@article{437, abstract = {Dendritic cells (DCs) are sentinels of the adaptive immune system that reside in peripheral organs of mammals. Upon pathogen encounter, they undergo maturation and up-regulate the chemokine receptor CCR7 that guides them along gradients of its chemokine ligands CCL19 and 21 to the next draining lymph node. There, DCs present peripherally acquired antigen to naïve T cells, thereby triggering adaptive immunity.}, author = {Leithner, Alexander F and Renkawitz, Jörg and De Vries, Ingrid and Hauschild, Robert and Haecker, Hans and Sixt, Michael K}, journal = {European Journal of Immunology}, number = {6}, pages = {1074 -- 1077}, publisher = {Wiley-Blackwell}, title = {{Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration}}, doi = {10.1002/eji.201747358}, volume = {48}, year = {2018}, } @article{617, abstract = {Insects are exposed to a variety of potential pathogens in their environment, many of which can severely impact fitness and health. Consequently, hosts have evolved resistance and tolerance strategies to suppress or cope with infections. Hosts utilizing resistance improve fitness by clearing or reducing pathogen loads, and hosts utilizing tolerance reduce harmful fitness effects per pathogen load. To understand variation in, and selective pressures on, resistance and tolerance, we asked to what degree they are shaped by host genetic background, whether plasticity in these responses depends upon dietary environment, and whether there are interactions between these two factors. Females from ten wild-type Drosophila melanogaster genotypes were kept on high- or low-protein (yeast) diets and infected with one of two opportunistic bacterial pathogens, Lactococcus lactis or Pseudomonas entomophila. We measured host resistance as the inverse of bacterial load in the early infection phase. The relationship (slope) between fly fecundity and individual-level bacteria load provided our fecundity tolerance measure. Genotype and dietary yeast determined host fecundity and strongly affected survival after infection with pathogenic P. entomophila. There was considerable genetic variation in host resistance, a commonly found phenomenon resulting from for example varying resistance costs or frequency-dependent selection. Despite this variation and the reproductive cost of higher P. entomophila loads, fecundity tolerance did not vary across genotypes. The absence of genetic variation in tolerance may suggest that at this early infection stage, fecundity tolerance is fixed or that any evolved tolerance mechanisms are not expressed under these infection conditions.}, author = {Kutzer, Megan and Kurtz, Joachim and Armitage, Sophie}, issn = {1420-9101}, journal = {Journal of Evolutionary Biology}, number = {1}, pages = {159 -- 171}, publisher = {Wiley}, title = {{Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance}}, doi = {10.1111/jeb.13211}, volume = {31}, year = {2018}, } @article{5888, abstract = {Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered, the etiological variability and the heterogeneous clinical presentation, the need for genotype — along with phenotype- based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in genomic analysis and their translation into clinical practice.}, author = {Tarlungeanu, Dora-Clara and Novarino, Gaia}, issn = {2092-6413}, journal = {Experimental & Molecular Medicine}, number = {8}, publisher = {Springer Nature}, title = {{Genomics in neurodevelopmental disorders: an avenue to personalized medicine}}, doi = {10.1038/s12276-018-0129-7}, volume = {50}, year = {2018}, } @article{295, abstract = {We prove upper and lower bounds on the ground-state energy of the ideal two-dimensional anyon gas. Our bounds are extensive in the particle number, as for fermions, and linear in the statistics parameter (Formula presented.). The lower bounds extend to Lieb–Thirring inequalities for all anyons except bosons.}, author = {Lundholm, Douglas and Seiringer, Robert}, journal = {Letters in Mathematical Physics}, number = {11}, pages = {2523--2541}, publisher = {Springer}, title = {{Fermionic behavior of ideal anyons}}, doi = {10.1007/s11005-018-1091-y}, volume = {108}, year = {2018}, } @article{555, abstract = {Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs — hydrophilicity, charge, linearity and semi-flexibility — underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG–protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs) — a GAG-rich matrix enveloping neurons — as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions.}, author = {Richter, Ralf and Baranova, Natalia and Day, Anthony and Kwok, Jessica}, journal = {Current Opinion in Structural Biology}, pages = {65 -- 74}, publisher = {Elsevier}, title = {{Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets?}}, doi = {10.1016/j.sbi.2017.12.002}, volume = {50}, year = {2018}, } @article{448, abstract = {Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.}, author = {Harrison, Mark and Jongepier, Evelien and Robertson, Hugh and Arning, Nicolas and Bitard Feildel, Tristan and Chao, Hsu and Childers, Christopher and Dinh, Huyen and Doddapaneni, Harshavardhan and Dugan, Shannon and Gowin, Johannes and Greiner, Carolin and Han, Yi and Hu, Haofu and Hughes, Daniel and Huylmans, Ann K and Kemena, Karsten and Kremer, Lukas and Lee, Sandra and López Ezquerra, Alberto and Mallet, Ludovic and Monroy Kuhn, Jose and Moser, Annabell and Murali, Shwetha and Muzny, Donna and Otani, Saria and Piulachs, Maria and Poelchau, Monica and Qu, Jiaxin and Schaub, Florentine and Wada Katsumata, Ayako and Worley, Kim and Xie, Qiaolin and Ylla, Guillem and Poulsen, Michael and Gibbs, Richard and Schal, Coby and Richards, Stephen and Belles, Xavier and Korb, Judith and Bornberg Bauer, Erich}, journal = {Nature Ecology and Evolution}, number = {3}, pages = {557--566}, publisher = {Springer Nature}, title = {{Hemimetabolous genomes reveal molecular basis of termite eusociality}}, doi = {10.1038/s41559-017-0459-1}, volume = {2}, year = {2018}, } @article{723, abstract = {Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their length, representing the Hamming path between the two optima and their depth, the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The (1+1) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the (1+1) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys.}, author = {Oliveto, Pietro and Paixao, Tiago and Pérez Heredia, Jorge and Sudholt, Dirk and Trubenova, Barbora}, journal = {Algorithmica}, number = {5}, pages = {1604 -- 1633}, publisher = {Springer}, title = {{How to escape local optima in black box optimisation when non elitism outperforms elitism}}, doi = {10.1007/s00453-017-0369-2}, volume = {80}, year = {2018}, } @article{321, abstract = {The twelve papers in this special section focus on learning systems with shared information for computer vision and multimedia communication analysis. In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes containing a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with shared information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different levels of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems.}, author = {Darrell, Trevor and Lampert, Christoph and Sebe, Nico and Wu, Ying and Yan, Yan}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, number = {5}, pages = {1029 -- 1031}, publisher = {IEEE}, title = {{Guest editors' introduction to the special section on learning with Shared information for computer vision and multimedia analysis}}, doi = {10.1109/TPAMI.2018.2804998}, volume = {40}, year = {2018}, } @misc{9841, abstract = {Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.}, author = {Harrison, Mark C. and Jongepier, Evelien and Robertson, Hugh M. and Arning, Nicolas and Bitard-Feildel, Tristan and Chao, Hsu and Childers, Christopher P. and Dinh, Huyen and Doddapaneni, Harshavardhan and Dugan, Shannon and Gowin, Johannes and Greiner, Carolin and Han, Yi and Hu, Haofu and Hughes, Daniel S. T. and Huylmans, Ann K and Kemena, Carsten and Kremer, Lukas P. M. and Lee, Sandra L. and Lopez-Ezquerra, Alberto and Mallet, Ludovic and Monroy-Kuhn, Jose M. and Moser, Annabell and Murali, Shwetha C. and Muzny, Donna M. and Otani, Saria and Piulachs, Maria-Dolors and Poelchau, Monica and Qu, Jiaxin and Schaub, Florentine and Wada-Katsumata, Ayako and Worley, Kim C. and Xie, Qiaolin and Ylla, Guillem and Poulsen, Michael and Gibbs, Richard A. and Schal, Coby and Richards, Stephen and Belles, Xavier and Korb, Judith and Bornberg-Bauer, Erich}, publisher = {Dryad}, title = {{Data from: Hemimetabolous genomes reveal molecular basis of termite eusociality}}, doi = {10.5061/dryad.51d4r}, year = {2018}, } @inproceedings{397, abstract = {Concurrent sets with range query operations are highly desirable in applications such as in-memory databases. However, few set implementations offer range queries. Known techniques for augmenting data structures with range queries (or operations that can be used to build range queries) have numerous problems that limit their usefulness. For example, they impose high overhead or rely heavily on garbage collection. In this work, we show how to augment data structures with highly efficient range queries, without relying on garbage collection. We identify a property of epoch-based memory reclamation algorithms that makes them ideal for implementing range queries, and produce three algorithms, which use locks, transactional memory and lock-free techniques, respectively. Our algorithms are applicable to more data structures than previous work, and are shown to be highly efficient on a large scale Intel system. }, author = {Arbel Raviv, Maya and Brown, Trevor A}, isbn = {978-1-4503-4982-6}, location = {Vienna, Austria}, number = {1}, pages = {14 -- 27}, publisher = {ACM}, title = {{Harnessing epoch-based reclamation for efficient range queries}}, doi = {10.1145/3178487.3178489}, volume = {53}, year = {2018}, } @article{32, abstract = {The functional role of AMPA receptor (AMPAR)-mediated synaptic signaling between neurons and oligodendrocyte precursor cells (OPCs) remains enigmatic. We modified the properties of AMPARs at axon-OPC synapses in the mouse corpus callosum in vivo during the peak of myelination by targeting the GluA2 subunit. Expression of the unedited (Ca2+ permeable) or the pore-dead GluA2 subunit of AMPARs triggered proliferation of OPCs and reduced their differentiation into oligodendrocytes. Expression of the cytoplasmic C-terminal (GluA2(813-862)) of the GluA2 subunit (C-tail), a modification designed to affect the interaction between GluA2 and AMPAR-binding proteins and to perturb trafficking of GluA2-containing AMPARs, decreased the differentiation of OPCs without affecting their proliferation. These findings suggest that ionotropic and non-ionotropic properties of AMPARs in OPCs, as well as specific aspects of AMPAR-mediated signaling at axon-OPC synapses in the mouse corpus callosum, are important for balancing the response of OPCs to proliferation and differentiation cues. In the brain, oligodendrocyte precursor cells (OPCs) receive glutamatergic AMPA-receptor-mediated synaptic input from neurons. Chen et al. show that modifying AMPA-receptor properties at axon-OPC synapses alters proliferation and differentiation of OPCs. This expands the traditional view of synaptic transmission by suggesting neurons also use synapses to modulate behavior of glia.}, author = {Chen, Ting and Kula, Bartosz and Nagy, Balint and Barzan, Ruxandra and Gall, Andrea and Ehrlich, Ingrid and Kukley, Maria}, journal = {Cell Reports}, number = {4}, pages = {852 -- 861.e7}, publisher = {Elsevier}, title = {{In Vivo regulation of Oligodendrocyte processor cell proliferation and differentiation by the AMPA-receptor Subunit GluA2}}, doi = {10.1016/j.celrep.2018.09.066}, volume = {25}, year = {2018}, } @article{5672, abstract = {The release of IgM is the first line of an antibody response and precedes the generation of high affinity IgG in germinal centers. Once secreted by freshly activated plasmablasts, IgM is released into the efferent lymph of reactive lymph nodes as early as 3 d after immunization. As pentameric IgM has an enormous size of 1,000 kD, its diffusibility is low, and one might wonder how it can pass through the densely lymphocyte-packed environment of a lymph node parenchyma in order to reach its exit. In this issue of JEM, Thierry et al. show that, in order to reach the blood stream, IgM molecules take a specific micro-anatomical route via lymph node conduits.}, author = {Reversat, Anne and Sixt, Michael K}, issn = {00221007}, journal = {Journal of Experimental Medicine}, number = {12}, pages = {2959--2961}, publisher = {Rockefeller University Press}, title = {{IgM's exit route}}, doi = {10.1084/jem.20181934}, volume = {215}, year = {2018}, } @article{398, abstract = {Objective: To report long-term results after Pipeline Embolization Device (PED) implantation, characterize complex and standard aneurysms comprehensively, and introduce a modified flow disruption scale. Methods: We retrospectively reviewed a consecutive series of 40 patients harboring 59 aneurysms treated with 54 PEDs. Aneurysm complexity was assessed using our proposed classification. Immediate angiographic results were analyzed using previously published grading scales and our novel flow disruption scale. Results: According to our new definition, 46 (78%) aneurysms were classified as complex. Most PED interventions were performed in the paraophthalmic and cavernous internal carotid artery segments. Excellent neurologic outcome (modified Rankin Scale 0 and 1) was observed in 94% of patients. Our data showed low permanent procedure-related mortality (0%) and morbidity (3%) rates. Long-term angiographic follow-up showed complete occlusion in 81% and near-total obliteration in a further 14%. Complete obliteration after deployment of a single PED was achieved in all standard aneurysms with 1-year follow-up. Our new scale was an independent predictor of aneurysm occlusion in a multivariable analysis. All aneurysms with a high flow disruption grade showed complete occlusion at follow-up regardless of PED number or aneurysm complexity. Conclusions: Treatment with the PED should be recognized as a primary management strategy for a highly selected cohort with predominantly complex intracranial aneurysms. We further show that a priori assessment of aneurysm complexity and our new postinterventional angiographic flow disruption scale predict occlusion probability and may help to determine the adequate number of per-aneurysm devices.}, author = {Dodier, Philippe and Frischer, Josa and Wang, Wei and Auzinger, Thomas and Mallouhi, Ammar and Serles, Wolfgang and Gruber, Andreas and Knosp, Engelbert and Bavinzski, Gerhard}, journal = {World Neurosurgery}, pages = {e568--e578}, publisher = {Elsevier}, title = {{Immediate flow disruption as a prognostic factor after flow diverter treatment long term experience with the pipeline embolization device}}, doi = {10.1016/j.wneu.2018.02.096}, volume = {13}, year = {2018}, } @article{458, abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.}, author = {Akopyan, Arseniy and Bobenko, Alexander}, journal = {Transactions of the American Mathematical Society}, number = {4}, pages = {2825 -- 2854}, publisher = {American Mathematical Society}, title = {{Incircular nets and confocal conics}}, doi = {10.1090/tran/7292}, volume = {370}, year = {2018}, } @article{426, abstract = {Sperm cells are the most morphologically diverse cells across animal taxa. Within species, sperm and ejaculate traits have been suggested to vary with the male's competitive environment, e.g., level of sperm competition, female mating status and quality, and also with male age, body mass, physiological condition, and resource availability. Most previous studies have based their conclusions on the analysis of only one or a few ejaculates per male without investigating differences among the ejaculates of the same individual. This masks potential ejaculate-specific traits. Here, we provide data on the length, quantity, and viability of sperm ejaculated by wingless males of the ant Cardiocondyla obscurior. Males of this ant species are relatively long-lived and can mate with large numbers of female sexuals throughout their lives. We analyzed all ejaculates across the individuals' lifespan and manipulated the availability of mating partners. Our study shows that both the number and size of sperm cells transferred during copulations differ among individuals and also among ejaculates of the same male. Sperm quality does not decrease with male age, but the variation in sperm number between ejaculates indicates that males need considerable time to replenish their sperm supplies. Producing many ejaculates in a short time appears to be traded-off against male longevity rather than sperm quality.}, author = {Metzler, Sina and Schrempf, Alexandra and Heinze, Jürgen}, journal = {Journal of Insect Physiology}, pages = {284--290}, publisher = {Elsevier}, title = {{Individual- and ejaculate-specific sperm traits in ant males}}, doi = {10.1016/j.jinsphys.2017.12.003}, volume = {107}, year = {2018}, } @inproceedings{5788, abstract = {In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner or payoff of the game. Such games are central in formal verification since they model the interaction between a non-terminating system and its environment. We study bidding games in which the players bid for the right to move the token. Two bidding rules have been defined. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the “bank” rather than the other player. While poorman reachability games have been studied before, we present, for the first time, results on infinite-duration poorman games. A central quantity in these games is the ratio between the two players’ initial budgets. The questions we study concern a necessary and sufficient ratio with which a player can achieve a goal. For reachability objectives, such threshold ratios are known to exist for both bidding rules. We show that the properties of poorman reachability games extend to complex qualitative objectives such as parity, similarly to the Richman case. Our most interesting results concern quantitative poorman games, namely poorman mean-payoff games, where we construct optimal strategies depending on the initial ratio, by showing a connection with random-turn based games. The connection in itself is interesting, because it does not hold for reachability poorman games. We also solve the complexity problems that arise in poorman bidding games.}, author = {Avni, Guy and Henzinger, Thomas A and Ibsen-Jensen, Rasmus}, isbn = {9783030046118}, issn = {03029743}, location = {Oxford, UK}, pages = {21--36}, publisher = {Springer}, title = {{Infinite-duration poorman-bidding games}}, doi = {10.1007/978-3-030-04612-5_2}, volume = {11316}, year = {2018}, } @article{150, abstract = {A short, 14-amino-acid segment called SP1, located in the Gag structural protein1, has a critical role during the formation of the HIV-1 virus particle. During virus assembly, the SP1 peptide and seven preceding residues fold into a six-helix bundle, which holds together the Gag hexamer and facilitates the formation of a curved immature hexagonal lattice underneath the viral membrane2,3. Upon completion of assembly and budding, proteolytic cleavage of Gag leads to virus maturation, in which the immature lattice is broken down; the liberated CA domain of Gag then re-assembles into the mature conical capsid that encloses the viral genome and associated enzymes. Folding and proteolysis of the six-helix bundle are crucial rate-limiting steps of both Gag assembly and disassembly, and the six-helix bundle is an established target of HIV-1 inhibitors4,5. Here, using a combination of structural and functional analyses, we show that inositol hexakisphosphate (InsP6, also known as IP6) facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1.}, author = {Dick, Robert and Zadrozny, Kaneil K and Xu, Chaoyi and Schur, Florian and Lyddon, Terri D and Ricana, Clifton L and Wagner, Jonathan M and Perilla, Juan R and Ganser, Pornillos Barbie K and Johnson, Marc C and Pornillos, Owen and Vogt, Volker}, issn = {1476-4687}, journal = {Nature}, number = {7719}, pages = {509–512}, publisher = {Nature Publishing Group}, title = {{Inositol phosphates are assembly co-factors for HIV-1}}, doi = {10.1038/s41586-018-0396-4}, volume = {560}, year = {2018}, } @article{303, abstract = {The theory of tropical series, that we develop here, firstly appeared in the study of the growth of pluriharmonic functions. Motivated by waves in sandpile models we introduce a dynamic on the set of tropical series, and it is experimentally observed that this dynamic obeys a power law. So, this paper serves as a compilation of results we need for other articles and also introduces several objects interesting by themselves.}, author = {Kalinin, Nikita and Shkolnikov, Mikhail}, journal = {Discrete and Continuous Dynamical Systems- Series A}, number = {6}, pages = {2827 -- 2849}, publisher = {AIMS}, title = {{Introduction to tropical series and wave dynamic on them}}, doi = {10.3934/dcds.2018120}, volume = {38}, year = {2018}, } @inproceedings{14202, abstract = {Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational family. Borrowing ideas from the classic boosting framework, recent approaches attempt to \emph{boost} VI by replacing the selection of a single density with a greedily constructed mixture of densities. In order to guarantee convergence, previous works impose stringent assumptions that require significant effort for practitioners. Specifically, they require a custom implementation of the greedy step (called the LMO) for every probabilistic model with respect to an unnatural variational family of truncated distributions. Our work fixes these issues with novel theoretical and algorithmic insights. On the theoretical side, we show that boosting VI satisfies a relaxed smoothness assumption which is sufficient for the convergence of the functional Frank-Wolfe (FW) algorithm. Furthermore, we rephrase the LMO problem and propose to maximize the Residual ELBO (RELBO) which replaces the standard ELBO optimization in VI. These theoretical enhancements allow for black box implementation of the boosting subroutine. Finally, we present a stopping criterion drawn from the duality gap in the classic FW analyses and exhaustive experiments to illustrate the usefulness of our theoretical and algorithmic contributions.}, author = {Locatello, Francesco and Dresdner, Gideon and Khanna, Rajiv and Valera, Isabel and Rätsch, Gunnar}, booktitle = {Advances in Neural Information Processing Systems}, isbn = {9781510884472}, issn = {1049-5258}, location = {Montreal, Canada}, publisher = {Neural Information Processing Systems Foundation}, title = {{Boosting black box variational inference}}, volume = {31}, year = {2018}, } @inproceedings{14201, abstract = {Variational inference is a popular technique to approximate a possibly intractable Bayesian posterior with a more tractable one. Recently, boosting variational inference has been proposed as a new paradigm to approximate the posterior by a mixture of densities by greedily adding components to the mixture. However, as is the case with many other variational inference algorithms, its theoretical properties have not been studied. In the present work, we study the convergence properties of this approach from a modern optimization viewpoint by establishing connections to the classic Frank-Wolfe algorithm. Our analyses yields novel theoretical insights regarding the sufficient conditions for convergence, explicit rates, and algorithmic simplifications. Since a lot of focus in previous works for variational inference has been on tractability, our work is especially important as a much needed attempt to bridge the gap between probabilistic models and their corresponding theoretical properties.}, author = {Locatello, Francesco and Khanna, Rajiv and Ghosh, Joydeep and Rätsch, Gunnar}, booktitle = {Proceedings of the 21st International Conference on Artificial Intelligence and Statistics}, location = {Playa Blanca, Lanzarote}, pages = {464--472}, publisher = {ML Research Press}, title = {{Boosting variational inference: An optimization perspective}}, volume = {84}, year = {2018}, } @inproceedings{14198, abstract = {High-dimensional time series are common in many domains. Since human cognition is not optimized to work well in high-dimensional spaces, these areas could benefit from interpretable low-dimensional representations. However, most representation learning algorithms for time series data are difficult to interpret. This is due to non-intuitive mappings from data features to salient properties of the representation and non-smoothness over time. To address this problem, we propose a new representation learning framework building on ideas from interpretable discrete dimensionality reduction and deep generative modeling. This framework allows us to learn discrete representations of time series, which give rise to smooth and interpretable embeddings with superior clustering performance. We introduce a new way to overcome the non-differentiability in discrete representation learning and present a gradient-based version of the traditional self-organizing map algorithm that is more performant than the original. Furthermore, to allow for a probabilistic interpretation of our method, we integrate a Markov model in the representation space. This model uncovers the temporal transition structure, improves clustering performance even further and provides additional explanatory insights as well as a natural representation of uncertainty. We evaluate our model in terms of clustering performance and interpretability on static (Fashion-)MNIST data, a time series of linearly interpolated (Fashion-)MNIST images, a chaotic Lorenz attractor system with two macro states, as well as on a challenging real world medical time series application on the eICU data set. Our learned representations compare favorably with competitor methods and facilitate downstream tasks on the real world data.}, author = {Fortuin, Vincent and Hüser, Matthias and Locatello, Francesco and Strathmann, Heiko and Rätsch, Gunnar}, booktitle = {International Conference on Learning Representations}, location = {New Orleans, LA, United States}, title = {{SOM-VAE: Interpretable discrete representation learning on time series}}, year = {2018}, } @inproceedings{14203, abstract = {We propose a conditional gradient framework for a composite convex minimization template with broad applications. Our approach combines smoothing and homotopy techniques under the CGM framework, and provably achieves the optimal O(1/k−−√) convergence rate. We demonstrate that the same rate holds if the linear subproblems are solved approximately with additive or multiplicative error. In contrast with the relevant work, we are able to characterize the convergence when the non-smooth term is an indicator function. Specific applications of our framework include the non-smooth minimization, semidefinite programming, and minimization with linear inclusion constraints over a compact domain. Numerical evidence demonstrates the benefits of our framework.}, author = {Yurtsever, Alp and Fercoq, Olivier and Locatello, Francesco and Cevher, Volkan}, booktitle = {Proceedings of the 35th International Conference on Machine Learning}, location = {Stockholm, Sweden}, pages = {5727--5736}, publisher = {ML Research Press}, title = {{A conditional gradient framework for composite convex minimization with applications to semidefinite programming}}, volume = {80}, year = {2018}, } @article{282, abstract = {Adaptive introgression is common in nature and can be driven by selection acting on multiple, linked genes. We explore the effects of polygenic selection on introgression under the infinitesimal model with linkage. This model assumes that the introgressing block has an effectively infinite number of genes, each with an infinitesimal effect on the trait under selection. The block is assumed to introgress under directional selection within a native population that is genetically homogeneous. We use individual-based simulations and a branching process approximation to compute various statistics of the introgressing block, and explore how these depend on parameters such as the map length and initial trait value associated with the introgressing block, the genetic variability along the block, and the strength of selection. Our results show that the introgression dynamics of a block under infinitesimal selection is qualitatively different from the dynamics of neutral introgression. We also find that in the long run, surviving descendant blocks are likely to have intermediate lengths, and clarify how the length is shaped by the interplay between linkage and infinitesimal selection. Our results suggest that it may be difficult to distinguish introgression of single loci from that of genomic blocks with multiple, tightly linked and weakly selected loci.