--- _id: '6195' abstract: - lang: eng text: In the context of robotic manipulation and grasping, the shift from a view that is static (force closure of a single posture) and contact-deprived (only contact for force closure is allowed, everything else is obstacle) towards a view that is dynamic and contact-rich (soft manipulation) has led to an increased interest in soft hands. These hands can easily exploit environmental constraints and object surfaces without risk, and safely interact with humans, but present also some challenges. Designing them is difficult, as well as predicting, modelling, and “programming” their interactions with the objects and the environment. This paper tackles the problem of simulating them in a fast and effective way, leveraging on novel and existing simulation technologies. We present a triple-layered simulation framework where dynamic properties such as stiffness are determined from slow but accurate FEM simulation data once, and then condensed into a lumped parameter model that can be used to fast simulate soft fingers and soft hands. We apply our approach to the simulation of soft pneumatic fingers. article_number: '8461106' article_processing_charge: No author: - first_name: Maria full_name: Pozzi, Maria last_name: Pozzi - first_name: Eder full_name: Miguel Villalba, Eder id: 3FB91342-F248-11E8-B48F-1D18A9856A87 last_name: Miguel Villalba orcid: 0000-0001-5665-0430 - first_name: Raphael full_name: Deimel, Raphael last_name: Deimel - first_name: Monica full_name: Malvezzi, Monica last_name: Malvezzi - first_name: Bernd full_name: Bickel, Bernd id: 49876194-F248-11E8-B48F-1D18A9856A87 last_name: Bickel orcid: 0000-0001-6511-9385 - first_name: Oliver full_name: Brock, Oliver last_name: Brock - first_name: Domenico full_name: Prattichizzo, Domenico last_name: Prattichizzo citation: ama: 'Pozzi M, Miguel Villalba E, Deimel R, et al. Efficient FEM-based simulation of soft robots modeled as kinematic chains. In: IEEE; 2018. doi:10.1109/icra.2018.8461106' apa: 'Pozzi, M., Miguel Villalba, E., Deimel, R., Malvezzi, M., Bickel, B., Brock, O., & Prattichizzo, D. (2018). Efficient FEM-based simulation of soft robots modeled as kinematic chains. Presented at the ICRA: International Conference on Robotics and Automation, Brisbane, Australia: IEEE. https://doi.org/10.1109/icra.2018.8461106' chicago: Pozzi, Maria, Eder Miguel Villalba, Raphael Deimel, Monica Malvezzi, Bernd Bickel, Oliver Brock, and Domenico Prattichizzo. “Efficient FEM-Based Simulation of Soft Robots Modeled as Kinematic Chains.” IEEE, 2018. https://doi.org/10.1109/icra.2018.8461106. ieee: 'M. Pozzi et al., “Efficient FEM-based simulation of soft robots modeled as kinematic chains,” presented at the ICRA: International Conference on Robotics and Automation, Brisbane, Australia, 2018.' ista: 'Pozzi M, Miguel Villalba E, Deimel R, Malvezzi M, Bickel B, Brock O, Prattichizzo D. 2018. Efficient FEM-based simulation of soft robots modeled as kinematic chains. ICRA: International Conference on Robotics and Automation, 8461106.' mla: Pozzi, Maria, et al. Efficient FEM-Based Simulation of Soft Robots Modeled as Kinematic Chains. 8461106, IEEE, 2018, doi:10.1109/icra.2018.8461106. short: M. Pozzi, E. Miguel Villalba, R. Deimel, M. Malvezzi, B. Bickel, O. Brock, D. Prattichizzo, in:, IEEE, 2018. conference: end_date: 2018-05-25 location: Brisbane, Australia name: 'ICRA: International Conference on Robotics and Automation' start_date: 2018-05-21 date_created: 2019-04-04T09:50:38Z date_published: 2018-09-10T00:00:00Z date_updated: 2023-09-19T14:49:03Z day: '10' department: - _id: BeBi doi: 10.1109/icra.2018.8461106 external_id: isi: - '000446394503031' isi: 1 language: - iso: eng month: '09' oa_version: None publication_identifier: isbn: - '9781538630815' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Efficient FEM-based simulation of soft robots modeled as kinematic chains type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6941' abstract: - lang: eng text: "Bitcoin has become the most successful cryptocurrency ever deployed, and its most distinctive feature is that it is decentralized. Its underlying protocol (Nakamoto consensus) achieves this by using proof of work, which has the drawback that it causes the consumption of vast amounts of energy to maintain the ledger. Moreover, Bitcoin mining dynamics have become less distributed over time.