--- _id: '562' abstract: - lang: eng text: Primary neuronal cell culture preparations are widely used to investigate synaptic functions. This chapter describes a detailed protocol for the preparation of a neuronal cell culture in which giant calyx-type synaptic terminals are formed. This chapter also presents detailed protocols for utilizing the main technical advantages provided by such a preparation, namely, labeling and imaging of synaptic organelles and electrophysiological recordings directly from presynaptic terminals. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Dimitar full_name: Dimitrov, Dimitar last_name: Dimitrov - first_name: Laurent full_name: Guillaud, Laurent last_name: Guillaud - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: 'Dimitrov D, Guillaud L, Eguchi K, Takahashi T. Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses. In: Skaper SD, ed. Neurotrophic Factors. Vol 1727. Springer; 2018:201-215. doi:10.1007/978-1-4939-7571-6_15' apa: Dimitrov, D., Guillaud, L., Eguchi, K., & Takahashi, T. (2018). Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses. In S. D. Skaper (Ed.), Neurotrophic Factors (Vol. 1727, pp. 201–215). Springer. https://doi.org/10.1007/978-1-4939-7571-6_15 chicago: Dimitrov, Dimitar, Laurent Guillaud, Kohgaku Eguchi, and Tomoyuki Takahashi. “Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses.” In Neurotrophic Factors, edited by Stephen D. Skaper, 1727:201–15. Springer, 2018. https://doi.org/10.1007/978-1-4939-7571-6_15. ieee: D. Dimitrov, L. Guillaud, K. Eguchi, and T. Takahashi, “Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses,” in Neurotrophic Factors, vol. 1727, S. D. Skaper, Ed. Springer, 2018, pp. 201–215. ista: 'Dimitrov D, Guillaud L, Eguchi K, Takahashi T. 2018.Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses. In: Neurotrophic Factors. Methods in Molecular Biology, vol. 1727, 201–215.' mla: Dimitrov, Dimitar, et al. “Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses.” Neurotrophic Factors, edited by Stephen D. Skaper, vol. 1727, Springer, 2018, pp. 201–15, doi:10.1007/978-1-4939-7571-6_15. short: D. Dimitrov, L. Guillaud, K. Eguchi, T. Takahashi, in:, S.D. Skaper (Ed.), Neurotrophic Factors, Springer, 2018, pp. 201–215. date_created: 2018-12-11T11:47:11Z date_published: 2018-01-01T00:00:00Z date_updated: 2021-01-12T08:03:05Z day: '01' ddc: - '570' department: - _id: RySh doi: 10.1007/978-1-4939-7571-6_15 editor: - first_name: Stephen D. full_name: Skaper, Stephen D. last_name: Skaper external_id: pmid: - '29222783' file: - access_level: open_access checksum: 8aa174ca65a56fbb19e9f88cff3ac3fd content_type: application/pdf creator: dernst date_created: 2019-11-19T07:47:43Z date_updated: 2020-07-14T12:47:09Z file_id: '7046' file_name: 2018_NeurotrophicFactors_Dimitrov.pdf file_size: 787407 relation: main_file file_date_updated: 2020-07-14T12:47:09Z has_accepted_license: '1' intvolume: ' 1727' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 201 - 215 pmid: 1 publication: Neurotrophic Factors publication_status: published publisher: Springer publist_id: '7252' quality_controlled: '1' scopus_import: 1 status: public title: Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1727 year: '2018' ... --- _id: '59' abstract: - lang: eng text: Graph-based games are an important tool in computer science. They have applications in synthesis, verification, refinement, and far beyond. We review graphbased games with objectives on infinite plays. We give definitions and algorithms to solve the games and to give a winning strategy. The objectives we consider are mostly Boolean, but we also look at quantitative graph-based games and their objectives. Synthesis aims to turn temporal logic specifications into correct reactive systems. We explain the reduction of synthesis to graph-based games (or equivalently tree automata) using synthesis of LTL specifications as an example. We treat the classical approach that uses determinization of parity automata and more modern approaches. author: - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Barbara full_name: Jobstmann, Barbara last_name: Jobstmann citation: ama: 'Bloem R, Chatterjee K, Jobstmann B. Graph games and reactive synthesis. In: Henzinger TA, Clarke EM, Veith H, Bloem R, eds. Handbook of Model Checking. 1st ed. Springer; 2018:921-962. doi:10.1007/978-3-319-10575-8_27' apa: Bloem, R., Chatterjee, K., & Jobstmann, B. (2018). Graph games and reactive synthesis. In T. A. Henzinger, E. M. Clarke, H. Veith, & R. Bloem (Eds.), Handbook of Model Checking (1st ed., pp. 921–962). Springer. https://doi.org/10.1007/978-3-319-10575-8_27 chicago: Bloem, Roderick, Krishnendu Chatterjee, and Barbara Jobstmann. “Graph Games and Reactive Synthesis.” In Handbook of Model Checking, edited by Thomas A Henzinger, Edmund M. Clarke, Helmut Veith, and Roderick Bloem, 1st ed., 921–62. Springer, 2018. https://doi.org/10.1007/978-3-319-10575-8_27. ieee: R. Bloem, K. Chatterjee, and B. Jobstmann, “Graph games and reactive synthesis,” in Handbook of Model Checking, 1st ed., T. A. Henzinger, E. M. Clarke, H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 921–962. ista: 'Bloem R, Chatterjee K, Jobstmann B. 2018.Graph games and reactive synthesis. In: Handbook of Model Checking. , 921–962.' mla: Bloem, Roderick, et al. “Graph Games and Reactive Synthesis.” Handbook of Model Checking, edited by Thomas A Henzinger et al., 1st ed., Springer, 2018, pp. 921–62, doi:10.1007/978-3-319-10575-8_27. short: R. Bloem, K. Chatterjee, B. Jobstmann, in:, T.A. Henzinger, E.M. Clarke, H. Veith, R. Bloem (Eds.), Handbook of Model Checking, 1st ed., Springer, 2018, pp. 921–962. date_created: 2018-12-11T11:44:24Z date_published: 2018-05-19T00:00:00Z date_updated: 2021-01-12T08:05:10Z day: '19' department: - _id: KrCh doi: 10.1007/978-3-319-10575-8_27 edition: '1' editor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Edmund M. full_name: Clarke, Edmund M. last_name: Clarke - first_name: Helmut full_name: Veith, Helmut last_name: Veith - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem language: - iso: eng month: '05' oa_version: None page: 921 - 962 publication: Handbook of Model Checking publication_identifier: isbn: - 978-3-319-10574-1 publication_status: published publisher: Springer publist_id: '7995' quality_controlled: '1' scopus_import: 1 status: public title: Graph games and reactive synthesis type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '60' abstract: - lang: eng text: Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. This chapter is an introduction and short survey of model checking. The chapter aims to motivate and link the individual chapters of the handbook, and to provide context for readers who are not familiar with model checking. author: - first_name: Edmund full_name: Clarke, Edmund last_name: Clarke - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Helmut full_name: Veith, Helmut last_name: Veith citation: ama: 'Clarke E, Henzinger TA, Veith H. Introduction to model checking. In: Henzinger TA, ed. Handbook of Model Checking. Handbook of Model Checking. Springer; 2018:1-26. doi:10.1007/978-3-319-10575-8_1' apa: Clarke, E., Henzinger, T. A., & Veith, H. (2018). Introduction to model checking. In T. A. Henzinger (Ed.), Handbook