}, author = {Sachdeva, Himani and Barton, Nicholas H}, journal = {Genetics}, number = {4}, pages = {1279 -- 1303}, publisher = {Genetics Society of America}, title = {{Introgression of a block of genome under infinitesimal selection}}, doi = {10.1534/genetics.118.301018}, volume = {209}, year = {2018}, } @inproceedings{108, abstract = {Universal hashing found a lot of applications in computer science. In cryptography the most important fact about universal families is the so called Leftover Hash Lemma, proved by Impagliazzo, Levin and Luby. In the language of modern cryptography it states that almost universal families are good extractors. In this work we provide a somewhat surprising characterization in the opposite direction. Namely, every extractor with sufficiently good parameters yields a universal family on a noticeable fraction of its inputs. Our proof technique is based on tools from extremal graph theory applied to the \'collision graph\' induced by the extractor, and may be of independent interest. We discuss possible applications to the theory of randomness extractors and non-malleable codes.}, author = {Obremski, Marciej and Skorski, Maciej}, location = {Vail, CO, USA}, publisher = {IEEE}, title = {{Inverted leftover hash lemma}}, doi = {10.1109/ISIT.2018.8437654}, volume = {2018}, year = {2018}, } @inproceedings{14204, abstract = {Two popular examples of first-order optimization methods over linear spaces are coordinate descent and matching pursuit algorithms, with their randomized variants. While the former targets the optimization by moving along coordinates, the latter considers a generalized notion of directions. Exploiting the connection between the two algorithms, we present a unified analysis of both, providing affine invariant sublinear O(1/t) rates on smooth objectives and linear convergence on strongly convex objectives. As a byproduct of our affine invariant analysis of matching pursuit, our rates for steepest coordinate descent are the tightest known. Furthermore, we show the first accelerated convergence rate O(1/t2) for matching pursuit and steepest coordinate descent on convex objectives.}, author = {Locatello, Francesco and Raj, Anant and Karimireddy, Sai Praneeth and Rätsch, Gunnar and Schölkopf, Bernhard and Stich, Sebastian U. and Jaggi, Martin}, booktitle = {Proceedings of the 35th International Conference on Machine Learning}, pages = {3198--3207}, publisher = {ML Research Press}, title = {{On matching pursuit and coordinate descent}}, volume = {80}, year = {2018}, } @inproceedings{160, abstract = {We present layered concurrent programs, a compact and expressive notation for specifying refinement proofs of concurrent programs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. These programs are expressed in the ordinary syntax of imperative concurrent programs using gated atomic actions, sequencing, choice, and (recursive) procedure calls. Each concurrent program is automatically extracted from the layered program. We reduce refinement to the safety of a sequence of concurrent checker programs, one each to justify the connection between every two consecutive concurrent programs. These checker programs are also automatically extracted from the layered program. Layered concurrent programs have been implemented in the CIVL verifier which has been successfully used for the verification of several complex concurrent programs.}, author = {Kragl, Bernhard and Qadeer, Shaz}, location = {Oxford, UK}, pages = {79 -- 102}, publisher = {Springer}, title = {{Layered Concurrent Programs}}, doi = {10.1007/978-3-319-96145-3_5}, volume = {10981}, year = {2018}, } @article{280, abstract = {Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span.}, author = {Gao, Zhen and Daneva, Anna and Salanenka, Yuliya and Van Durme, Matthias and Huysmans, Marlies and Lin, Zongcheng and De Winter, Freya and Vanneste, Steffen and Karimi, Mansour and Van De Velde, Jan and Vandepoele, Klaas and Van De Walle, Davy and Dewettinck, Koen and Lambrecht, Bart and Nowack, Moritz}, journal = {Nature Plants}, number = {6}, pages = {365 -- 375}, publisher = {Nature Publishing Group}, title = {{KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis}}, doi = {10.1038/s41477-018-0160-7}, volume = {4}, year = {2018}, } @article{503, abstract = {Buffers are essential for diluting bacterial cultures for flow cytometry analysis in order to study bacterial physiology and gene expression parameters based on fluorescence signals. Using a variety of constitutively expressed fluorescent proteins in Escherichia coli K-12 strain MG1655, we found strong artifactual changes in fluorescence levels after dilution into the commonly used flow cytometry buffer phosphate-buffered saline (PBS) and two other buffer solutions, Tris-HCl and M9 salts. These changes appeared very rapidly after dilution, and were linked to increased membrane permeability and loss in cell viability. We observed buffer-related effects in several different E. coli strains, K-12, C and W, but not E. coli B, which can be partially explained by differences in lipopolysaccharide (LPS) and outer membrane composition. Supplementing the buffers with divalent cations responsible for outer membrane stability, Mg2+ and Ca2+, preserved fluorescence signals, membrane integrity and viability of E. coli. Thus, stabilizing the bacterial outer membrane is essential for precise and unbiased measurements of fluorescence parameters using flow cytometry.}, author = {Tomasek, Kathrin and Bergmiller, Tobias and Guet, Calin C}, journal = {Journal of Biotechnology}, pages = {40 -- 52}, publisher = {Elsevier}, title = {{Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains}}, doi = {10.1016/j.jbiotec.2018.01.008}, volume = {268}, year = {2018}, } @article{82, abstract = {In experimental cultures, when bacteria are mixed with lytic (virulent) bacteriophage, bacterial cells resistant to the phage commonly emerge and become the dominant population of bacteria. Following the ascent of resistant mutants, the densities of bacteria in these simple communities become limited by resources rather than the phage. Despite the evolution of resistant hosts, upon which the phage cannot replicate, the lytic phage population is most commonly maintained in an apparently stable state with the resistant bacteria. Several mechanisms have been put forward to account for this result. Here we report the results of population dynamic/evolution experiments with a virulent mutant of phage Lambda, λVIR, and Escherichia coli in serial transfer cultures. We show that, following the ascent of λVIR-resistant bacteria, λVIRis maintained in the majority of cases in maltose-limited minimal media and in all cases in nutrient-rich broth. Using mathematical models and experiments, we show that the dominant mechanism responsible for maintenance of λVIRin these resource-limited populations dominated by resistant E. coli is a high rate of either phenotypic or genetic transition from resistance to susceptibility—a hitherto undemonstrated mechanism we term "leaky resistance." We discuss the implications of leaky resistance to our understanding of the conditions for the maintenance of phage in populations of bacteria—their “existence conditions.”.}, author = {Chaudhry, Waqas and Pleska, Maros and Shah, Nilang and Weiss, Howard and Mccall, Ingrid and Meyer, Justin and Gupta, Animesh and Guet, Calin C and Levin, Bruce}, journal = {PLoS Biology}, number = {8}, publisher = {Public Library of Science}, title = {{Leaky resistance and the conditions for the existence of lytic bacteriophage}}, doi = {10.1371/journal.pbio.2005971}, volume = {16}, year = {2018}, } @article{4, abstract = {We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which predicts aerodynamic forces and velocity and pressure fields given a threedimensional shape input. Handling detailed free-form three-dimensional shapes in a data-driven framework is challenging because machine learning approaches usually require a consistent parametrization of input and output. We present a novel PolyCube maps-based parametrization that can be computed for three-dimensional shapes at interactive rates. This allows us to efficiently learn the nonlinear response of the flow using a Gaussian process regression. We demonstrate the effectiveness of our approach for the interactive design and optimization of a car body.}, author = {Umetani, Nobuyuki and Bickel, Bernd}, journal = {ACM Trans. Graph.}, number = {4}, publisher = {ACM}, title = {{Learning three-dimensional flow for interactive aerodynamic design}}, doi = {10.1145/3197517.3201325}, volume = {37}, year = {2018}, } @inproceedings{183, abstract = {Fault-localization is considered to be a very tedious and time-consuming activity in the design of complex Cyber-Physical Systems (CPS). This laborious task essentially requires expert knowledge of the system in order to discover the cause of the fault. In this context, we propose a new procedure that AIDS designers in debugging Simulink/Stateflow hybrid system models, guided by Signal Temporal Logic (STL) specifications. The proposed method relies on three main ingredients: (1) a monitoring and a trace diagnostics procedure that checks whether a tested behavior satisfies or violates an STL specification, localizes time segments and interfaces variables contributing to the property violations; (2) a slicing procedure that maps these observable behavior segments to the internal states and transitions of the Simulink model; and (3) a spectrum-based fault-localization method that combines the previous analysis from multiple tests to identify the internal states and/or transitions that are the most likely to explain the fault. We demonstrate the applicability of our approach on two Simulink models from the automotive and the avionics domain.}, author = {Bartocci, Ezio and Ferrere, Thomas and Manjunath, Niveditha and Nickovic, Dejan}, location = {Porto, Portugal}, pages = {197 -- 206}, publisher = {Association for Computing Machinery, Inc}, title = {{Localizing faults in simulink/stateflow models with STL}}, doi = {10.1145/3178126.3178131}, year = {2018}, } @article{566, abstract = {We consider large random matrices X with centered, independent entries which have comparable but not necessarily identical variances. Girko's circular law asserts that the spectrum is supported in a disk and in case of identical variances, the limiting density is uniform. In this special case, the local circular law by Bourgade et. al. [11,12] shows that the empirical density converges even locally on scales slightly above the typical eigenvalue spacing. In the general case, the limiting density is typically inhomogeneous and it is obtained via solving a system of deterministic equations. Our main result is the local inhomogeneous circular law in the bulk spectrum on the optimal scale for a general variance profile of the entries of X. }, author = {Alt, Johannes and Erdös, László and Krüger, Torben H}, journal = {Annals Applied Probability }, number = {1}, pages = {148--203}, publisher = {Institute of Mathematical Statistics}, title = {{Local inhomogeneous circular law}}, doi = {10.1214/17-AAP1302}, volume = {28}, year = {2018}, } @article{106, abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.}, author = {Akopyan, Arseniy and Petrunin, Anton}, journal = {Mathematical Intelligencer}, number = {3}, pages = {26 -- 31}, publisher = {Springer}, title = {{Long geodesics on convex surfaces}}, doi = {10.1007/s00283-018-9795-5}, volume = {40}, year = {2018}, } @misc{9810, author = {Chaudhry, Waqas and Pleska, Maros and Shah, Nilang and Weiss, Howard and Mccall, Ingrid and Meyer, Justin and Gupta, Animesh and Guet, Calin C and Levin, Bruce}, publisher = {Public Library of Science}, title = {{Numerical data used in figures}}, doi = {10.1371/journal.pbio.2005971.s008}, year = {2018}, } @article{275, abstract = {Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified > 1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments.}, author = {Brown, Markus and Johnson, Louise and Leone, Dario and Májek, Peter and Vaahtomeri, Kari and Senfter, Daniel and Bukosza, Nora and Schachner, Helga and Asfour, Gabriele and Langer, Brigitte and Hauschild, Robert and Parapatics, Katja and Hong, Young and Bennett, Keiryn and Kain, Renate and Detmar, Michael and Sixt, Michael K and Jackson, David and Kerjaschki, Dontscho}, journal = {Journal of Cell Biology}, number = {6}, pages = {2205 -- 2221}, publisher = {Rockefeller University Press}, title = {{Lymphatic exosomes promote dendritic cell migration along guidance cues}}, doi = {10.1083/jcb.201612051}, volume = {217}, year = {2018}, } @article{158, abstract = {The angiosperm seed is composed of three genetically distinct tissues: the diploid embryo that originates from the fertilized egg cell, the triploid endosperm that is produced from the fertilized central cell, and the maternal sporophytic integuments that develop into the seed coat1. At the onset of embryo development in Arabidopsis thaliana, the zygote divides asymmetrically, producing a small apical embryonic cell and a larger basal cell that connects the embryo to the maternal tissue2. The coordinated and synchronous development of the embryo and the surrounding integuments, and the alignment of their growth axes, suggest communication between maternal tissues and the embryo. In contrast to animals, however, where a network of maternal factors that direct embryo patterning have been identified3,4, only a few maternal mutations have been described to affect embryo development in plants5–7. Early embryo patterning in Arabidopsis requires accumulation of the phytohormone auxin in the apical cell by directed transport from the suspensor8–10. However, the origin of this auxin has remained obscure. Here we investigate the source of auxin for early embryogenesis and provide evidence that the mother plant coordinates seed development by supplying auxin to the early embryo from the integuments of the ovule. We show that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.}, author = {Robert, Hélène and Park, Chulmin and Gutièrrez, Carla and Wójcikowska, Barbara and Pěnčík, Aleš and Novák, Ondřej and Chen, Junyi and Grunewald, Wim and Dresselhaus, Thomas and Friml, Jirí and Laux, Thomas}, journal = {Nature Plants}, number = {8}, pages = {548 -- 553}, publisher = {Nature Publishing Group}, title = {{Maternal auxin supply contributes to early embryo patterning in Arabidopsis}}, doi = {10.1038/s41477-018-0204-z}, volume = {4}, year = {2018}, } @article{152, abstract = {Complex I has an essential role in ATP production by coupling electron transfer from NADH to quinone with translocation of protons across the inner mitochondrial membrane. Isolated complex I deficiency is a frequent cause of mitochondrial inherited diseases. Complex I has also been implicated in cancer, ageing, and neurodegenerative conditions. Until recently, the understanding of complex I deficiency on the molecular level was limited due to the lack of high-resolution structures of the enzyme. However, due to developments in single particle cryo-electron microscopy (cryo-EM), recent studies have reported nearly atomic resolution maps and models of mitochondrial complex I. These structures significantly add to our understanding of complex I mechanism and assembly. The disease-causing mutations are discussed here in their structural context.}, author = {Fiedorczuk, Karol and Sazanov, Leonid A}, journal = {Trends in Cell Biology}, number = {10}, pages = {835 -- 867}, publisher = {Elsevier}, title = {{Mammalian mitochondrial complex I structure and disease causing mutations}}, doi = {10.1016/j.tcb.2018.06.006}, volume = {28}, year = {2018}, } @inproceedings{310, abstract = {A model of computation that is widely used in the formal analysis of reactive systems is symbolic algorithms. In this model the access to the input graph is restricted to consist of symbolic operations, which are expensive in comparison to the standard RAM operations. We give lower bounds on the number of symbolic operations for basic graph problems such as the computation of the strongly connected components and of the approximate diameter as well as for fundamental problems in model checking such as safety, liveness, and coliveness. Our lower bounds are linear in the number of vertices of the graph, even for constant-diameter graphs. For none of these problems lower bounds on the number of symbolic operations were known before. The lower bounds show an interesting separation of these problems from the reachability problem, which can be solved with O(D) symbolic operations, where D is the diameter of the graph. Additionally we present an approximation algorithm for the graph diameter which requires Õ(n/D) symbolic steps to achieve a (1 +ϵ)-approximation for any constant > 0. This compares to O(n/D) symbolic steps for the (naive) exact algorithm and O(D) symbolic steps for a 2-approximation. Finally we also give a refined analysis of the strongly connected components algorithms of [15], showing that it uses an optimal number of symbolic steps that is proportional to the sum of the diameters of the strongly connected components.}, author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika H and Loitzenbauer, Veronika}, location = {New Orleans, Louisiana, United States}, pages = {2341 -- 2356}, publisher = {ACM}, title = {{Lower bounds for symbolic computation on graphs: Strongly connected components, liveness, safety, and diameter}}, doi = {10.1137/1.9781611975031.151}, year = {2018}, } @article{436, abstract = {There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.}, author = {Barzanjeh, Shabir and Aquilina, Matteo and Xuereb, André}, journal = {Physical Review Letters}, number = {6}, publisher = {American Physical Society}, title = {{Manipulating the flow of thermal noise in quantum devices}}, doi = {10.1103/PhysRevLett.120.060601}, volume = {120}, year = {2018}, } @article{5858, abstract = {Spatial patterns are ubiquitous on the subcellular, cellular and tissue level, and can be studied using imaging techniques such as light and fluorescence microscopy. Imaging data provide quantitative information about biological systems; however, mechanisms causing spatial patterning often remain elusive. In recent years, spatio-temporal mathematical modelling has helped to overcome this problem. Yet, outliers and structured noise limit modelling of whole imaging data, and models often consider spatial summary statistics. Here, we introduce an integrated data-driven modelling approach that can cope with measurement artefacts and whole imaging data. Our approach combines mechanistic models of the biological processes with robust statistical models of the measurement process. The parameters of the integrated model are calibrated using a maximum-likelihood approach. We used this integrated modelling approach to study in vivo gradients of the chemokine (C-C motif) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and are important in the adaptive immune response. Using artificial data, we verified that the integrated modelling approach provides reliable parameter estimates in the presence of measurement noise and that bias and variance of these estimates are reduced compared to conventional approaches. The application to experimental data allowed the parametrization and subsequent refinement of the model using additional mechanisms. Among other results, model-based hypothesis testing predicted lymphatic vessel-dependent concentration of heparan sulfate, the binding partner of CCL21. The selected model provided an accurate description of the experimental data and was partially validated using published data. Our findings demonstrate that integrated statistical modelling of whole imaging data is computationally feasible and can provide novel biological insights.}, author = {Hross, Sabrina and Theis, Fabian J. and Sixt, Michael K and Hasenauer, Jan}, issn = {17425689}, journal = {Journal of the Royal Society Interface}, number = {149}, publisher = {Royal Society Publishing}, title = {{Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data}}, doi = {10.1098/rsif.2018.0600}, volume = {15}, year = {2018}, } @article{16, abstract = {We report quantitative evidence of mixing-layer elastic instability in a viscoelastic fluid flow between two widely spaced obstacles hindering a channel flow at Re 1 and Wi 1. Two mixing layers with nonuniform shear velocity profiles are formed in the region between the obstacles. The mixing-layer instability arises in the vicinity of an inflection point on the shear velocity profile with a steep variation in the elastic stress. The instability results in an intermittent appearance of small vortices in the mixing layers and an amplification of spatiotemporal averaged vorticity in the elastic turbulence regime. The latter is characterized through scaling of friction factor with Wi and both pressure and velocity spectra. Furthermore, the observations reported provide improved understanding of the stability of the mixing layer in a viscoelastic fluid at large elasticity, i.e., Wi 1 and Re 1 and oppose the current view of suppression of vorticity solely by polymer additives.}, author = {Varshney, Atul and Steinberg, Victor}, journal = {Physical Review Fluids}, number = {10}, publisher = {American Physical Society}, title = {{Mixing layer instability and vorticity amplification in a creeping viscoelastic flow}}, doi = {10.1103/PhysRevFluids.3.103303}, volume = {3}, year = {2018}, } @article{43, abstract = {The initial amount of pathogens required to start an infection within a susceptible host is called the infective dose and is known to vary to a large extent between different pathogen species. We investigate the hypothesis that the differences in infective doses are explained by the mode of action in the underlying mechanism of pathogenesis: Pathogens with locally acting mechanisms tend to have smaller infective doses than pathogens with distantly acting mechanisms. While empirical evidence tends to support the hypothesis, a formal theoretical explanation has been lacking. We give simple analytical models to gain insight into this phenomenon and also investigate a stochastic, spatially explicit, mechanistic within-host model for toxin-dependent bacterial infections. The model shows that pathogens secreting locally acting toxins have smaller infective doses than pathogens secreting diffusive toxins, as hypothesized. While local pathogenetic mechanisms require smaller infective doses, pathogens with distantly acting toxins tend to spread faster and may cause more damage to the host. The proposed model can serve as a basis for the spatially explicit analysis of various virulence factors also in the context of other problems in infection dynamics.}, author = {Rybicki, Joel and Kisdi, Eva and Anttila, Jani}, journal = {PNAS}, number = {42}, pages = {10690 -- 10695}, publisher = {National Academy of Sciences}, title = {{Model of bacterial toxin-dependent pathogenesis explains infective dose}}, doi = {10.1073/pnas.1721061115}, volume = {115}, year = {2018}, } @article{13, abstract = {We propose a new method for fabricating digital objects through reusable silicone molds. Molds are generated by casting liquid silicone into custom 3D printed containers called metamolds. Metamolds automatically define the cuts that are needed to extract the cast object from the silicone mold. The shape of metamolds is designed through a novel segmentation technique, which takes into account both geometric and topological constraints involved in the process of mold casting. Our technique is simple, does not require changing the shape or topology of the input objects, and only requires off-the- shelf materials and technologies. We successfully tested our method on a set of challenging examples with complex shapes and rich geometric detail. © 2018 Association for Computing Machinery.}, author = {Alderighi, Thomas and Malomo, Luigi and Giorgi, Daniela and Pietroni, Nico and Bickel, Bernd and Cignoni, Paolo}, journal = {ACM Trans. Graph.}, number = {4}, publisher = {ACM}, title = {{Metamolds: Computational design of silicone molds}}, doi = {10.1145/3197517.3201381}, volume = {37}, year = {2018}, } @article{137, abstract = {Fluorescent sensors are an essential part of the experimental toolbox of the life sciences, where they are used ubiquitously to visualize intra- and extracellular signaling. In the brain, optical neurotransmitter sensors can shed light on temporal and spatial aspects of signal transmission by directly observing, for instance, neurotransmitter release and spread. Here we report the development and application of the first optical sensor for the amino acid glycine, which is both an inhibitory neurotransmitter and a co-agonist of the N-methyl-d-aspartate receptors (NMDARs) involved in synaptic plasticity. Computational design of a glycine-specific binding protein allowed us to produce the optical glycine FRET sensor (GlyFS), which can be used with single and two-photon excitation fluorescence microscopy. We took advantage of this newly developed sensor to test predictions about the uneven spatial distribution of glycine in extracellular space and to demonstrate that extracellular glycine levels are controlled by plasticity-inducing stimuli.}, author = {Zhang, William and Herde, Michel and Mitchell, Joshua and Whitfield, Jason and Wulff, Andreas and Vongsouthi, Vanessa and Sanchez Romero, Inmaculada and Gulakova, Polina and Minge, Daniel and Breithausen, Björn and Schoch, Susanne and Janovjak, Harald L and Jackson, Colin and Henneberger, Christian}, journal = {Nature Chemical Biology}, number = {9}, pages = {861 -- 869}, publisher = {Nature Publishing Group}, title = {{Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS}}, doi = {10.1038/s41589-018-0108-2}, volume = {14}, year = {2018}, } @inbook{153, abstract = {Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile “pillar forests” to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters.}, author = {Renkawitz, Jörg and Reversat, Anne and Leithner, Alexander F and Merrin, Jack and Sixt, Michael K}, booktitle = {Methods in Cell Biology}, issn = {0091679X}, pages = {79 -- 91}, publisher = {Academic Press}, title = {{Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments}}, doi = {10.1016/bs.mcb.2018.07.004}, volume = {147}, year = {2018}, } @article{54, abstract = {During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs’ composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.}, author = {Nunes Pinheiro, Diana C and Bellaïche, Yohanns}, journal = {Developmental Cell}, number = {1}, pages = {3 -- 19}, publisher = {Cell Press}, title = {{Mechanical force-driven adherents junction remodeling and epithelial dynamics}}, doi = {10.1016/j.devcel.2018.09.014}, volume = {47}, year = {2018}, } @article{276, abstract = {Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controlla-bility of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.}, author = {Frick, Corina and Dettinger, Philip and Renkawitz, Jörg and Jauch, Annaïse and Berger, Christoph and Recher, Mike and Schroeder, Timm and Mehling, Matthias}, journal = {PLoS One}, number = {6}, publisher = {Public Library of Science}, title = {{Nano-scale microfluidics to study 3D chemotaxis at the single cell level}}, doi = {10.1371/journal.pone.0198330}, volume = {13}, year = {2018}, } @article{283, abstract = {Light represents the principal signal driving circadian clock entrainment. However, how light influences the evolution of the clock remains poorly understood. The cavefish Phreatichthys andruzzii represents a fascinating model to explore how evolution under extreme aphotic conditions shapes the circadian clock, since in this species the clock is unresponsive to light. We have previously demonstrated that loss-of-function mutations targeting non-visual opsins contribute in part to this blind clock phenotype. Here, we have compared orthologs of two core clock genes that play a key role in photic entrainment, cry1a and per2, in both zebrafish and P. andruzzii. We encountered aberrantly spliced variants for the P. andruzzii per2 transcript. The most abundant transcript encodes a truncated protein lacking the C-terminal Cry binding domain and incorporating an intronic, transposon-derived coding sequence. We demonstrate that the transposon insertion leads to a predominantly cytoplasmic localization of the cavefish Per2 protein in contrast to the zebrafish ortholog which is distributed in both the nucleus and cytoplasm. Thus, it seems that during evolution in complete darkness, the photic entrainment pathway of the circadian clock has been subject to mutation at multiple levels, extending from opsin photoreceptors to nuclear effectors.}, author = {Ceinos, Rosa Maria and Frigato, Elena and Pagano, Cristina and Frohlich, Nadine and Negrini, Pietro and Cavallari, Nicola and Vallone, Daniela and Fuselli, Silvia and Bertolucci, Cristiano and Foulkes, Nicholas S}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{Mutations in blind cavefish target the light regulated circadian clock gene period 2}}, doi = {10.1038/s41598-018-27080-2}, volume = {8}, year = {2018}, } @inproceedings{81, abstract = {We solve the offline monitoring problem for timed propositional temporal logic (TPTL), interpreted over dense-time Boolean signals. The variant of TPTL we consider extends linear temporal logic (LTL) with clock variables and reset quantifiers, providing a mechanism to specify real-time constraints. We first describe a general monitoring algorithm based on an exhaustive computation of the set of satisfying clock assignments as a finite union of zones. We then propose a specialized monitoring algorithm for the one-variable case using a partition of the time domain based on the notion of region equivalence, whose complexity is linear in the length of the signal, thereby generalizing a known result regarding the monitoring of metric temporal logic (MTL). The region and zone representations of time constraints are known from timed automata verification and can also be used in the discrete-time case. Our prototype implementation appears to outperform previous discrete-time implementations of TPTL monitoring,}, author = {Elgyütt, Adrian and Ferrere, Thomas and Henzinger, Thomas A}, location = {Beijing, China}, pages = {53 -- 70}, publisher = {Springer}, title = {{Monitoring temporal logic with clock variables}}, doi = {10.1007/978-3-030-00151-3_4}, volume = {11022}, year = {2018}, } @article{76, abstract = {Consider a fully-connected synchronous distributed system consisting of n nodes, where up to f nodes may be faulty and every node starts in an arbitrary initial state. In the synchronous C-counting problem, all nodes need to eventually agree on a counter that is increased by one modulo C in each round for given C>1. In the self-stabilising firing squad problem, the task is to eventually guarantee that all non-faulty nodes have simultaneous responses to external inputs: if a subset of the correct nodes receive an external “go” signal as input, then all correct nodes should agree on a round (in the not-too-distant future) in which to jointly output a “fire” signal. Moreover, no node should generate a “fire” signal without some correct node having previously received a “go” signal as input. We present a framework reducing both tasks to binary consensus at very small cost. For example, we obtain a deterministic algorithm for self-stabilising Byzantine firing squads with optimal resilience f<n/3, asymptotically optimal stabilisation and response time O(f), and message size O(log f). As our framework does not restrict the type of consensus routines used, we also obtain efficient randomised solutions.}, author = {Lenzen, Christoph and Rybicki, Joel}, journal = {Distributed Computing}, publisher = {Springer}, title = {{Near-optimal self-stabilising counting and firing squads}}, doi = {10.1007/s00446-018-0342-6}, year = {2018}, } @article{530, abstract = {Inclusion–exclusion is an effective method for computing the volume of a union of measurable sets. We extend it to multiple coverings, proving short inclusion–exclusion formulas for the subset of Rn covered by at least k balls in a finite set. We implement two of the formulas in dimension n=3 and report on results obtained with our software.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, journal = {Computational Geometry: Theory and Applications}, pages = {119 -- 133}, publisher = {Elsevier}, title = {{Multiple covers with balls I: Inclusion–exclusion}}, doi = {10.1016/j.comgeo.2017.06.014}, volume = {68}, year = {2018}, } @article{307, abstract = {Spontaneous emission spectra of two initially excited closely spaced identical atoms are very sensitive to the strength and the direction of the applied magnetic field. We consider the relevant schemes that ensure the determination of the mutual spatial orientation of the atoms and the distance between them by entirely optical means. A corresponding theoretical description is given accounting for the dipole-dipole interaction between the two atoms in the presence of a magnetic field and for polarizations of the quantum field interacting with magnetic sublevels of the two-atom system. }, author = {Redchenko, Elena and Makarov, Alexander and Yudson, Vladimir}, journal = { Physical Review A - Atomic, Molecular, and Optical Physics}, number = {4}, publisher = {American Physical Society}, title = {{Nanoscopy of pairs of atoms by fluorescence in a magnetic field}}, doi = {10.1103/PhysRevA.97.043812}, volume = {97}, year = {2018}, } @article{279, abstract = {Background: Natural selection shapes cancer genomes. Previous studies used signatures of positive selection to identify genes driving malignant transformation. However, the contribution of negative selection against somatic mutations that affect essential tumor functions or specific domains remains a controversial topic. Results: Here, we analyze 7546 individual exomes from 26 tumor types from TCGA data to explore the portion of the cancer exome under negative selection. Although we find most of the genes neutrally evolving in a pan-cancer framework, we identify essential cancer genes and immune-exposed protein regions under significant negative selection. Moreover, our simulations suggest that the amount of negative selection is underestimated. We therefore choose an empirical approach to identify genes, functions, and protein regions under negative selection. We find that expression and mutation status of negatively selected genes is indicative of patient survival. Processes that are most strongly conserved are those that play fundamental cellular roles such as protein synthesis, glucose metabolism, and molecular transport. Intriguingly, we observe strong signals of selection in the immunopeptidome and proteins controlling peptide exposition, highlighting the importance of immune surveillance evasion. Additionally, tumor type-specific immune activity correlates with the strength of negative selection on human epitopes. Conclusions: In summary, our results show that negative selection is a hallmark of cell essentiality and immune response in cancer. The functional domains identified could be exploited therapeutically, ultimately allowing for the development of novel cancer treatments.}, author = {Zapata, Luis and Pich, Oriol and Serrano, Luis and Kondrashov, Fyodor and Ossowski, Stephan and Schaefer, Martin}, journal = {Genome Biology}, publisher = {BioMed Central}, title = {{Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome}}, doi = {10.1186/s13059-018-1434-0}, volume = {19}, year = {2018}, } @article{145, abstract = {Aged proteins can become hazardous to cellular function, by accumulating molecular damage. This implies that cells should preferentially rely on newly produced ones. We tested this hypothesis in cultured hippocampal neurons, focusing on synaptic transmission. We found that newly synthesized vesicle proteins were incorporated in the actively recycling pool of vesicles responsible for all neurotransmitter release during physiological activity. We observed this for the calcium sensor Synaptotagmin 1, for the neurotransmitter transporter VGAT, and for the fusion protein VAMP2 (Synaptobrevin 2). Metabolic labeling of proteins and visualization by secondary ion mass spectrometry enabled us to query the entire protein makeup of the actively recycling vesicles, which we found to be younger than that of non-recycling vesicles. The young vesicle proteins remained in use for up to ~ 24 h, during which they participated in recycling a few hundred times. They were afterward reluctant to release and were degraded after an additional ~ 24–48 h. We suggest that the recycling pool of synaptic vesicles relies on newly synthesized proteins, while the inactive reserve pool contains older proteins.}, author = {Truckenbrodt, Sven M and Viplav, Abhiyan and Jähne, Sebsatian and Vogts, Angela and Denker, Annette and Wildhagen, Hanna and Fornasiero, Eugenio and Rizzoli, Silvio}, issn = {0261-4189}, journal = {The EMBO Journal}, number = {15}, publisher = {Wiley}, title = {{Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission}}, doi = {10.15252/embj.201798044}, volume = {37}, year = {2018}, } @article{462, abstract = {AtNHX5 and AtNHX6 are endosomal Na+,K+/H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin-mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin-related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the ER-localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were co-localized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+-leak pathway provides a fine-tuning mechanism that controls cellular auxin fluxes. }, author = {Fan, Ligang and Zhao, Lei and Hu, Wei and Li, Weina and Novák, Ondřej and Strnad, Miroslav and Simon, Sibu and Friml, Jirí and Shen, Jinbo and Jiang, Liwen and Qiu, Quan}, journal = {Plant, Cell and Environment}, pages = {850 -- 864}, publisher = {Wiley-Blackwell}, title = {{NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development}}, doi = {10.1111/pce.13153}, volume = {41}, year = {2018}, } @article{519, abstract = {This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow – flow confined between two concentric independently rotating cylinders. We detected alternating ‘flip’ solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion. }, author = {Altmeyer, Sebastian}, journal = {Journal of Magnetism and Magnetic Materials}, pages = {427 -- 441}, publisher = {Elsevier}, title = {{Non-linear dynamics and alternating ‘flip’ solutions in ferrofluidic Taylor-Couette flow}}, doi = {10.1016/j.jmmm.2017.12.073}, volume = {452}, year = {2018}, } @inproceedings{5679, abstract = {We study the almost-sure termination problem for probabilistic programs. First, we show that supermartingales with lower bounds on conditional absolute difference provide a sound approach for the almost-sure termination problem. Moreover, using this approach we can obtain explicit optimal bounds on tail probabilities of non-termination within a given number of steps. Second, we present a new approach based on Central Limit Theorem for the almost-sure termination problem, and show that this approach can establish almost-sure termination of programs which none of the existing approaches can handle. Finally, we discuss algorithmic approaches for the two above methods that lead to automated analysis techniques for almost-sure termination of probabilistic programs.}, author = {Huang, Mingzhang and Fu, Hongfei and Chatterjee, Krishnendu}, editor = {Ryu, Sukyoung}, isbn = {9783030027674}, issn = {03029743}, location = {Wellington, New Zealand}, pages = {181--201}, publisher = {Springer}, title = {{New approaches for almost-sure termination of probabilistic programs}}, doi = {10.1007/978-3-030-02768-1_11}, volume = {11275}, year = {2018}, } @article{546, abstract = {The precise control of neural stem cell (NSC) proliferation and differentiation is crucial for the development and function of the human brain. Here, we review the emerging links between the alteration of embryonic and adult neurogenesis and the etiology of neuropsychiatric disorders (NPDs) such as autism spectrum disorders (ASDs) and schizophrenia (SCZ), as well as the advances in stem cell-based modeling and the novel therapeutic targets derived from these studies.}, author = {Sacco, Roberto and Cacci, Emanuele and Novarino, Gaia}, journal = {Current Opinion in Neurobiology}, number = {2}, pages = {131 -- 138}, publisher = {Elsevier}, title = {{Neural stem cells in neuropsychiatric disorders}}, doi = {10.1016/j.conb.2017.12.005}, volume = {48}, year = {2018}, } @misc{9812, abstract = {This document contains the full list of genes with their respective significance and dN/dS values. (TXT 4499Â kb)}, author = {Zapata, Luis and Pich, Oriol and Serrano, Luis and Kondrashov, Fyodor and Ossowski, Stephan and Schaefer, Martin}, publisher = {Springer Nature}, title = {{Additional file 2: Of negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome}}, doi = {10.6084/m9.figshare.6401414.v1}, year = {2018}, } @misc{9811, abstract = {This document contains additional supporting evidence presented as supplemental tables. (XLSX 50Â kb)}, author = {Zapata, Luis and Pich, Oriol and Serrano, Luis and Kondrashov, Fyodor and Ossowski, Stephan and Schaefer, Martin}, publisher = {Springer Nature}, title = {{Additional file 1: Of negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome}}, doi = {10.6084/m9.figshare.6401390.v1}, year = {2018}, } @article{20, abstract = {Background: Norepinephrine (NE) signaling has a key role in white adipose tissue (WAT) functions, including lipolysis, free fatty acid liberation and, under certain conditions, conversion of white into brite (brown-in-white) adipocytes. However, acute effects of NE stimulation have not been described at the transcriptional network level. Results: We used RNA-seq to uncover a broad transcriptional response. The inference of protein-protein and protein-DNA interaction networks allowed us to identify a set of immediate-early genes (IEGs) with high betweenness, validating our approach and suggesting a hierarchical control of transcriptional regulation. In addition, we identified a transcriptional regulatory network with IEGs as master regulators, including HSF1 and NFIL3 as novel NE-induced IEG candidates. Moreover, a functional enrichment analysis and gene clustering into functional modules suggest a crosstalk between metabolic, signaling, and immune responses. Conclusions: Altogether, our network biology approach explores for the first time the immediate-early systems level response of human adipocytes to acute sympathetic activation, thereby providing a first network basis of early cell fate programs and crosstalks between metabolic and transcriptional networks required for proper WAT function.