--- _id: '8383' abstract: - lang: eng text: We introduce extension-based proofs, a class of impossibility proofs that includes valency arguments. They are modelled as an interaction between a prover and a protocol. Using proofs based on combinatorial topology, it has been shown that it is impossible to deterministically solve k-set agreement among n > k ≥ 2 processes in a wait-free manner. However, it was unknown whether proofs based on simpler techniques were possible. We explain why this impossibility result cannot be obtained by an extension-based proof and, hence, extension-based proofs are limited in power. article_processing_charge: No author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: James full_name: Aspnes, James last_name: Aspnes - first_name: Faith full_name: Ellen, Faith last_name: Ellen - first_name: Rati full_name: Gelashvili, Rati last_name: Gelashvili - first_name: Leqi full_name: Zhu, Leqi last_name: Zhu citation: ama: 'Alistarh D-A, Aspnes J, Ellen F, Gelashvili R, Zhu L. Brief Announcement: Why Extension-Based Proofs Fail. In: Proceedings of the 39th Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2020:54-56. doi:10.1145/3382734.3405743' apa: 'Alistarh, D.-A., Aspnes, J., Ellen, F., Gelashvili, R., & Zhu, L. (2020). Brief Announcement: Why Extension-Based Proofs Fail. In Proceedings of the 39th Symposium on Principles of Distributed Computing (pp. 54–56). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3382734.3405743' chicago: 'Alistarh, Dan-Adrian, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. “Brief Announcement: Why Extension-Based Proofs Fail.” In Proceedings of the 39th Symposium on Principles of Distributed Computing, 54–56. Association for Computing Machinery, 2020. https://doi.org/10.1145/3382734.3405743.' ieee: 'D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, and L. Zhu, “Brief Announcement: Why Extension-Based Proofs Fail,” in Proceedings of the 39th Symposium on Principles of Distributed Computing, Virtual, Italy, 2020, pp. 54–56.' ista: 'Alistarh D-A, Aspnes J, Ellen F, Gelashvili R, Zhu L. 2020. Brief Announcement: Why Extension-Based Proofs Fail. Proceedings of the 39th Symposium on Principles of Distributed Computing. PODC: Principles of Distributed Computing, 54–56.' mla: 'Alistarh, Dan-Adrian, et al. “Brief Announcement: Why Extension-Based Proofs Fail.” Proceedings of the 39th Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 54–56, doi:10.1145/3382734.3405743.' short: D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, in:, Proceedings of the 39th Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 54–56. conference: end_date: 2020-08-07 location: Virtual, Italy name: 'PODC: Principles of Distributed Computing' start_date: 2020-08-03 date_created: 2020-09-13T22:01:18Z date_published: 2020-07-31T00:00:00Z date_updated: 2024-02-28T12:54:19Z day: '31' department: - _id: DaAl doi: 10.1145/3382734.3405743 language: - iso: eng month: '07' oa_version: None page: 54-56 publication: Proceedings of the 39th Symposium on Principles of Distributed Computing publication_identifier: isbn: - '9781450375825' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'Brief Announcement: Why Extension-Based Proofs Fail' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8385' abstract: - lang: eng text: 'We present a method for animating yarn-level cloth effects using a thin-shell solver. We accomplish this through numerical homogenization: we first use a large number of yarn-level simulations to build a model of the potential energy density of the cloth, and then use this energy density function to compute forces in a thin shell simulator. We model several yarn-based materials, including both woven and knitted fabrics. Our model faithfully reproduces expected effects like the stiffness of woven fabrics, and the highly deformable nature and anisotropy of knitted fabrics. Our approach does not require any real-world experiments nor measurements; because the method is based entirely on simulations, it can generate entirely new material models quickly, without the need for testing apparatuses or human intervention. We provide data-driven models of several woven and knitted fabrics, which can be used for efficient simulation with an off-the-shelf cloth solver.' acknowledged_ssus: - _id: ScienComp acknowledgement: "We wish to thank the anonymous reviewers and the members of the Visual Computing Group at IST Austria for their valuable feedback. We also thank the creators of the Berkeley Garment Library [de Joya et al. 2012] for providing garment meshes, [Krishnamurthy and Levoy 1996] and [Turk and Levoy 1994] for the armadillo and bunny meshes, the creators of libWetCloth [Fei et al. 2018] for their implementation of discrete elastic rod forces, and Tomáš Skřivan for\r\ninspiring discussions and help with Mathematica code generation. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Scientific Computing. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638176. Rahul Narain is supported by a Pankaj Gupta Young Faculty Fellowship and a gift from Adobe Inc." article_number: '48' article_processing_charge: No article_type: original author: - first_name: Georg full_name: Sperl, Georg id: 4DD40360-F248-11E8-B48F-1D18A9856A87 last_name: Sperl - first_name: Rahul full_name: Narain, Rahul last_name: Narain - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Sperl G, Narain R, Wojtan C. Homogenized yarn-level cloth. ACM Transactions on Graphics. 2020;39(4). doi:10.1145/3386569.3392412 apa: Sperl, G., Narain, R., & Wojtan, C. (2020). Homogenized yarn-level cloth. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3386569.3392412 chicago: Sperl, Georg, Rahul Narain, and Chris Wojtan. “Homogenized Yarn-Level Cloth.” ACM Transactions on Graphics. Association for Computing Machinery, 2020. https://doi.org/10.1145/3386569.3392412. ieee: G. Sperl, R. Narain, and C. Wojtan, “Homogenized yarn-level cloth,” ACM Transactions on Graphics, vol. 39, no. 4. Association for Computing Machinery, 2020. ista: Sperl G, Narain R, Wojtan C. 2020. Homogenized yarn-level cloth. ACM Transactions on Graphics. 39(4), 48. mla: Sperl, Georg, et al. “Homogenized Yarn-Level Cloth.” ACM Transactions on Graphics, vol. 39, no. 4, 48, Association for Computing Machinery, 2020, doi:10.1145/3386569.3392412. short: G. Sperl, R. Narain, C. Wojtan, ACM Transactions on Graphics 39 (2020). date_created: 2020-09-13T22:01:18Z date_published: 2020-07-08T00:00:00Z date_updated: 2024-02-28T12:57:47Z day: '08' ddc: - '000' department: - _id: ChWo doi: 10.1145/3386569.3392412 ec_funded: 1 external_id: isi: - '000583700300021' file: - access_level: open_access checksum: cf4c1d361c3196c4bd424520a5588205 content_type: application/pdf creator: dernst date_created: 2020-11-23T09:01:22Z date_updated: 2020-11-23T09:01:22Z file_id: '8794' file_name: 2020_hylc_submitted.pdf file_size: 38922662 relation: main_file success: 1 file_date_updated: 2020-11-23T09:01:22Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3386569.3392412 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: eissn: - '15577368' issn: - '07300301' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '12358' relation: dissertation_contains status: public scopus_import: '1' status: public title: Homogenized yarn-level cloth type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '7956' abstract: - lang: eng text: When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles. article_number: '204905' article_processing_charge: No article_type: original author: - first_name: J. full_name: Pȩkalski, J. last_name: Pȩkalski - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: A. Z. full_name: Panagiotopoulos, A. Z. last_name: Panagiotopoulos citation: ama: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 2020;152(20). doi:10.1063/5.0005194' apa: 'Pȩkalski, J., Rzadkowski, W., & Panagiotopoulos, A. Z. (2020). Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0005194' chicago: 'Pȩkalski, J., Wojciech Rzadkowski, and A. Z. Panagiotopoulos. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/5.0005194.' ieee: 'J. Pȩkalski, W. Rzadkowski, and A. Z. Panagiotopoulos, “Shear-induced ordering in systems with competing interactions: A machine learning study,” The Journal of chemical physics, vol. 152, no. 20. AIP Publishing, 2020.' ista: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. 2020. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 152(20), 204905.' mla: 'Pȩkalski, J., et al. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics, vol. 152, no. 20, 204905, AIP Publishing, 2020, doi:10.1063/5.0005194.' short: J. Pȩkalski, W. Rzadkowski, A.Z. Panagiotopoulos, The Journal of Chemical Physics 152 (2020). date_created: 2020-06-14T22:00:49Z date_published: 2020-05-29T00:00:00Z date_updated: 2024-02-28T13:00:28Z day: '29' department: - _id: MiLe doi: 10.1063/5.0005194 ec_funded: 1 external_id: arxiv: - '2002.07294' isi: - '000537900300001' intvolume: ' 152' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0005194 month: '05' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of chemical physics publication_identifier: eissn: - '10897690' publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Shear-induced ordering in systems with competing interactions: A machine learning study' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ... --- _id: '7428' abstract: - lang: eng text: In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex. article_number: '020504' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: P. L.S. full_name: Lopes, P. L.S. last_name: Lopes - first_name: Pavan full_name: Hosur, Pavan last_name: Hosur - first_name: Matthew J. full_name: Gilbert, Matthew J. last_name: Gilbert - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi citation: ama: Ghazaryan A, Lopes PLS, Hosur P, Gilbert MJ, Ghaemi P. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. 2020;101(2). doi:10.1103/PhysRevB.101.020504 apa: Ghazaryan, A., Lopes, P. L. S., Hosur, P., Gilbert, M. J., & Ghaemi, P. (2020). Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.101.020504 chicago: Ghazaryan, Areg, P. L.S. Lopes, Pavan Hosur, Matthew J. Gilbert, and Pouyan Ghaemi. “Effect of Zeeman Coupling on the Majorana Vortex Modes in Iron-Based Topological Superconductors.