of Model Checking (pp. 1–26). Springer. https://doi.org/10.1007/978-3-319-10575-8_1 chicago: Clarke, Edmund, Thomas A Henzinger, and Helmut Veith. “Introduction to Model Checking.” In Handbook of Model Checking, edited by Thomas A Henzinger, 1–26. Handbook of Model Checking. Springer, 2018. https://doi.org/10.1007/978-3-319-10575-8_1. ieee: E. Clarke, T. A. Henzinger, and H. Veith, “Introduction to model checking,” in Handbook of Model Checking, T. A. Henzinger, Ed. Springer, 2018, pp. 1–26. ista: 'Clarke E, Henzinger TA, Veith H. 2018.Introduction to model checking. In: Handbook of Model Checking. , 1–26.' mla: Clarke, Edmund, et al. “Introduction to Model Checking.” Handbook of Model Checking, edited by Thomas A Henzinger, Springer, 2018, pp. 1–26, doi:10.1007/978-3-319-10575-8_1. short: E. Clarke, T.A. Henzinger, H. Veith, in:, T.A. Henzinger (Ed.), Handbook of Model Checking, Springer, 2018, pp. 1–26. date_created: 2018-12-11T11:44:25Z date_published: 2018-05-19T00:00:00Z date_updated: 2021-01-12T08:05:35Z day: '19' department: - _id: ToHe doi: 10.1007/978-3-319-10575-8_1 editor: - first_name: Thomas A full_name: Henzinger, Thomas A last_name: Henzinger language: - iso: eng month: '05' oa_version: None page: 1 - 26 publication: Handbook of Model Checking publication_status: published publisher: Springer publist_id: '7994' quality_controlled: '1' scopus_import: 1 series_title: Handbook of Model Checking status: public title: Introduction to model checking type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '61' abstract: - lang: eng text: 'We prove that there is no strongly regular graph (SRG) with parameters (460; 153; 32; 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs. ' article_processing_charge: No author: - first_name: Andriy full_name: Bondarenko, Andriy last_name: Bondarenko - first_name: Anton full_name: Mellit, Anton id: 388D3134-F248-11E8-B48F-1D18A9856A87 last_name: Mellit - first_name: Andriy full_name: Prymak, Andriy last_name: Prymak - first_name: Danylo full_name: Radchenko, Danylo last_name: Radchenko - first_name: Maryna full_name: Viazovska, Maryna last_name: Viazovska citation: ama: 'Bondarenko A, Mellit A, Prymak A, Radchenko D, Viazovska M. There is no strongly regular graph with parameters (460; 153; 32; 60). In: Contemporary Computational Mathematics. Springer; 2018:131-134. doi:10.1007/978-3-319-72456-0_7' apa: Bondarenko, A., Mellit, A., Prymak, A., Radchenko, D., & Viazovska, M. (2018). There is no strongly regular graph with parameters (460; 153; 32; 60). In Contemporary Computational Mathematics (pp. 131–134). Springer. https://doi.org/10.1007/978-3-319-72456-0_7 chicago: Bondarenko, Andriy, Anton Mellit, Andriy Prymak, Danylo Radchenko, and Maryna Viazovska. “There Is No Strongly Regular Graph with Parameters (460; 153; 32; 60).” In Contemporary Computational Mathematics, 131–34. Springer, 2018. https://doi.org/10.1007/978-3-319-72456-0_7. ieee: A. Bondarenko, A. Mellit, A. Prymak, D. Radchenko, and M. Viazovska, “There is no strongly regular graph with parameters (460; 153; 32; 60),” in Contemporary Computational Mathematics, Springer, 2018, pp. 131–134. ista: 'Bondarenko A, Mellit A, Prymak A, Radchenko D, Viazovska M. 2018.There is no strongly regular graph with parameters (460; 153; 32; 60). In: Contemporary Computational Mathematics. , 131–134.' mla: Bondarenko, Andriy, et al. “There Is No Strongly Regular Graph with Parameters (460; 153; 32; 60).” Contemporary Computational Mathematics, Springer, 2018, pp. 131–34, doi:10.1007/978-3-319-72456-0_7. short: A. Bondarenko, A. Mellit, A. Prymak, D. Radchenko, M. Viazovska, in:, Contemporary