}, author = {Higareda Almaraz, Juan and Karbiener, Michael and Giroud, Maude and Pauler, Florian and Gerhalter, Teresa and Herzig, Stephan and Scheideler, Marcel}, issn = {1471-2164}, journal = {BMC Genomics}, number = {1}, publisher = {BioMed Central}, title = {{Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes}}, doi = {10.1186/s12864-018-5173-0}, volume = {19}, year = {2018}, } @article{107, abstract = {We introduce the notion of “non-malleable codes” which relaxes the notion of error correction and error detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. In contrast to error correction and error detection, non-malleability can be achieved for very rich classes of modifications. We construct an efficient code that is non-malleable with respect to modifications that affect each bit of the codeword arbitrarily (i.e., leave it untouched, flip it, or set it to either 0 or 1), but independently of the value of the other bits of the codeword. Using the probabilistic method, we also show a very strong and general statement: there exists a non-malleable code for every “small enough” family F of functions via which codewords can be modified. Although this probabilistic method argument does not directly yield efficient constructions, it gives us efficient non-malleable codes in the random-oracle model for very general classes of tampering functions—e.g., functions where every bit in the tampered codeword can depend arbitrarily on any 99% of the bits in the original codeword. As an application of non-malleable codes, we show that they provide an elegant algorithmic solution to the task of protecting functionalities implemented in hardware (e.g., signature cards) against “tampering attacks.” In such attacks, the secret state of a physical system is tampered, in the hopes that future interaction with the modified system will reveal some secret information. This problem was previously studied in the work of Gennaro et al. in 2004 under the name “algorithmic tamper proof security” (ATP). We show that non-malleable codes can be used to achieve important improvements over the prior work. In particular, we show that any functionality can be made secure against a large class of tampering attacks, simply by encoding the secret state with a non-malleable code while it is stored in memory.}, author = {Dziembowski, Stefan and Pietrzak, Krzysztof Z and Wichs, Daniel}, journal = {Journal of the ACM}, number = {4}, publisher = {ACM}, title = {{Non-malleable codes}}, doi = {10.1145/3178432}, volume = {65}, year = {2018}, } @article{5676, abstract = {In epithelial tissues, cells tightly connect to each other through cell–cell junctions, but they also present the remarkable capacity of reorganizing themselves without compromising tissue integrity. Upon injury, simple epithelia efficiently resolve small lesions through the action of actin cytoskeleton contractile structures at the wound edge and cellular rearrangements. However, the underlying mechanisms and how they cooperate are still poorly understood. In this study, we combine live imaging and theoretical modeling to reveal a novel and indispensable role for occluding junctions (OJs) in this process. We demonstrate that OJ loss of function leads to defects in wound-closure dynamics: instead of contracting, wounds dramatically increase their area. OJ mutants exhibit phenotypes in cell shape, cellular rearrangements, and mechanical properties as well as in actin cytoskeleton dynamics at the wound edge. We propose that OJs are essential for wound closure by impacting on epithelial mechanics at the tissue level, which in turn is crucial for correct regulation of the cellular events occurring at the wound edge.}, author = {Carvalho, Lara and Patricio, Pedro and Ponte, Susana and Heisenberg, Carl-Philipp J and Almeida, Luis and Nunes, André S. and Araújo, Nuno A.M. and Jacinto, Antonio}, issn = {00219525}, journal = {Journal of Cell Biology}, number = {12}, pages = {4267--4283}, publisher = {Rockefeller University Press}, title = {{Occluding junctions as novel regulators of tissue mechanics during wound repair}}, doi = {10.1083/jcb.201804048}, volume = {217}, year = {2018}, } @inproceedings{14224, abstract = {Clustering is a cornerstone of unsupervised learning which can be thought as disentangling multiple generative mechanisms underlying the data. In this paper we introduce an algorithmic framework to train mixtures of implicit generative models which we particularize for variational autoencoders. Relying on an additional set of discriminators, we propose a competitive procedure in which the models only need to approximate the portion of the data distribution from which they can produce realistic samples. As a byproduct, each model is simpler to train, and a clustering interpretation arises naturally from the partitioning of the training points among the models. We empirically show that our approach splits the training distribution in a reasonable way and increases the quality of the generated samples.}, author = {Locatello, Francesco and Vincent, Damien and Tolstikhin, Ilya and Ratsch, Gunnar and Gelly, Sylvain and Scholkopf, Bernhard}, booktitle = {6th International Conference on Learning Representations}, location = {Vancouver, Canada}, title = {{Clustering meets implicit generative models}}, year = {2018}, } @misc{9807, abstract = {Table S1. Genes with highest betweenness. Table S2. Local and Master regulators up-regulated. Table S3. Local and Master regulators down-regulated (XLSX 23 kb).}, author = {Higareda Almaraz, Juan and Karbiener, Michael and Giroud, Maude and Pauler, Florian and Gerhalter, Teresa and Herzig, Stephan and Scheideler, Marcel}, publisher = {Springer Nature}, title = {{Additional file 1: Of Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes}}, doi = {10.6084/m9.figshare.7295339.v1}, year = {2018}, } @misc{9808, abstract = {Table S4. Counts per Gene per Million Reads Mapped. (XLSX 2751 kb).}, author = {Higareda Almaraz, Juan and Karbiener, Michael and Giroud, Maude and Pauler, Florian and Gerhalter, Teresa and Herzig, Stephan and Scheideler, Marcel}, publisher = {Springer Nature}, title = {{Additional file 3: Of Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes}}, doi = {10.6084/m9.figshare.7295369.v1}, year = {2018}, } @inproceedings{193, abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.}, author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal}, booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security}, location = {Incheon, Republic of Korea}, pages = {51 -- 65}, publisher = {ACM}, title = {{On the memory hardness of data independent password hashing functions}}, doi = {10.1145/3196494.3196534}, year = {2018}, } @inproceedings{300, abstract = {We introduce a formal quantitative notion of “bit security” for a general type of cryptographic games (capturing both decision and search problems), aimed at capturing the intuition that a cryptographic primitive with k-bit security is as hard to break as an ideal cryptographic function requiring a brute force attack on a k-bit key space. Our new definition matches the notion of bit security commonly used by cryptographers and cryptanalysts when studying search (e.g., key recovery) problems, where the use of the traditional definition is well established. However, it produces a quantitatively different metric in the case of decision (indistinguishability) problems, where the use of (a straightforward generalization of) the traditional definition is more problematic and leads to a number of paradoxical situations or mismatches between theoretical/provable security and practical/common sense intuition. Key to our new definition is to consider adversaries that may explicitly declare failure of the attack. We support and justify the new definition by proving a number of technical results, including tight reductions between several standard cryptographic problems, a new hybrid theorem that preserves bit security, and an application to the security analysis of indistinguishability primitives making use of (approximate) floating point numbers. This is the first result showing that (standard precision) 53-bit floating point numbers can be used to achieve 100-bit security in the context of cryptographic primitives with general indistinguishability-based security definitions. Previous results of this type applied only to search problems, or special types of decision problems.}, author = {Micciancio, Daniele and Walter, Michael}, location = {Tel Aviv, Israel}, pages = {3 -- 28}, publisher = {Springer}, title = {{On the bit security of cryptographic primitives}}, doi = {10.1007/978-3-319-78381-9_1}, volume = {10820}, year = {2018}, } @article{312, abstract = {Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.}, author = {Edelsbrunner, Herbert and Iglesias Ham, Mabel}, issn = {08954801}, journal = {SIAM J Discrete Math}, number = {1}, pages = {750 -- 782}, publisher = {Society for Industrial and Applied Mathematics }, title = {{On the optimality of the FCC lattice for soft sphere packing}}, doi = {10.1137/16M1097201}, volume = {32}, year = {2018}, } @article{409, abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.}, author = {Akopyan, Arseniy}, issn = {1631073X}, journal = {Comptes Rendus Mathematique}, number = {4}, pages = {412--414}, publisher = {Elsevier}, title = {{On the number of non-hexagons in a planar tiling}}, doi = {10.1016/j.crma.2018.03.005}, volume = {356}, year = {2018}, } @article{419, abstract = {Reciprocity is a major factor in human social life and accounts for a large part of cooperation in our communities. Direct reciprocity arises when repeated interactions occur between the same individuals. The framework of iterated games formalizes this phenomenon. Despite being introduced more than five decades ago, the concept keeps offering beautiful surprises. Recent theoretical research driven by new mathematical tools has proposed a remarkable dichotomy among the crucial strategies: successful individuals either act as partners or as rivals. Rivals strive for unilateral advantages by applying selfish or extortionate strategies. Partners aim to share the payoff for mutual cooperation, but are ready to fight back when being exploited. Which of these behaviours evolves depends on the environment. Whereas small population sizes and a limited number of rounds favour rivalry, partner strategies are selected when populations are large and relationships stable. Only partners allow for evolution of cooperation, while the rivals’ attempt to put themselves first leads to defection. Hilbe et al. synthesize recent theoretical work on zero-determinant and ‘rival’ versus ‘partner’ strategies in social dilemmas. They describe the environments under which these contrasting selfish or cooperative strategies emerge in evolution.}, author = {Hilbe, Christian and Chatterjee, Krishnendu and Nowak, Martin}, journal = {Nature Human Behaviour}, pages = {469–477}, publisher = {Nature Publishing Group}, title = {{Partners and rivals in direct reciprocity}}, doi = {10.1038/s41562-018-0320-9}, volume = {2}, year = {2018}, } @inproceedings{78, abstract = {We provide a procedure for detecting the sub-segments of an incrementally observed Boolean signal ω that match a given temporal pattern ϕ. As a pattern specification language, we use timed regular expressions, a formalism well-suited for expressing properties of concurrent asynchronous behaviors embedded in metric time. We construct a timed automaton accepting the timed language denoted by ϕ and modify it slightly for the purpose of matching. We then apply zone-based reachability computation to this automaton while it reads ω, and retrieve all the matching segments from the results. Since the procedure is automaton based, it can be applied to patterns specified by other formalisms such as timed temporal logics reducible to timed automata or directly encoded as timed automata. The procedure has been implemented and its performance on synthetic examples is demonstrated.}, author = {Bakhirkin, Alexey and Ferrere, Thomas and Nickovic, Dejan and Maler, Oded and Asarin, Eugene}, isbn = {978-3-030-00150-6}, location = {Bejing, China}, pages = {215 -- 232}, publisher = {Springer}, title = {{Online timed pattern matching using automata}}, doi = {10.1007/978-3-030-00151-3_13}, volume = {11022}, year = {2018}, } @article{317, abstract = {We replace the established aluminium gates for the formation of quantum dots in silicon with gates made from palladium. We study the morphology of both aluminium and palladium gates with transmission electron microscopy. The native aluminium oxide is found to be formed all around the aluminium gates, which could lead to the formation of unintentional dots. Therefore, we report on a novel fabrication route that replaces aluminium and its native oxide by palladium with atomic-layer-deposition-grown aluminium oxide. Using this approach, we show the formation of low-disorder gate-defined quantum dots, which are reproducibly fabricated. Furthermore, palladium enables us to further shrink the gate design, allowing us to perform electron transport measurements in the few-electron regime in devices comprising only two gate layers, a major technological advancement. It remains to be seen, whether the introduction of palladium gates can improve the excellent results on electron and nuclear spin qubits defined with an aluminium gate stack.}, author = {Brauns, Matthias and Amitonov, Sergey and Spruijtenburg, Paul and Zwanenburg, Floris}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{Palladium gates for reproducible quantum dots in silicon}}, doi = {10.1038/s41598-018-24004-y}, volume = {8}, year = {2018}, } @article{194, abstract = {Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.}, author = {Liutkeviciute, Zita and Gil Mansilla, Esther and Eder, Thomas and Casillas Perez, Barbara E and Giulia Di Giglio, Maria and Muratspahić, Edin and Grebien, Florian and Rattei, Thomas and Muttenthaler, Markus and Cremer, Sylvia and Gruber, Christian}, issn = {08926638}, journal = {The FASEB Journal}, number = {12}, pages = {6808--6821}, publisher = {FASEB}, title = {{Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity}}, doi = {10.1096/fj.201800443}, volume = {32}, year = {2018}, } @article{159, abstract = {L-type Ca2+ channels (LTCCs) play a crucial role in excitation-contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic β-cell function and cardiac activity under optical control.}, author = {Fehrentz, Timm and Huber, Florian and Hartrampf, Nina and Bruegmann, Tobias and Frank, James and Fine, Nicholas and Malan, Daniela and Danzl, Johann G and Tikhonov, Denis and Sumser, Maritn and Sasse, Philipp and Hodson, David and Zhorov, Boris and Klocker, Nikolaj and Trauner, Dirk}, journal = {Nature Chemical Biology}, number = {8}, pages = {764 -- 767}, publisher = {Nature Publishing Group}, title = {{Optical control of L-type Ca2+ channels using a diltiazem photoswitch}}, doi = {10.1038/s41589-018-0090-8}, volume = {14}, year = {2018}, } @inproceedings{79, abstract = {Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.}, author = {Arming, Sebastian and Bartocci, Ezio and Chatterjee, Krishnendu and Katoen, Joost P and Sokolova, Ana}, location = {Beijing, China}, pages = {53--70}, publisher = {Springer}, title = {{Parameter-independent strategies for pMDPs via POMDPs}}, doi = {10.1007/978-3-319-99154-2_4}, volume = {11024}, year = {2018}, } @unpublished{14327, abstract = {A common assumption in causal modeling posits that the data is generated by a set of independent mechanisms, and algorithms should aim to recover this structure. Standard unsupervised learning, however, is often concerned with training a single model to capture the overall distribution or aspects thereof. Inspired by clustering approaches, we consider mixtures of implicit generative models that ``disentangle'' the independent generative mechanisms underlying the data. Relying on an additional set of discriminators, we propose a competitive training procedure in which the models only need to capture the portion of the data distribution from which they can produce realistic samples. As a by-product, each model is simpler and faster to train. We empirically show that our approach splits the training distribution in a sensible way and increases the quality of the generated samples.}, author = {Locatello, Francesco and Vincent, Damien and Tolstikhin, Ilya and Rätsch, Gunnar and Gelly, Sylvain and Schölkopf, Bernhard}, booktitle = {arXiv}, title = {{Competitive training of mixtures of independent deep generative models}}, doi = {10.48550/arXiv.1804.11130}, year = {2018}, } @article{400, abstract = {We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.}, author = {Deuchert, Andreas and Geisinge, Alissa and Hainzl, Christian and Loss, Michael}, journal = {Annales Henri Poincare}, number = {5}, pages = {1507 -- 1527}, publisher = {Springer}, title = {{Persistence of translational symmetry in the BCS model with radial pair interaction}}, doi = {10.1007/s00023-018-0665-7}, volume = {19}, year = {2018}, } @article{406, abstract = {Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie’s Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data. }, author = {Bod’Ová, Katarína and Mitchell, Gabriel and Harpaz, Roy and Schneidman, Elad and Tkacik, Gasper}, journal = {PLoS One}, number = {3}, publisher = {Public Library of Science}, title = {{Probabilistic models of individual and collective animal behavior}}, doi = {10.1371/journal.pone.0193049}, volume = {13}, year = {2018}, } @article{457, abstract = {Temperate bacteriophages integrate in bacterial genomes as prophages and represent an important source of genetic variation for bacterial evolution, frequently transmitting fitness-augmenting genes such as toxins responsible for virulence of major pathogens. However, only a fraction of bacteriophage infections are lysogenic and lead to prophage acquisition, whereas the majority are lytic and kill the infected bacteria. Unless able to discriminate lytic from lysogenic infections, mechanisms of immunity to bacteriophages are expected to act as a double-edged sword and increase the odds of survival at the cost of depriving bacteria of potentially beneficial prophages. We show that although restriction-modification systems as mechanisms of innate immunity prevent both lytic and lysogenic infections indiscriminately in individual bacteria, they increase the number of prophage-acquiring individuals at the population level. We find that this counterintuitive result is a consequence of phage-host population dynamics, in which restriction-modification systems delay infection onset until bacteria reach densities at which the probability of lysogeny increases. These results underscore the importance of population-level dynamics as a key factor modulating costs and benefits of immunity to temperate bacteriophages}, author = {Pleska, Maros and Lang, Moritz and Refardt, Dominik and Levin, Bruce and Guet, Calin C}, journal = {Nature Ecology and Evolution}, number = {2}, pages = {359 -- 366}, publisher = {Springer Nature}, title = {{Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity}}, doi = {10.1038/s41559-017-0424-z}, volume = {2}, year = {2018}, } @article{55, abstract = {Many animals use antimicrobials to prevent or cure disease [1,2]. For example, some animals will ingest plants with medicinal properties, both prophylactically to prevent infection and therapeutically to self-medicate when sick. Antimicrobial substances are also used as topical disinfectants, to prevent infection, protect offspring and to sanitise their surroundings [1,2]. Social insects (ants, bees, wasps and termites) build nests in environments with a high abundance and diversity of pathogenic microorganisms — such as soil and rotting wood — and colonies are often densely crowded, creating conditions that favour disease outbreaks. Consequently, social insects have evolved collective disease defences to protect their colonies from epidemics. These traits can be seen as functionally analogous to the immune system of individual organisms [3,4]. This ‘social immunity’ utilises antimicrobials to prevent and eradicate infections, and to keep the brood and nest clean. However, these antimicrobial compounds can be harmful to the insects themselves, and it is unknown how colonies prevent collateral damage when using them. Here, we demonstrate that antimicrobial acids, produced by workers to disinfect the colony, are harmful to the delicate pupal brood stage, but that the pupae are protected from the acids by the presence of a silk cocoon. Garden ants spray their nests with an antimicrobial poison to sanitize contaminated nestmates and brood. Here, Pull et al show that they also prophylactically sanitise their colonies, and that the silk cocoon serves as a barrier to protect developing pupae, thus preventing collateral damage during nest sanitation.}, author = {Pull, Christopher and Metzler, Sina and Naderlinger, Elisabeth and Cremer, Sylvia}, journal = {Current Biology}, number = {19}, pages = {R1139 -- R1140}, publisher = {Cell Press}, title = {{Protection against the lethal side effects of social immunity in ants}}, doi = {10.1016/j.cub.2018.08.063}, volume = {28}, year = {2018}, } @article{181, abstract = {We consider large random matrices X with centered, independent entries but possibly di erent variances. We compute the normalized trace of f(X)g(X∗) for f, g functions analytic on the spectrum of X. We use these results to compute the long time asymptotics for systems of coupled di erential equations with random coe cients. We show that when the coupling is critical, the norm squared of the solution decays like t−1/2.}, author = {Erdös, László and Krüger, Torben H and Renfrew, David T}, journal = {SIAM Journal on Mathematical Analysis}, number = {3}, pages = {3271 -- 3290}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Power law decay for systems of randomly coupled differential equations}}, doi = {10.1137/17M1143125}, volume = {50}, year = {2018}, } @article{322, abstract = {We construct quantizations of multiplicative hypertoric varieties using an algebra of q-difference operators on affine space, where q is a root of unity in C. The quantization defines a matrix bundle (i.e. Azumaya algebra) over the multiplicative hypertoric variety and admits an explicit finite étale splitting. The global sections of this Azumaya algebra is a hypertoric quantum group, and we prove a localization theorem. We introduce a general framework of Frobenius quantum moment maps and their Hamiltonian reductions; our results shed light on an instance of this framework.}, author = {Ganev, Iordan V}, journal = {Journal of Algebra}, pages = {92 -- 128}, publisher = {World Scientific Publishing}, title = {{Quantizations of multiplicative hypertoric varieties at a root of unity}}, doi = {10.1016/j.jalgebra.2018.03.015}, volume = {506}, year = {2018}, } @misc{9831, abstract = {Implementation of the inference method in Matlab, including three applications of the method: The first one for the model of ant motion, the second one for bacterial chemotaxis, and the third one for the motion of fish.}, author = {Bod’Ová, Katarína and Mitchell, Gabriel and Harpaz, Roy and Schneidman, Elad and Tkačik, Gašper}, publisher = {Public Library of Science}, title = {{Implementation of the inference method in Matlab}}, doi = {10.1371/journal.pone.0193049.s001}, year = {2018}, } @inproceedings{142, abstract = {We address the problem of analyzing the reachable set of a polynomial nonlinear continuous system by over-approximating the flowpipe of its dynamics. The common approach to tackle this problem is to perform a numerical integration over a given time horizon based on Taylor expansion and interval arithmetic. However, this method results to be very conservative when there is a large difference in speed between trajectories as time progresses. In this paper, we propose to use combinations of barrier functions, which we call piecewise barrier tube (PBT), to over-approximate flowpipe. The basic idea of PBT is that for each segment of a flowpipe, a coarse box which is big enough to contain the segment is constructed using sampled simulation and then in the box we compute by linear programming a set of barrier functions (called barrier tube or BT for short) which work together to form a tube surrounding the flowpipe. The benefit of using PBT is that (1) BT is independent of time and hence can avoid being stretched and deformed by time; and (2) a small number of BTs can form a tight over-approximation for the flowpipe, which means that the computation required to decide whether the BTs intersect the unsafe set can be reduced significantly. We implemented a prototype called PBTS in C++. Experiments on some benchmark systems show that our approach is effective.}, author = {Kong, Hui and Bartocci, Ezio and Henzinger, Thomas A}, location = {Oxford, United Kingdom}, pages = {449 -- 467}, publisher = {Springer}, title = {{Reachable set over-approximation for nonlinear systems using piecewise barrier tubes}}, doi = {10.1007/978-3-319-96145-3_24}, volume = {10981}, year = {2018}, } @article{427, abstract = {We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.}, author = {Amaro, Pedro and Loureiro, Ulisses and Safari, Laleh and Fratini, Filippo and Indelicato, Paul and Stöhlker, Thomas and Santos, José}, journal = { Physical Review A - Atomic, Molecular, and Optical Physics}, number = {2}, publisher = {American Physical Society}, title = {{Quantum interference in laser spectroscopy of highly charged lithiumlike ions}}, doi = {10.1103/PhysRevA.97.022510}, volume = {97}, year = {2018}, } @inproceedings{309, abstract = {We present an efficient algorithm for a problem in the interface between clustering and graph embeddings. An embedding ' : G ! M of a graph G into a 2manifold M maps the vertices in V (G) to distinct points and the edges in E(G) to interior-disjoint Jordan arcs between the corresponding vertices. In applications in clustering, cartography, and visualization, nearby vertices and edges are often bundled to a common node or arc, due to data compression or low resolution. This raises the computational problem of deciding whether a given map ' : G ! M comes from an embedding. A map ' : G ! M is a weak embedding if it can be perturbed into an embedding ψ: G ! M with k' "k < " for every " > 0. A polynomial-time algorithm for recognizing weak embeddings was recently found by Fulek and Kyncl [14], which reduces to solving a system of linear equations over Z2. It runs in O(n2!) O(n4:75) time, where 2:373 is the matrix multiplication exponent and n is the number of vertices and edges of G. We improve the running time to O(n log n). Our algorithm is also conceptually simpler than [14]: We perform a sequence of local operations that gradually "untangles" the image '(G) into an embedding (G), or reports that ' is not a weak embedding. It generalizes a recent technique developed for the case that G is a cycle and the embedding is a simple polygon [1], and combines local constraints on the orientation of subgraphs directly, thereby eliminating the need for solving large systems of linear equations.}, author = {Akitaya, Hugo and Fulek, Radoslav and Tóth, Csaba}, location = {New Orleans, LA, USA}, pages = {274 -- 292}, publisher = {ACM}, title = {{Recognizing weak embeddings of graphs}}, doi = {10.1137/1.9781611975031.20}, year = {2018}, } @article{5794, abstract = {We present an approach to interacting quantum many-body systems based on the notion of quantum groups, also known as q-deformed Lie algebras. In particular, we show that, if the symmetry of a free quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle can be described by a deformed group, Gq. Crucially, the single deformation parameter, q, contains all the information about the many-particle interactions in the system. We exemplify our approach by considering a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of q from closed-form solutions in the perturbative regime allows one to predict the behavior of the system for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on quantum groups does not only allow for a drastic simplification of impurity problems, but also provides valuable insights into hidden symmetries of interacting many-particle systems.}, author = {Yakaboylu, Enderalp and Shkolnikov, Mikhail and Lemeshko, Mikhail}, issn = {00319007}, journal = {Physical Review Letters}, number = {25}, publisher = {American Physical Society}, title = {{Quantum groups as hidden symmetries of quantum impurities}}, doi = {10.1103/PhysRevLett.121.255302}, volume = {121}, year = {2018}, } @article{87, abstract = {Using the geodesic distance on the n-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. We find that the expectations are essentially the same as for the Poisson–Delaunay mosaic in n-dimensional Euclidean space. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1, so we also get the expected number of faces of a random inscribed polytope. As proved in Antonelli et al. [Adv. in Appl. Probab. 9–12 (1977–1980)], an orthant section of the n-sphere is isometric to the standard n-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the n-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton}, journal = {Annals of Applied Probability}, number = {5}, pages = {3215 -- 3238}, publisher = {Institute of Mathematical Statistics}, title = {{Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics}}, doi = {10.1214/18-AAP1389}, volume = {28}, year = {2018}, } @article{192, abstract = {The phytohormone auxin is the information carrier in a plethora of developmental and physiological processes in plants(1). It has been firmly established that canonical, nuclear auxin signalling acts through regulation of gene transcription(2). Here, we combined microfluidics, live imaging, genetic engineering and computational modelling to reanalyse the classical case of root growth inhibition(3) by auxin. We show that Arabidopsis roots react to addition and removal of auxin by extremely rapid adaptation of growth rate. This process requires intracellular auxin perception but not transcriptional reprogramming. The formation of the canonical TIR1/AFB-Aux/IAA co-receptor complex is required for the growth regulation, hinting to a novel, non-transcriptional branch of this signalling pathway. Our results challenge the current understanding of root growth regulation by auxin and suggest another, presumably non-transcriptional, signalling output of the canonical auxin pathway.