@inproceedings{3853,
abstract = {Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Edelsbrunner, Herbert and Henzinger, Thomas A and Rannou, Philippe},
location = {Paris, France},
pages = {269 -- 283},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Mean-payoff automaton expressions}},
doi = {10.1007/978-3-642-15375-4_19},
volume = {6269},
year = {2010},
}
@inproceedings{3854,
abstract = {Graph games of infinite length provide a natural model for open reactive systems: one player (Eve) represents the controller and the other player (Adam) represents the environment. The evolution of the system depends on the decisions of both players. The specification for the system is usually given as an ω-regular language L over paths and Eve’s goal is to ensure that the play belongs to L irrespective of Adam’s behaviour. The classical notion of winning strategies fails to capture several interesting scenarios. For example, strong fairness (Streett) conditions are specified by a number of request-grant pairs and require every pair that is requested infinitely often to be granted infinitely often: Eve might win just by preventing Adam from making any new request, but a “better” strategy would allow Adam to make as many requests as possible and still ensure fairness. To address such questions, we introduce the notion of obliging games, where Eve has to ensure a strong condition Φ, while always allowing Adam to satisfy a weak condition Ψ. We present a linear time reduction of obliging games with two Muller conditions Φ and Ψ to classical Muller games. We consider obliging Streett games and show they are co-NP complete, and show a natural quantitative optimisation problem for obliging Streett games is in FNP. We also show how obliging games can provide new and interesting semantics for multi-player games.},
author = {Chatterjee, Krishnendu and Horn, Florian and Löding, Christof},
location = {Paris, France},
pages = {284 -- 296},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Obliging games}},
doi = {10.1007/978-3-642-15375-4_20},
volume = {6269},
year = {2010},
}
@inproceedings{3855,
abstract = {We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {258 -- 269},
publisher = {Springer},
title = {{Qualitative analysis of partially-observable Markov Decision Processes}},
doi = {10.1007/978-3-642-15155-2_24},
volume = {6281},
year = {2010},
}
@inproceedings{3856,
abstract = {We consider two-player zero-sum games on graphs. These games can be classified on the basis of the information of the players and on the mode of interaction between them. On the basis of information the classification is as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided complete-observation (one player has complete observation); and (c) complete-observation (both players have complete view of the game). On the basis of mode of interaction we have the following classification: (a) concurrent (players interact simultaneously); and (b) turn-based (players interact in turn). The two sources of randomness in these games are randomness in transition function and randomness in strategies. In general, randomized strategies are more powerful than deterministic strategies, and randomness in transitions gives more general classes of games. We present a complete characterization for the classes of games where randomness is not helpful in: (a) the transition function (probabilistic transition can be simulated by deterministic transition); and (b) strategies (pure strategies are as powerful as randomized strategies). As consequence of our characterization we obtain new undecidability results for these games. },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Gimbert, Hugo and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {246 -- 257},
publisher = {Springer},
title = {{Randomness for free}},
doi = {10.1007/978-3-642-15155-2_23},
volume = {6281},
year = {2010},
}
@inproceedings{3857,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present an almost complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A},
location = {Singapore, Singapore},
pages = {1 -- 16},
publisher = {Springer},
title = {{Probabilistic Automata on infinite words: decidability and undecidability results}},
doi = {10.1007/978-3-642-15643-4_1},
volume = {6252},
year = {2010},
}