\r\n\r\nTowards addressing these issues, we propose SpaceMint, a cryptocurrency based on proofs of space instead of proofs of work. Miners in SpaceMint dedicate disk space rather than computation. We argue that SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most notably, its large energy consumption. SpaceMint also rewards smaller miners fairly according to their contribution to the network, thus incentivizing more distributed participation.\r\n\r\nThis paper adapts proof of space to enable its use in cryptocurrency, studies the attacks that can arise against a Bitcoin-like blockchain that uses proof of space, and proposes a new blockchain format and transaction types to address these attacks. Our prototype shows that initializing 1 TB for mining takes about a day (a one-off setup cost), and miners spend on average just a fraction of a second per block mined. Finally, we provide a game-theoretic analysis modeling SpaceMint as an extensive game (the canonical game-theoretic notion for games that take place over time) and show that this stylized game satisfies a strong equilibrium notion, thereby arguing for SpaceMint ’s stability and consensus." alternative_title: - LNCS article_processing_charge: No author: - first_name: Sunoo full_name: Park, Sunoo last_name: Park - first_name: Albert full_name: Kwon, Albert last_name: Kwon - first_name: Georg full_name: Fuchsbauer, Georg id: 46B4C3EE-F248-11E8-B48F-1D18A9856A87 last_name: Fuchsbauer - first_name: Peter full_name: Gazi, Peter id: 3E0BFE38-F248-11E8-B48F-1D18A9856A87 last_name: Gazi - first_name: Joel F full_name: Alwen, Joel F id: 2A8DFA8C-F248-11E8-B48F-1D18A9856A87 last_name: Alwen - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Park S, Kwon A, Fuchsbauer G, Gazi P, Alwen JF, Pietrzak KZ. SpaceMint: A cryptocurrency based on proofs of space. In: 22nd International Conference on Financial Cryptography and Data Security. Vol 10957. Springer Nature; 2018:480-499. doi:10.1007/978-3-662-58387-6_26' apa: 'Park, S., Kwon, A., Fuchsbauer, G., Gazi, P., Alwen, J. F., & Pietrzak, K. Z. (2018). SpaceMint: A cryptocurrency based on proofs of space. In 22nd International Conference on Financial Cryptography and Data Security (Vol. 10957, pp. 480–499). Nieuwpoort, Curacao: Springer Nature. https://doi.org/10.1007/978-3-662-58387-6_26' chicago: 'Park, Sunoo, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joel F Alwen, and Krzysztof Z Pietrzak. “SpaceMint: A Cryptocurrency Based on Proofs of Space.” In 22nd International Conference on Financial Cryptography and Data Security, 10957:480–99. Springer Nature, 2018. https://doi.org/10.1007/978-3-662-58387-6_26.' ieee: 'S. Park, A. Kwon, G. Fuchsbauer, P. Gazi, J. F. Alwen, and K. Z. Pietrzak, “SpaceMint: A cryptocurrency based on proofs of space,” in 22nd International Conference on Financial Cryptography and Data Security, Nieuwpoort, Curacao, 2018, vol. 10957, pp. 480–499.' ista: 'Park S, Kwon A, Fuchsbauer G, Gazi P, Alwen JF, Pietrzak KZ. 2018. SpaceMint: A cryptocurrency based on proofs of space. 22nd International Conference on Financial Cryptography and Data Security. FC: Financial Cryptography and Data Security, LNCS, vol. 10957, 480–499.' mla: 'Park, Sunoo, et al. “SpaceMint: A Cryptocurrency Based on Proofs of Space.” 22nd International Conference on Financial Cryptography and Data Security, vol. 10957, Springer Nature, 2018, pp. 480–99, doi:10.1007/978-3-662-58387-6_26.' short: S. Park, A. Kwon, G. Fuchsbauer, P. Gazi, J.F. Alwen, K.Z. Pietrzak, in:, 22nd International Conference on Financial Cryptography and Data Security, Springer Nature, 2018, pp. 480–499. conference: end_date: 2018-03-02 location: Nieuwpoort, Curacao name: 'FC: Financial Cryptography and Data Security' start_date: 2018-02-26 date_created: 2019-10-14T06:35:38Z date_published: 2018-12-07T00:00:00Z date_updated: 2023-09-19T15:02:13Z day: '07' department: - _id: KrPi doi: 10.1007/978-3-662-58387-6_26 ec_funded: 1 external_id: isi: - '000540656400026' intvolume: ' 10957' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2015/528 month: '12' oa: 1 oa_version: Submitted Version page: 480-499 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 22nd International Conference on Financial Cryptography and Data Security publication_identifier: eissn: - 1611-3349 isbn: - '9783662583869' - '9783662583876' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'SpaceMint: A cryptocurrency based on proofs of space' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10957 year: '2018' ... --- _id: '6497' abstract: - lang: eng text: T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations. article_processing_charge: No author: - first_name: Federica full_name: Moalli, Federica last_name: Moalli - first_name: Xenia full_name: Ficht, Xenia last_name: Ficht - first_name: Philipp full_name: Germann, Philipp last_name: Germann - first_name: Mykhailo full_name: Vladymyrov, Mykhailo last_name: Vladymyrov - first_name: Bettina full_name: Stolp, Bettina last_name: Stolp - first_name: Ingrid full_name: de Vries, Ingrid id: 4C7D837E-F248-11E8-B48F-1D18A9856A87 last_name: de Vries - first_name: Ruth full_name: Lyck, Ruth last_name: Lyck - first_name: Jasmin full_name: Balmer, Jasmin last_name: Balmer - first_name: Amleto full_name: Fiocchi, Amleto last_name: Fiocchi - first_name: Mario full_name: Kreutzfeldt, Mario last_name: Kreutzfeldt - first_name: Doron full_name: Merkler, Doron last_name: Merkler - first_name: Matteo full_name: Iannacone, Matteo last_name: Iannacone - first_name: Akitaka full_name: Ariga, Akitaka last_name: Ariga - first_name: Michael H. full_name: Stoffel, Michael H. last_name: Stoffel - first_name: James full_name: Sharpe, James last_name: Sharpe - first_name: Martin full_name: Bähler, Martin last_name: Bähler - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Alba full_name: Diz-Muñoz, Alba last_name: Diz-Muñoz - first_name: Jens V. full_name: Stein, Jens V. last_name: Stein citation: ama: Moalli F, Ficht X, Germann P, et al. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells. The Journal of Experimental Medicine. 2018;2015(7):1869–1890. doi:10.1084/jem.20170896 apa: Moalli, F., Ficht, X., Germann, P., Vladymyrov, M., Stolp, B., de Vries, I., … Stein, J. V. (2018). The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells. The Journal of Experimental Medicine. Rockefeller University Press. https://doi.org/10.1084/jem.20170896 chicago: Moalli, Federica, Xenia Ficht, Philipp Germann, Mykhailo Vladymyrov, Bettina Stolp, Ingrid de Vries, Ruth Lyck, et al. “The Rho Regulator Myosin IXb Enables Nonlymphoid Tissue Seeding of Protective CD8+T Cells.” The Journal of Experimental Medicine. Rockefeller University Press, 2018. https://doi.org/10.1084/jem.20170896. ieee: F. Moalli et al., “The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells,” The Journal of Experimental Medicine, vol. 2015, no. 7. Rockefeller University Press, pp. 1869–1890, 2018. ista: Moalli F, Ficht X, Germann P, Vladymyrov M, Stolp B, de Vries I, Lyck R, Balmer J, Fiocchi A, Kreutzfeldt M, Merkler D, Iannacone M, Ariga A, Stoffel MH, Sharpe J, Bähler M, Sixt MK, Diz-Muñoz A, Stein JV. 2018. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells. The Journal of Experimental Medicine. 2015(7), 1869–1890. mla: Moalli, Federica, et al. “The Rho Regulator Myosin IXb Enables Nonlymphoid Tissue Seeding of Protective CD8+T Cells.” The Journal of Experimental Medicine, vol. 2015, no. 7, Rockefeller University Press, 2018, pp. 1869–1890, doi:10.1084/jem.20170896. short: F. Moalli, X. Ficht, P. Germann, M. Vladymyrov, B. Stolp, I. de Vries, R. Lyck, J. Balmer, A. Fiocchi, M. Kreutzfeldt, D. Merkler, M. Iannacone, A. Ariga, M.H. Stoffel, J. Sharpe, M. Bähler, M.K. Sixt, A. Diz-Muñoz, J.V. Stein, The Journal of Experimental Medicine 2015 (2018) 1869–1890. date_created: 2019-05-28T12:36:47Z date_published: 2018-06-06T00:00:00Z date_updated: 2023-09-19T14:52:08Z day: '06' ddc: - '570' department: - _id: MiSi doi: 10.1084/jem.20170896 external_id: isi: - '000440822900011' file: - access_level: open_access checksum: 86ae5331f9bfced9a6358a790a04bef4 content_type: application/pdf creator: kschuh date_created: 2019-05-28T12:40:05Z date_updated: 2020-07-14T12:47:32Z file_id: '6498' file_name: 2018_rupress_Moalli.pdf file_size: 3841660 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 2015' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '06' oa: 1 oa_version: Published Version page: 1869–1890 publication: The Journal of Experimental Medicine publication_identifier: eissn: - 1540-9538 issn: - 0022-1007 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2015 year: '2018' ... --- _id: '6499' abstract: - lang: eng text: Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge. article_number: e45836 article_processing_charge: No author: - first_name: Sven M full_name: Truckenbrodt, Sven M id: 45812BD4-F248-11E8-B48F-1D18A9856A87 last_name: Truckenbrodt - first_name: Manuel full_name: Maidorn, Manuel last_name: Maidorn - first_name: Dagmar full_name: Crzan, Dagmar last_name: Crzan - first_name: Hanna full_name: Wildhagen, Hanna last_name: Wildhagen - first_name: Selda full_name: Kabatas, Selda last_name: Kabatas - first_name: Silvio O full_name: Rizzoli, Silvio O last_name: Rizzoli citation: ama: Truckenbrodt SM, Maidorn M, Crzan D, Wildhagen H, Kabatas S, Rizzoli SO. X10 expansion microscopy enables 25‐nm resolution on conventional microscopes. EMBO reports. 2018;19(9). doi:10.15252/embr.201845836 apa: Truckenbrodt, S. M., Maidorn, M., Crzan, D., Wildhagen, H., Kabatas, S., & Rizzoli, S. O. (2018). X10 expansion microscopy enables 25‐nm resolution on conventional microscopes. EMBO Reports. EMBO. https://doi.org/10.15252/embr.201845836 chicago: Truckenbrodt, Sven M, Manuel Maidorn, Dagmar Crzan, Hanna Wildhagen, Selda Kabatas, and Silvio O Rizzoli. “X10 Expansion Microscopy Enables 25‐nm Resolution on Conventional Microscopes.” EMBO Reports. EMBO, 2018. https://doi.org/10.15252/embr.201845836. ieee: S. M. Truckenbrodt, M. Maidorn, D. Crzan, H. Wildhagen, S. Kabatas, and S. O. Rizzoli, “X10 expansion microscopy enables 25‐nm resolution on conventional microscopes,” EMBO reports, vol. 19, no. 9. EMBO, 2018. ista: Truckenbrodt SM, Maidorn M, Crzan D, Wildhagen H, Kabatas S, Rizzoli SO. 2018. X10 expansion microscopy enables 25‐nm resolution on conventional microscopes. EMBO reports. 19(9), e45836. mla: Truckenbrodt, Sven M., et al. “X10 Expansion Microscopy Enables 25‐nm Resolution on Conventional Microscopes.” EMBO Reports, vol. 19, no. 9, e45836, EMBO, 2018, doi:10.15252/embr.201845836. short: S.M. Truckenbrodt, M. Maidorn, D. Crzan, H. Wildhagen, S. Kabatas, S.O. Rizzoli, EMBO Reports 19 (2018). date_created: 2019-05-28T13:16:08Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-19T14:52:32Z day: '01' ddc: - '580' department: - _id: JoDa doi: 10.15252/embr.201845836 external_id: isi: - '000443682200009' file: - access_level: open_access checksum: 6ec90abc637f09cca3a7b6424d7e7a26 content_type: application/pdf creator: kschuh date_created: 2019-05-28T13:17:19Z date_updated: 2020-07-14T12:47:32Z file_id: '6500' file_name: 2018_embo_Truckenbrodt.pdf file_size: 2005572 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: EMBO reports publication_identifier: eissn: - 1469-3178 issn: - 1469-221X publication_status: published publisher: EMBO quality_controlled: '1' scopus_import: '1' status: public title: X10 expansion microscopy enables 25‐nm resolution on conventional microscopes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 19 year: '2018' ... --- _id: '7123' abstract: - lang: eng text: "Population protocols are a popular model of distributed computing, in which n agents with limited local state interact randomly, and cooperate to collectively compute global predicates. Inspired by recent developments in DNA programming, an extensive series of papers, across different communities, has examined the computability and complexity characteristics of this model. Majority, or consensus, is a central task in this model, in which agents need to collectively reach a decision as to which one of two states A or B had a higher initial count. Two metrics are important: the time that a protocol requires to stabilize to an output decision, and the state space size that each agent requires to do so. It is known that majority requires Ω(log log n) states per agent to allow for fast (poly-logarithmic time) stabilization, and that O(log2 n) states are sufficient. Thus, there is an exponential gap between the space upper and lower bounds for this problem. This paper addresses this question.