}, author = {Fendrych, Matyas and Akhmanova, Maria and Merrin, Jack and Glanc, Matous and Hagihara, Shinya and Takahashi, Koji and Uchida, Naoyuki and Torii, Keiko U and Friml, Jirí}, journal = {Nature Plants}, number = {7}, pages = {453 -- 459}, publisher = {Springer Nature}, title = {{Rapid and reversible root growth inhibition by TIR1 auxin signalling}}, doi = {10.1038/s41477-018-0190-1}, volume = {4}, year = {2018}, } @article{14, abstract = {The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport inplanta.}, author = {Hille, Sander and Akhmanova, Maria and Glanc, Matous and Johnson, Alexander J and Friml, Jirí}, issn = {1422-0067}, journal = {International Journal of Molecular Sciences}, number = {11}, publisher = {MDPI}, title = {{Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation}}, doi = {10.3390/ijms19113566}, volume = {19}, year = {2018}, } @article{39, abstract = {We study how a block of genome with a large number of weakly selected loci introgresses under directional selection into a genetically homogeneous population. We derive exact expressions for the expected rate of growth of any fragment of the introduced block during the initial phase of introgression, and show that the growth rate of a single-locus variant is largely insensitive to its own additive effect, but depends instead on the combined effect of all loci within a characteristic linkage scale. The expected growth rate of a fragment is highly correlated with its long-term introgression probability in populations of moderate size, and can hence identify variants that are likely to introgress across replicate populations. We clarify how the introgression probability of an individual variant is determined by the interplay between hitchhiking with relatively large fragments during the early phase of introgression and selection on fine-scale variation within these, which at longer times results in differential introgression probabilities for beneficial and deleterious loci within successful fragments. By simulating individuals, we also investigate how introgression probabilities at individual loci depend on the variance of fitness effects, the net fitness of the introduced block, and the size of the recipient population, and how this shapes the net advance under selection. Our work suggests that even highly replicable substitutions may be associated with a range of selective effects, which makes it challenging to fine map the causal loci that underlie polygenic adaptation.}, author = {Sachdeva, Himani and Barton, Nicholas H}, issn = {00166731}, journal = {Genetics}, number = {4}, pages = {1411--1427}, publisher = {Genetics Society of America}, title = {{Replicability of introgression under linked, polygenic selection}}, doi = {10.1534/genetics.118.301429}, volume = {210}, year = {2018}, } @article{420, abstract = {We analyze the theoretical derivation of the beyond-mean-field equation of state for two-dimensional gas of dilute, ultracold alkali-metal atoms in the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensate (BEC) crossover. We show that at zero temperature our theory — considering Gaussian fluctuations on top of the mean-field equation of state — is in very good agreement with experimental data. Subsequently, we investigate the superfluid density at finite temperature and its renormalization due to the proliferation of vortex–antivortex pairs. By doing so, we determine the Berezinskii–Kosterlitz–Thouless (BKT) critical temperature — at which the renormalized superfluid density jumps to zero — as a function of the inter-atomic potential strength. We find that the Nelson–Kosterlitz criterion overestimates the BKT temperature with respect to the renormalization group equations, this effect being particularly relevant in the intermediate regime of the crossover.}, author = {Bighin, Giacomo and Salasnich, Luca}, journal = {International Journal of Modern Physics B}, number = {17}, pages = {1840022}, publisher = {World Scientific Publishing}, title = {{Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover}}, doi = {10.1142/S0217979218400222}, volume = {32}, year = {2018}, } @article{38, abstract = {Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightlylinked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.}, author = {Tavares, Hugo and Whitley, Annabel and Field, David and Bradley, Desmond and Couchman, Matthew and Copsey, Lucy and Elleouet, Joane and Burrus, Monique and Andalo, Christophe and Li, Miaomiao and Li, Qun and Xue, Yongbiao and Rebocho, Alexandra B and Barton, Nicholas H and Coen, Enrico}, issn = {00278424}, journal = {PNAS}, number = {43}, pages = {11006 -- 11011}, publisher = {National Academy of Sciences}, title = {{Selection and gene flow shape genomic islands that control floral guides}}, doi = {10.1073/pnas.1801832115}, volume = {115}, year = {2018}, } @inproceedings{155, abstract = {There is currently significant interest in operating devices in the quantum regime, where their behaviour cannot be explained through classical mechanics. Quantum states, including entangled states, are fragile and easily disturbed by excessive thermal noise. Here we address the question of whether it is possible to create non-reciprocal devices that encourage the flow of thermal noise towards or away from a particular quantum device in a network. Our work makes use of the cascaded systems formalism to answer this question in the affirmative, showing how a three-port device can be used as an effective thermal transistor, and illustrates how this formalism maps onto an experimentally-realisable optomechanical system. Our results pave the way to more resilient quantum devices and to the use of thermal noise as a resource.}, author = {Xuereb, André and Aquilina, Matteo and Barzanjeh, Shabir}, editor = {Andrews, D L and Ostendorf, A and Bain, A J and Nunzi, J M}, location = {Strasbourg, France}, publisher = {SPIE}, title = {{Routing thermal noise through quantum networks}}, doi = {10.1117/12.2309928}, volume = {10672}, year = {2018}, } @article{5767, abstract = {Cuprate superconductors have long been thought of as having strong electronic correlations but negligible spin-orbit coupling. Using spin- and angle-resolved photoemission spectroscopy, we discovered that one of the most studied cuprate superconductors, Bi2212, has a nontrivial spin texture with a spin-momentum locking that circles the Brillouin zone center and a spin-layer locking that allows states of opposite spin to be localized in different parts of the unit cell. Our findings pose challenges for the vast majority of models of cuprates, such as the Hubbard model and its variants, where spin-orbit interaction has been mostly neglected, and open the intriguing question of how the high-temperature superconducting state emerges in the presence of this nontrivial spin texture. }, author = {Gotlieb, Kenneth and Lin, Chiu-Yun and Serbyn, Maksym and Zhang, Wentao and Smallwood, Christopher L. and Jozwiak, Christopher and Eisaki, Hiroshi and Hussain, Zahid and Vishwanath, Ashvin and Lanzara, Alessandra}, issn = {1095-9203}, journal = {Science}, number = {6420}, pages = {1271--1275}, publisher = {American Association for the Advancement of Science}, title = {{Revealing hidden spin-momentum locking in a high-temperature cuprate superconductor}}, doi = {10.1126/science.aao0980}, volume = {362}, year = {2018}, } @article{434, abstract = {In this paper, we present a formal model-driven design approach to establish a safety-assured implementation of multifunction vehicle bus controller (MVBC), which controls the data transmission among the devices of the vehicle. First, the generic models and safety requirements described in International Electrotechnical Commission Standard 61375 are formalized as time automata and timed computation tree logic formulas, respectively. With model checking tool Uppaal, we verify whether or not the constructed timed automata satisfy the formulas and several logic inconsistencies in the original standard are detected and corrected. Then, we apply the code generation tool Times to generate C code from the verified model, which is later synthesized into a real MVBC chip, with some handwriting glue code. Furthermore, the runtime verification tool RMOR is applied on the integrated code, to verify some safety requirements that cannot be formalized on the timed automata. For evaluation, we compare the proposed approach with existing MVBC design methods, such as BeagleBone, Galsblock, and Simulink. Experiments show that more ambiguousness or bugs in the standard are detected during Uppaal verification, and the generated code of Times outperforms the C code generated by others in terms of the synthesized binary code size. The errors in the standard have been confirmed and the resulting MVBC has been deployed in the real train communication network.}, author = {Jiang, Yu and Liu, Han and Song, Huobing and Kong, Hui and Wang, Rui and Guan, Yong and Sha, Lui}, journal = {IEEE Transactions on Intelligent Transportation Systems}, number = {10}, pages = {3320 -- 3333}, publisher = {IEEE}, title = {{Safety-assured model-driven design of the multifunction vehicle bus controller}}, doi = {10.1109/TITS.2017.2778077}, volume = {19}, year = {2018}, } @article{162, abstract = {Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.}, author = {Kaucka, Marketa and Petersen, Julian and Tesarova, Marketa and Szarowska, Bara and Kastriti, Maria and Xie, Meng and Kicheva, Anna and Annusver, Karl and Kasper, Maria and Symmons, Orsolya and Pan, Leslie and Spitz, Francois and Kaiser, Jozef and Hovorakova, Maria and Zikmund, Tomas and Sunadome, Kazunori and Matise, Michael P and Wang, Hui and Marklund, Ulrika and Abdo, Hind and Ernfors, Patrik and Maire, Pascal and Wurmser, Maud and Chagin, Andrei S and Fried, Kaj and Adameyko, Igor}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage}}, doi = {10.7554/eLife.34465}, volume = {7}, year = {2018}, } @inproceedings{302, abstract = {At ITCS 2013, Mahmoody, Moran and Vadhan [MMV13] introduce and construct publicly verifiable proofs of sequential work, which is a protocol for proving that one spent sequential computational work related to some statement. The original motivation for such proofs included non-interactive time-stamping and universally verifiable CPU benchmarks. A more recent application, and our main motivation, are blockchain designs, where proofs of sequential work can be used – in combination with proofs of space – as a more ecological and economical substitute for proofs of work which are currently used to secure Bitcoin and other cryptocurrencies. The construction proposed by [MMV13] is based on a hash function and can be proven secure in the random oracle model, or assuming inherently sequential hash-functions, which is a new standard model assumption introduced in their work. In a proof of sequential work, a prover gets a “statement” χ, a time parameter N and access to a hash-function H, which for the security proof is modelled as a random oracle. Correctness requires that an honest prover can make a verifier accept making only N queries to H, while soundness requires that any prover who makes the verifier accept must have made (almost) N sequential queries to H. Thus a solution constitutes a proof that N time passed since χ was received. Solutions must be publicly verifiable in time at most polylogarithmic in N. The construction of [MMV13] is based on “depth-robust” graphs, and as a consequence has rather poor concrete parameters. But the major drawback is that the prover needs not just N time, but also N space to compute a proof. In this work we propose a proof of sequential work which is much simpler, more efficient and achieves much better concrete bounds. Most importantly, the space required can be as small as log (N) (but we get better soundness using slightly more memory than that). An open problem stated by [MMV13] that our construction does not solve either is achieving a “unique” proof, where even a cheating prover can only generate a single accepting proof. This property would be extremely useful for applications to blockchains.}, author = {Cohen, Bram and Pietrzak, Krzysztof Z}, location = {Tel Aviv, Israel}, pages = {451 -- 467}, publisher = {Springer}, title = {{Simple proofs of sequential work}}, doi = {10.1007/978-3-319-78375-8_15}, volume = {10821}, year = {2018}, } @article{31, abstract = {Correlations in sensory neural networks have both extrinsic and intrinsic origins. Extrinsic or stimulus correlations arise from shared inputs to the network and, thus, depend strongly on the stimulus ensemble. Intrinsic or noise correlations reflect biophysical mechanisms of interactions between neurons, which are expected to be robust to changes in the stimulus ensemble. Despite the importance of this distinction for understanding how sensory networks encode information collectively, no method exists to reliably separate intrinsic interactions from extrinsic correlations in neural activity data, limiting our ability to build predictive models of the network response. In this paper we introduce a general strategy to infer population models of interacting neurons that collectively encode stimulus information. The key to disentangling intrinsic from extrinsic correlations is to infer the couplings between neurons separately from the encoding model and to combine the two using corrections calculated in a mean-field approximation. We demonstrate the effectiveness of this approach in retinal recordings. The same coupling network is inferred from responses to radically different stimulus ensembles, showing that these couplings indeed reflect stimulus-independent interactions between neurons. The inferred model predicts accurately the collective response of retinal ganglion cell populations as a function of the stimulus.}, author = {Ferrari, Ulisse and Deny, Stephane and Chalk, Matthew J and Tkacik, Gasper and Marre, Olivier and Mora, Thierry}, issn = {24700045}, journal = {Physical Review E}, number = {4}, publisher = {American Physical Society}, title = {{Separating intrinsic interactions from extrinsic correlations in a network of sensory neurons}}, doi = {10.1103/PhysRevE.98.042410}, volume = {98}, year = {2018}, }