--- _id: '15072' abstract: - lang: eng text: The interaction among fundamental particles in nature leads to many interesting effects in quantum statistical mechanics; examples include superconductivity for charged systems and superfluidity in cold gases. It is a huge challenge for mathematical physics to understand the collective behavior of systems containing a large number of particles, emerging from known microscopic interactions. In this workshop we brought together researchers working on different aspects of many-body quantum mechanics to discuss recent developments, exchange ideas and propose new challenges and research directions. article_processing_charge: No article_type: original author: - first_name: Christian full_name: Hainzl, Christian last_name: Hainzl - first_name: Benjamin full_name: Schlein, Benjamin last_name: Schlein - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 - first_name: Simone full_name: Warzel, Simone last_name: Warzel citation: ama: Hainzl C, Schlein B, Seiringer R, Warzel S. Many-body quantum systems. Oberwolfach Reports. 2020;16(3):2541-2603. doi:10.4171/owr/2019/41 apa: Hainzl, C., Schlein, B., Seiringer, R., & Warzel, S. (2020). Many-body quantum systems. Oberwolfach Reports. European Mathematical Society. https://doi.org/10.4171/owr/2019/41 chicago: Hainzl, Christian, Benjamin Schlein, Robert Seiringer, and Simone Warzel. “Many-Body Quantum Systems.” Oberwolfach Reports. European Mathematical Society, 2020. https://doi.org/10.4171/owr/2019/41. ieee: C. Hainzl, B. Schlein, R. Seiringer, and S. Warzel, “Many-body quantum systems,” Oberwolfach Reports, vol. 16, no. 3. European Mathematical Society, pp. 2541–2603, 2020. ista: Hainzl C, Schlein B, Seiringer R, Warzel S. 2020. Many-body quantum systems. Oberwolfach Reports. 16(3), 2541–2603. mla: Hainzl, Christian, et al. “Many-Body Quantum Systems.” Oberwolfach Reports, vol. 16, no. 3, European Mathematical Society, 2020, pp. 2541–603, doi:10.4171/owr/2019/41. short: C. Hainzl, B. Schlein, R. Seiringer, S. Warzel, Oberwolfach Reports 16 (2020) 2541–2603. date_created: 2024-03-04T11:46:12Z date_published: 2020-09-10T00:00:00Z date_updated: 2024-03-12T12:02:00Z day: '10' department: - _id: RoSe doi: 10.4171/owr/2019/41 intvolume: ' 16' issue: '3' language: - iso: eng month: '09' oa_version: None page: 2541-2603 publication: Oberwolfach Reports publication_identifier: issn: - 1660-8933 publication_status: published publisher: European Mathematical Society quality_controlled: '1' status: public title: Many-body quantum systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2020' ... --- _id: '15071' abstract: - lang: eng text: "A mesophilic methanogenic culture, designated JL01, was isolated from Holocene permafrost in the Russian Arctic [1]. After long-term extensive cultivation at 15°C it turned out to be a tied binary culture of archaeal (JL01) and bacterial (Sphaerochaeta associata GLS2) strains.\r\nStrain JL01 was a strict anaerobe and grew on methanol, acetate and methylamines as energy and carbon sources. Cells were irregular coccoid, non-motile, non-spore-forming, and Gram-stainpositive. Optimum conditions for growth were 24-28 oC, pH 6.8–7.3 and 0.075-0.1 M NaCl.\r\nPhylogenetic tree reconstructions based on 16S rRNA and concatenated alignment of broadly\r\nconserved protein-coding genes revealed its close relation to Methanosarcina mazei S-6\r\nT (similarity 99.5%). The comparison of whole genomic sequences (ANI) of the isolate and the type strain of M.mazei was 98.5%, which is higher than the values recommended for new species. Thus strain JL01 (=VKM B-2370=JCM 31898) represents the first M. mazei isolated from permanently subzero Arcticsediments. The long-term co-cultivation of JL01 with S. associata GLS2T showed the methane production without any additional carbon and energy sources. Genome analysis of S. associata GLS2T revealed putative genes involved in methanochondroithin catabolism." acknowledgement: "The work was supported by of Russian Foundation of Basic Research: grant № 19-04-00831 for Viktoria Shcherbakova and Olga Troshina, grant № 18-34-00334 for Viktoriia Oshurkova and Vladimir Trubitsyn. \r\nWe thank Dr Natalia Suzina (IBPM RAS, Federal Research Center Pushchino Center for\r\nBiological Research RAS) for the help with the microscopic studies, respectively; Dr. Margarita Meyer (Division of Genetics, Department of Medicine, BWH and HMS, USA) and Dr Fedor Kondrashov (IST, Austria) for their help in obtaining the genomic sequence of strain JL01. " article_processing_charge: Yes author: - first_name: Viktoriia full_name: Oshurkova, Viktoriia last_name: Oshurkova - first_name: Olga full_name: Troshina, Olga last_name: Troshina - first_name: Vladimir full_name: Trubitsyn, Vladimir last_name: Trubitsyn - first_name: Yana full_name: Ryzhmanova, Yana last_name: Ryzhmanova - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Viktoria full_name: Shcherbakova, Viktoria last_name: Shcherbakova citation: ama: 'Oshurkova V, Troshina O, Trubitsyn V, Ryzhmanova Y, Bochkareva O, Shcherbakova V. Characterization of methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T. In: Proceedings of 1st International Electronic Conference on Microbiology. MDPI; 2020. doi:10.3390/ecm2020-07116' apa: 'Oshurkova, V., Troshina, O., Trubitsyn, V., Ryzhmanova, Y., Bochkareva, O., & Shcherbakova, V. (2020). Characterization of methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T. In Proceedings of 1st International Electronic Conference on Microbiology. Virtual: MDPI. https://doi.org/10.3390/ecm2020-07116' chicago: Oshurkova, Viktoriia, Olga Troshina, Vladimir Trubitsyn, Yana Ryzhmanova, Olga Bochkareva, and Viktoria Shcherbakova. “Characterization of Methanosarcina Mazei JL01 Isolated from Holocene Arctic Permafrost and Study of the Archaeon Cooperation with Bacterium Sphaerochaeta Associata GLS2T.” In Proceedings of 1st International Electronic Conference on Microbiology. MDPI, 2020. https://doi.org/10.3390/ecm2020-07116. ieee: V. Oshurkova, O. Troshina, V. Trubitsyn, Y. Ryzhmanova, O. Bochkareva, and V. Shcherbakova, “Characterization of methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T,” in Proceedings of 1st International Electronic Conference on Microbiology, Virtual, 2020. ista: 'Oshurkova V, Troshina O, Trubitsyn V, Ryzhmanova Y, Bochkareva O, Shcherbakova V. 2020. Characterization of methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T. Proceedings of 1st International Electronic Conference on Microbiology. ECM: Electronic Conference on Microbiology.' mla: Oshurkova, Viktoriia, et al. “Characterization of Methanosarcina Mazei JL01 Isolated from Holocene Arctic Permafrost and Study of the Archaeon Cooperation with Bacterium Sphaerochaeta Associata GLS2T.” Proceedings of 1st International Electronic Conference on Microbiology, MDPI, 2020, doi:10.3390/ecm2020-07116. short: V. Oshurkova, O. Troshina, V. Trubitsyn, Y. Ryzhmanova, O. Bochkareva, V. Shcherbakova, in:, Proceedings of 1st International Electronic Conference on Microbiology, MDPI, 2020. conference: end_date: 2020-11-30 location: Virtual name: 'ECM: Electronic Conference on Microbiology' start_date: 2020-11-02 date_created: 2024-03-04T11:41:31Z date_published: 2020-11-02T00:00:00Z date_updated: 2024-03-20T08:06:22Z day: '02' ddc: - '570' department: - _id: FyKo doi: 10.3390/ecm2020-07116 file: - access_level: open_access checksum: d1914af7811a21a4b2744eb51b5834e3 content_type: application/pdf creator: dernst date_created: 2024-03-20T08:05:46Z date_updated: 2024-03-20T08:05:46Z file_id: '15127' file_name: 2020_ECM_Oshurkova.pdf file_size: 595543 relation: main_file success: 1 file_date_updated: 2024-03-20T08:05:46Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Proceedings of 1st International Electronic Conference on Microbiology publication_status: published publisher: MDPI quality_controlled: '1' status: public title: Characterization of methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7525' abstract: - lang: eng text: "The medial habenula (MHb) is an evolutionary conserved epithalamic structure important for the modulation of emotional memory. It is involved in regulation of anxiety, compulsive behavior, addiction (nicotinic and opioid), sexual and feeding behavior. MHb receives inputs from septal regions and projects exclusively to the interpeduncular nucleus (IPN). Distinct sub-regions of the septum project to different subnuclei of MHb: the bed nucleus of anterior commissure projects to dorsal MHb and the triangular septum projects to ventral MHb. Furthermore, the dorsal and ventral MHb project to the lateral and rostral/central IPN, respectively. Importantly, these projections have unique features of prominent co-release of different neurotransmitters and requirement of a peculiar type of calcium channel for release. In general, synaptic neurotransmission requires an activity-dependent influx of Ca2+ into the presynaptic terminal through voltage-gated calcium channels. The calcium channel family most commonly involved in neurotransmitter release comprises three members, P/Q-, N- and R-type with Cav2.1, Cav2.2 and Cav2.3 subunits, respectively. In contrast to most CNS synapses that mainly express Cav2.1 and/or Cav2.2, MHb terminals in the IPN exclusively express Cav2.3. In other parts of the brain, such as the hippocampus, Cav2.3 is mostly located to postsynaptic elements. This unusual presynaptic location of Cav2.3 in the MHb-IPN pathway implies unique mechanisms of glutamate release in this pathway. One potential example of such uniqueness is the facilitation of release by GABAB receptor (GBR) activation. Presynaptic GBRs usually inhibit the release of neurotransmitters by inhibiting presynaptic calcium channels. MHb shows the highest expression levels of GBR in the brain. GBRs comprise two subunits, GABAB1 (GB1) and GABAB2 (GB2), and are associated with auxiliary subunits, called potassium channel tetramerization domain containing proteins (KCTD) 8, 12, 12b and 16. Among these four subunits, KCTD12b is exclusively expressed in ventral MHb, and KCTD8 shows the strongest expression in the whole MHb among other brain regions, indicating that KCTD8 and KCTD12b may be involved in the unique mechanisms of neurotransmitter release mediated by Cav2.3 and regulated by GBRs in this pathway. \r\nIn the present study, we first verified that neurotransmission in both dorsal and ventral MHb-IPN pathways is mainly mediated by Cav2.3 using a selective blocker of R-type channels, SNX-482. We next found that baclofen, a GBR agonist, has facilitatory effects on release from ventral MHb terminal in rostral IPN, whereas it has inhibitory effects on release from dorsal MHb terminals in lateral IPN, indicating that KCTD12b expressed exclusively in ventral MHb may have a role in the facilitatory effects of GBR activation. In a heterologous expression system using HEK cells, we found that KCTD8 and KCTD12b but not KCTD12 directly bind with Cav2.3. Pre-embedding immunogold electron microscopy data show that Cav2.3 and KCTD12b are distributed most densely in presynaptic active zone in IPN with KCTD12b being present only in rostral/central but not lateral IPN, whereas GABAB, KCTD8 and KCTD12 are distributed most densely in perisynaptic sites with KCTD12 present more frequently in postsynaptic elements and only in rostral/central IPN. In freeze-fracture replica labelling, Cav2.3, KCTD8 and KCTD12b are co-localized with each other in the same active zone indicating that they may form complexes regulating vesicle release in rostral IPN. \r\nOn electrophysiological studies of wild type (WT) mice, we found that paired-pulse ratio in rostral IPN of KCTD12b knock-out (KO) mice is lower than those of WT and KCTD8 KO mice. Consistent with this finding, in mean variance analysis, release probability in rostral IPN of KCTD12b KO mice is higher than that of WT and KCTD8 KO mice. Although paired-pulse ratios are not different between WT and KCTD8 KO mice, the mean variance analysis revealed significantly lower release probability in rostral IPN of KCTD8 KO than WT mice. These results demonstrate bidirectional regulation of Cav2.3-mediated release by KCTD8 and KCTD12b without GBR activation in rostral IPN. Finally, we examined the baclofen effects in rostral IPN of KCTD8 and KCTD12b KO mice, and found the facilitation of release remained in both KO mice, indicating that the peculiar effects of the GBR activation in this pathway do not depend on the selective expression of these KCTD subunits in ventral MHb. However, we found that presynaptic potentiation of evoked EPSC amplitude by baclofen falls to baseline after washout faster in KCTD12b KO mice than WT, KCTD8 KO and KCTD8/12b double KO mice. This result indicates that KCTD12b is involved in sustained potentiation of vesicle release by GBR activation, whereas KCTD8 is involved in its termination in the absence of KCTD12b. Consistent with these functional findings, replica labelling revealed an increase in density of KCTD8, but not Cav2.3 or GBR at active zone in rostral IPN of KCTD12b KO mice compared with that of WT mice, suggesting that increased association of KCTD8 with Cav2.3 facilitates the release probability and termination of the GBR effect in the absence of KCTD12b.\r\nIn summary, our study provided new insights into the physiological roles of presynaptic Cav2.3, GBRs and their auxiliary subunits KCTDs at an evolutionary conserved neuronal circuit. Future studies will be required to identify the exact molecular mechanism underlying the GBR-mediated presynaptic potentiation on ventral MHb terminals. It remains to be determined whether the prominent presence of presynaptic KCTDs at active zone could exert similar neuromodulatory functions in different pathways of the brain.\r\n" acknowledged_ssus: - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 citation: ama: Bhandari P. Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway. 2020. doi:10.15479/AT:ISTA:7525 apa: Bhandari, P. (2020). Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7525 chicago: Bhandari, Pradeep. “Localization and Functional Role of Cav2.3 in the Medial Habenula to Interpeduncular Nucleus Pathway.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:7525. ieee: P. Bhandari, “Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway,” Institute of Science and Technology Austria, 2020. ista: Bhandari P. 2020. Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway. Institute of Science and Technology Austria. mla: Bhandari, Pradeep. Localization and Functional Role of Cav2.3 in the Medial Habenula to Interpeduncular Nucleus Pathway. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:7525. short: P. Bhandari, Localization and Functional Role of Cav2.3 in the Medial Habenula to Interpeduncular Nucleus Pathway, Institute of Science and Technology Austria, 2020. date_created: 2020-02-26T10:56:37Z date_published: 2020-02-28T00:00:00Z date_updated: 2023-09-07T13:20:03Z day: '28' ddc: - '570' degree_awarded: PhD department: - _id: RySh doi: 10.15479/AT:ISTA:7525 file: - access_level: open_access checksum: 4589234fdb12b4ad72273b311723a7b4 content_type: application/pdf creator: pbhandari date_created: 2020-02-28T08:37:53Z date_updated: 2021-03-01T23:30:04Z embargo: 2021-02-28 file_id: '7538' file_name: Pradeep Bhandari Thesis.pdf file_size: 9646346 relation: main_file title: Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway - access_level: closed checksum: aa79490553ca0a5c9b6fbcd152e93928 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: pbhandari date_created: 2020-02-28T08:47:14Z date_updated: 2021-03-01T23:30:04Z embargo_to: open_access file_id: '7539' file_name: Pradeep Bhandari Thesis.docx file_size: 35252164 relation: source_file title: Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway file_date_updated: 2021-03-01T23:30:04Z has_accepted_license: '1' keyword: - Cav2.3 - medial habenula (MHb) - interpeduncular nucleus (IPN) language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '79' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 title: Localization and functional role of Cav2.3 in the medial habenula to interpeduncular nucleus pathway type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8586' abstract: - lang: eng text: Cryo-electron microscopy (cryo-EM) of cellular specimens provides insights into biological processes and structures within a native context. However, a major challenge still lies in the efficient and reproducible preparation of adherent cells for subsequent cryo-EM analysis. This is due to the sensitivity of many cellular specimens to the varying seeding and culturing conditions required for EM experiments, the often limited amount of cellular material and also the fragility of EM grids and their substrate. Here, we present low-cost and reusable 3D printed grid holders, designed to improve specimen preparation when culturing challenging cellular samples directly on grids. The described grid holders increase cell culture reproducibility and throughput, and reduce the resources required for cell culturing. We show that grid holders can be integrated into various cryo-EM workflows, including micro-patterning approaches to control cell seeding on grids, and for generating samples for cryo-focused ion beam milling and cryo-electron tomography experiments. Their adaptable design allows for the generation of specialized grid holders customized to a large variety of applications. acknowledged_ssus: - _id: ScienComp - _id: LifeSc - _id: Bio - _id: EM-Fac acknowledgement: This work was supported by the Austrian Science Fund (FWF, P33367) to FKMS. BZ acknowledges support by the Niederösterreich Fond. This research was also supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), the BioImaging Facility (BIF) and the Electron Microscopy Facility (EMF). We thank Georgi Dimchev (IST Austria) and Sonja Jacob (Vienna Biocenter Core Facilities) for testing our grid holders in different experimental setups and Daniel Gütl and the Kondrashov group (IST Austria) for granting us repeated access to their 3D printers. We also thank Jonna Alanko and the Sixt lab (IST Austria) for providing us HeLa cells, primary BL6 mouse tail fibroblasts, NIH 3T3 fibroblasts and human telomerase immortalised foreskin fibroblasts for our experiments. We are thankful to Ori Avinoam and William Wan for helpful comments on the manuscript and also thank Dorotea Fracchiolla (Art&Science) for illustrating the graphical abstract. article_number: '107633' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Bettina full_name: Zens, Bettina id: 45FD126C-F248-11E8-B48F-1D18A9856A87 last_name: Zens orcid: 0000-0002-9561-1239 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Fäßler F, Zens B, Hauschild R, Schur FK. 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. Journal of Structural Biology. 2020;212(3). doi:10.1016/j.jsb.2020.107633 apa: Fäßler, F., Zens, B., Hauschild, R., & Schur, F. K. (2020). 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. Journal of Structural Biology. Elsevier. https://doi.org/10.1016/j.jsb.2020.107633 chicago: Fäßler, Florian, Bettina Zens, Robert Hauschild, and Florian KM Schur. “3D Printed Cell Culture Grid Holders for Improved Cellular Specimen Preparation in Cryo-Electron Microscopy.” Journal of Structural Biology. Elsevier, 2020. https://doi.org/10.1016/j.jsb.2020.107633. ieee: F. Fäßler, B. Zens, R. Hauschild, and F. K. Schur, “3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy,” Journal of Structural Biology, vol. 212, no. 3. Elsevier, 2020. ista: Fäßler F, Zens B, Hauschild R, Schur FK. 2020. 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. Journal of Structural Biology. 212(3), 107633. mla: Fäßler, Florian, et al. “3D Printed Cell Culture Grid Holders for Improved Cellular Specimen Preparation in Cryo-Electron Microscopy.” Journal of Structural Biology, vol. 212, no. 3, 107633, Elsevier, 2020, doi:10.1016/j.jsb.2020.107633. short: F. Fäßler, B. Zens, R. Hauschild, F.K. Schur, Journal of Structural Biology 212 (2020). date_created: 2020-09-29T13:24:06Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-03-27T23:30:05Z day: '01' ddc: - '570' department: - _id: FlSc doi: 10.1016/j.jsb.2020.107633 external_id: isi: - '000600997800008' file: - access_level: open_access checksum: c48cbf594e84fc2f91966ffaafc0918c content_type: application/pdf creator: dernst date_created: 2020-12-10T14:01:10Z date_updated: 2020-12-10T14:01:10Z file_id: '8937' file_name: 2020_JourStrucBiology_Faessler.pdf file_size: 7076870 relation: main_file success: 1 file_date_updated: 2020-12-10T14:01:10Z has_accepted_license: '1' intvolume: ' 212' isi: 1 issue: '3' keyword: - electron microscopy - cryo-EM - EM sample preparation - 3D printing - cell culture language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex - _id: 059B463C-7A3F-11EA-A408-12923DDC885E name: NÖ-Fonds Preis für die Jungforscherin des Jahres am IST Austria publication: Journal of Structural Biology publication_identifier: issn: - 1047-8477 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '14592' relation: used_in_publication status: public - id: '12491' relation: dissertation_contains status: public scopus_import: '1' status: public title: 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 212 year: '2020' ... --- _id: '8657' abstract: - lang: eng text: "Synthesis of proteins – translation – is a fundamental process of life. Quantitative studies anchor translation into the context of bacterial physiology and reveal several mathematical relationships, called “growth laws,” which capture physiological feedbacks between protein synthesis and cell growth. Growth laws describe the dependency of the ribosome abundance as a function of growth rate, which can change depending on the growth conditions. Perturbations of translation reveal that bacteria employ a compensatory strategy in which the reduced translation capability results in increased expression of the translation machinery.\r\nPerturbations of translation are achieved in various ways; clinically interesting is the application of translation-targeting antibiotics – translation inhibitors. The antibiotic effects on bacterial physiology are often poorly understood. Bacterial responses to two or more simultaneously applied antibiotics are even more puzzling. The combined antibiotic effect determines the type of drug interaction, which ranges from synergy (the effect is stronger than expected) to antagonism (the effect is weaker) and suppression (one of the drugs loses its potency).\r\nIn the first part of this work, we systematically measure the pairwise interaction network for translation inhibitors that interfere with different steps in translation. We find that the interactions are surprisingly diverse and tend to be more antagonistic. To explore the underlying mechanisms, we begin with a minimal biophysical model of combined antibiotic action. We base this model on the kinetics of antibiotic uptake and binding together with the physiological response described by the growth laws. The biophysical model explains some drug interactions, but not all; it specifically fails to predict suppression.