Computational Mathematics, Springer, 2018, pp. 131–134. date_created: 2018-12-11T11:44:25Z date_published: 2018-05-23T00:00:00Z date_updated: 2021-01-12T08:06:06Z day: '23' department: - _id: TaHa doi: 10.1007/978-3-319-72456-0_7 extern: '1' external_id: arxiv: - '1509.06286' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1509.06286 month: '05' oa: 1 oa_version: Preprint page: 131 - 134 publication: Contemporary Computational Mathematics publication_status: published publisher: Springer publist_id: '7993' quality_controlled: '1' status: public title: There is no strongly regular graph with parameters (460; 153; 32; 60) type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '6354' abstract: - lang: eng text: Blood platelets are critical for hemostasis and thrombosis, but also play diverse roles during immune responses. We have recently reported that platelets migrate at sites of infection in vitro and in vivo. Importantly, platelets use their ability to migrate to collect and bundle fibrin (ogen)-bound bacteria accomplishing efficient intravascular bacterial trapping. Here, we describe a method that allows analyzing platelet migration in vitro, focusing on their ability to collect bacteria and trap bacteria under flow. acknowledgement: ' FöFoLe project 947 (F.G.), the Friedrich-Baur-Stiftung project 41/16 (F.G.)' article_number: e3018 author: - first_name: Shuxia full_name: Fan, Shuxia last_name: Fan - first_name: Michael full_name: Lorenz, Michael last_name: Lorenz - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 citation: ama: Fan S, Lorenz M, Massberg S, Gärtner FR. Platelet migration and bacterial trapping assay under flow. Bio-Protocol. 2018;8(18). doi:10.21769/bioprotoc.3018 apa: Fan, S., Lorenz, M., Massberg, S., & Gärtner, F. R. (2018). Platelet migration and bacterial trapping assay under flow. Bio-Protocol. Bio-Protocol. https://doi.org/10.21769/bioprotoc.3018 chicago: Fan, Shuxia, Michael Lorenz, Steffen Massberg, and Florian R Gärtner. “Platelet Migration and Bacterial Trapping Assay under Flow.” Bio-Protocol. Bio-Protocol, 2018. https://doi.org/10.21769/bioprotoc.3018. ieee: S. Fan, M. Lorenz, S. Massberg, and F. R. Gärtner, “Platelet migration and bacterial trapping assay under flow,” Bio-Protocol, vol. 8, no. 18. Bio-Protocol, 2018. ista: Fan S, Lorenz M, Massberg S, Gärtner FR. 2018. Platelet migration and bacterial trapping assay under flow. Bio-Protocol. 8(18), e3018. mla: Fan, Shuxia, et al. “Platelet Migration and Bacterial Trapping Assay under Flow.” Bio-Protocol, vol. 8, no. 18, e3018, Bio-Protocol, 2018, doi:10.21769/bioprotoc.3018. short: S. Fan, M. Lorenz, S. Massberg, F.R. Gärtner, Bio-Protocol 8 (2018). date_created: 2019-04-29T09:40:33Z date_published: 2018-09-20T00:00:00Z date_updated: 2021-01-12T08:07:12Z day: '20' ddc: - '570' department: - _id: MiSi doi: 10.21769/bioprotoc.3018 ec_funded: 1 file: - access_level: open_access checksum: d4588377e789da7f360b553ae02c5119 content_type: application/pdf creator: dernst date_created: 2019-04-30T08:04:33Z date_updated: 2020-07-14T12:47:28Z file_id: '6360' file_name: 2018_BioProtocol_Fan.pdf file_size: 2928337 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 8' issue: '18' keyword: - Platelets - Cell migration - Bacteria - Shear flow - Fibrinogen - E. coli language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Bio-Protocol publication_identifier: issn: - 2331-8325 publication_status: published publisher: Bio-Protocol quality_controlled: '1' status: public title: Platelet migration and bacterial trapping assay under flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2018' ...