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.101.020504. ieee: A. Ghazaryan, P. L. S. Lopes, P. Hosur, M. J. Gilbert, and P. Ghaemi, “Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors,” Physical Review B, vol. 101, no. 2. American Physical Society, 2020. ista: Ghazaryan A, Lopes PLS, Hosur P, Gilbert MJ, Ghaemi P. 2020. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. 101(2), 020504. mla: Ghazaryan, Areg, et al. “Effect of Zeeman Coupling on the Majorana Vortex Modes in Iron-Based Topological Superconductors.” Physical Review B, vol. 101, no. 2, 020504, American Physical Society, 2020, doi:10.1103/PhysRevB.101.020504. short: A. Ghazaryan, P.L.S. Lopes, P. Hosur, M.J. Gilbert, P. Ghaemi, Physical Review B 101 (2020). date_created: 2020-02-02T23:01:01Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-28T13:11:13Z day: '13' department: - _id: MiLe doi: 10.1103/PhysRevB.101.020504 external_id: arxiv: - '1907.02077' isi: - '000506843500001' intvolume: ' 101' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.02077 month: '01' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 101 year: '2020' ... --- _id: '8319' abstract: - lang: eng text: We demonstrate that releasing atoms into free space from an optical lattice does not deteriorate cavity-generated spin squeezing for metrological purposes. In this work, an ensemble of 500000 spin-squeezed atoms in a high-finesse optical cavity with near-uniform atom-cavity coupling is prepared, released into free space, recaptured in the cavity, and probed. Up to ∼10 dB of metrologically relevant squeezing is retrieved for 700μs free-fall times, and decaying levels of squeezing are realized for up to 3 ms free-fall times. The degradation of squeezing results from loss of atom-cavity coupling homogeneity between the initial squeezed state generation and final collective state readout. A theoretical model is developed to quantify this degradation and this model is experimentally validated. acknowledgement: We thank N. Engelsen for comments on the manuscript. This work was supported by the Office of Naval Research, Vannevar Bush Faculty Fellowship, Department of Energy, and Defense Threat Reduction Agency. R.K. was partly supported by the AQT/INQNET program at Caltech. article_number: '012224' article_processing_charge: No article_type: original author: - first_name: Yunfan full_name: Wu, Yunfan last_name: Wu - first_name: Rajiv full_name: Krishnakumar, Rajiv last_name: Krishnakumar - first_name: Julián full_name: Martínez-Rincón, Julián last_name: Martínez-Rincón - first_name: Benjamin K. full_name: Malia, Benjamin K. last_name: Malia - first_name: Onur full_name: Hosten, Onur id: 4C02D85E-F248-11E8-B48F-1D18A9856A87 last_name: Hosten orcid: 0000-0002-2031-204X - first_name: Mark A. full_name: Kasevich, Mark A. last_name: Kasevich citation: ama: Wu Y, Krishnakumar R, Martínez-Rincón J, Malia BK, Hosten O, Kasevich MA. Retrieval of cavity-generated atomic spin squeezing after free-space release. Physical Review A. 2020;102(1). doi:10.1103/PhysRevA.102.012224 apa: Wu, Y., Krishnakumar, R., Martínez-Rincón, J., Malia, B. K., Hosten, O., & Kasevich, M. A. (2020). Retrieval of cavity-generated atomic spin squeezing after free-space release. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.102.012224 chicago: Wu, Yunfan, Rajiv Krishnakumar, Julián Martínez-Rincón, Benjamin K. Malia, Onur Hosten, and Mark A. Kasevich. “Retrieval of Cavity-Generated Atomic Spin Squeezing after Free-Space Release.” Physical Review A. American Physical Society, 2020. https://doi.org/10.1103/PhysRevA.102.012224. ieee: Y. Wu, R. Krishnakumar, J. Martínez-Rincón, B. K. Malia, O. Hosten, and M. A. Kasevich, “Retrieval of cavity-generated atomic spin squeezing after free-space release,” Physical Review A, vol. 102, no. 1. American Physical Society, 2020. ista: Wu Y, Krishnakumar R, Martínez-Rincón J, Malia BK, Hosten O, Kasevich MA. 2020. Retrieval of cavity-generated atomic spin squeezing after free-space release. Physical Review A. 102(1), 012224. mla: Wu, Yunfan, et al. “Retrieval of Cavity-Generated Atomic Spin Squeezing after Free-Space Release.” Physical Review A, vol. 102, no. 1, 012224, American Physical Society, 2020, doi:10.1103/PhysRevA.102.012224. short: Y. Wu, R. Krishnakumar, J. Martínez-Rincón, B.K. Malia, O. Hosten, M.A. Kasevich, Physical Review A 102 (2020). date_created: 2020-08-30T22:01:10Z date_published: 2020-07-30T00:00:00Z date_updated: 2024-02-28T13:11:28Z day: '30' department: - _id: OnHo doi: 10.1103/PhysRevA.102.012224 external_id: arxiv: - '1912.08334' isi: - '000555104200011' intvolume: ' 102' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.08334 month: '07' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - '24699934' issn: - '24699926' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Retrieval of cavity-generated atomic spin squeezing after free-space release type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 102 year: '2020' ...