\r\n\r\nOn the negative side, we provide a new lower bound of Ω(log n) states for any protocol which stabilizes in O(n1–c) expected time, for any constant c > 0. This result is conditional on monotonicity and output assumptions, satisfied by all known protocols. Technically, it represents a departure from previous lower bounds, in that it does not rely on the existence of dense configurations. Instead, we introduce a new generalized surgery technique to prove the existence of incorrect executions for any algorithm which would contradict the lower bound. Subsequently, our lower bound also applies to general initial configurations, including ones with a leader. On the positive side, we give a new algorithm for majority which uses O(log n) states, and stabilizes in O(log2 n) expected time. Central to the algorithm is a new leaderless phase clock technique, which allows agents to synchronize in phases of Θ(n log n) consecutive interactions using O(log n) states per agent, exploiting a new connection between population protocols and power-of-two-choices load balancing mechanisms. We also employ our phase clock to build a leader election algorithm with a state space of size O(log n), which stabilizes in O(log2 n) expected time." article_processing_charge: No author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: James full_name: Aspnes, James last_name: Aspnes - first_name: Rati full_name: Gelashvili, Rati last_name: Gelashvili citation: ama: 'Alistarh D-A, Aspnes J, Gelashvili R. Space-optimal majority in population protocols. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM; 2018:2221-2239. doi:10.1137/1.9781611975031.144' apa: 'Alistarh, D.-A., Aspnes, J., & Gelashvili, R. (2018). Space-optimal majority in population protocols. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 2221–2239). New Orleans, LA, United States: ACM. https://doi.org/10.1137/1.9781611975031.144' chicago: Alistarh, Dan-Adrian, James Aspnes, and Rati Gelashvili. “Space-Optimal Majority in Population Protocols.” In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, 2221–39. ACM, 2018. https://doi.org/10.1137/1.9781611975031.144. ieee: D.-A. Alistarh, J. Aspnes, and R. Gelashvili, “Space-optimal majority in population protocols,” in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, United States, 2018, pp. 2221–2239. ista: 'Alistarh D-A, Aspnes J, Gelashvili R. 2018. Space-optimal majority in population protocols. Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 2221–2239.' mla: Alistarh, Dan-Adrian, et al. “Space-Optimal Majority in Population Protocols.” Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, 2018, pp. 2221–39, doi:10.1137/1.9781611975031.144. short: D.-A. Alistarh, J. Aspnes, R. Gelashvili, in:, Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, 2018, pp. 2221–2239. conference: end_date: 2018-01-10 location: New Orleans, LA, United States name: 'SODA: Symposium on Discrete Algorithms' start_date: 2018-01-07 date_created: 2019-11-26T15:10:55Z date_published: 2018-01-30T00:00:00Z date_updated: 2023-09-19T15:03:16Z day: '30' department: - _id: DaAl doi: 10.1137/1.9781611975031.144 external_id: arxiv: - '1704.04947' isi: - '000483921200145' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.04947 month: '01' oa: 1 oa_version: Preprint page: 2221-2239 publication: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - '9781611975031' publication_status: published publisher: ACM quality_controlled: '1' status: public title: Space-optimal majority in population protocols type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ...