2324
TI - Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation
VL - 15
ER -