\r\nIn the second part of this work, we hypothesize that elusive suppressive drug interactions result from the interplay between ribosomes halted in different stages of translation. To elucidate this putative mechanism of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using in- ducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks partially causes these interactions.\r\nWe extend this approach by varying two translation bottlenecks simultaneously. This approach reveals the suppression of translocation inhibition by inhibited translation. We rationalize this effect by modeling dense traffic of ribosomes that move on transcripts in a translation factor-mediated manner. This model predicts a dissolution of traffic jams caused by inhibited translocation when the density of ribosome traffic is reduced by lowered initiation. We base this model on the growth laws and quantitative relationships between different translation and growth parameters.\r\nIn the final part of this work, we describe a set of tools aimed at quantification of physiological and translation parameters. We further develop a simple model that directly connects the abundance of a translation factor with the growth rate, which allows us to extract physiological parameters describing initiation. We demonstrate the development of tools for measuring translation rate.\r\nThis thesis showcases how a combination of high-throughput growth rate mea- surements, genetics, and modeling can reveal mechanisms of drug interactions. Furthermore, by a gradual transition from combinations of antibiotics to precise genetic interventions, we demonstrated the equivalency between genetic and chemi- cal perturbations of translation. These findings tile the path for quantitative studies of antibiotic combinations and illustrate future approaches towards the quantitative description of translation." acknowledged_ssus: - _id: LifeSc - _id: M-Shop acknowledgement: I thank Life Science Facilities for their continuous support with providing top-notch laboratory materials, keeping the devices humming, and coordinating the repairs and building of custom-designed laboratory equipment with the MIBA Machine shop. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X citation: ama: 'Kavcic B. Perturbations of protein synthesis: from antibiotics to genetics and physiology. 2020. doi:10.15479/AT:ISTA:8657' apa: 'Kavcic, B. (2020). Perturbations of protein synthesis: from antibiotics to genetics and physiology. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8657' chicago: 'Kavcic, Bor. “Perturbations of Protein Synthesis: From Antibiotics to Genetics and Physiology.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8657.' ieee: 'B. Kavcic, “Perturbations of protein synthesis: from antibiotics to genetics and physiology,” Institute of Science and Technology Austria, 2020.' ista: 'Kavcic B. 2020. Perturbations of protein synthesis: from antibiotics to genetics and physiology. Institute of Science and Technology Austria.' mla: 'Kavcic, Bor. Perturbations of Protein Synthesis: From Antibiotics to Genetics and Physiology. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8657.' short: 'B. Kavcic, Perturbations of Protein Synthesis: From Antibiotics to Genetics and Physiology, Institute of Science and Technology Austria, 2020.' date_created: 2020-10-13T16:46:14Z date_published: 2020-10-14T00:00:00Z date_updated: 2023-09-07T13:20:48Z day: '14' ddc: - '571' - '530' - '570' degree_awarded: PhD department: - _id: GaTk doi: 10.15479/AT:ISTA:8657 file: - access_level: open_access checksum: d708ecd62b6fcc3bc1feb483b8dbe9eb content_type: application/pdf creator: bkavcic date_created: 2020-10-15T06:41:20Z date_updated: 2021-10-07T22:30:03Z embargo: 2021-10-06 file_id: '8663' file_name: kavcicB_thesis202009.pdf file_size: 52636162 relation: main_file - access_level: closed checksum: bb35f2352a04db19164da609f00501f3 content_type: application/zip creator: bkavcic date_created: 2020-10-15T06:41:53Z date_updated: 2021-10-07T22:30:03Z embargo_to: open_access file_id: '8664' file_name: 2020b.zip file_size: 321681247 relation: source_file file_date_updated: 2021-10-07T22:30:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '271' publication_identifier: isbn: - 978-3-99078-011-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7673' relation: part_of_dissertation status: public - id: '8250' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: 'Perturbations of protein synthesis: from antibiotics to genetics and physiology' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ...