--- _id: '6788' abstract: - lang: eng text: We consider the Nelson model with ultraviolet cutoff, which describes the interaction between non-relativistic particles and a positive or zero mass quantized scalar field. We take the non-relativistic particles to obey Fermi statistics and discuss the time evolution in a mean-field limit of many fermions. In this case, the limit is known to be also a semiclassical limit. We prove convergence in terms of reduced density matrices of the many-body state to a tensor product of a Slater determinant with semiclassical structure and a coherent state, which evolve according to a fermionic version of the Schrödinger–Klein–Gordon equations. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Nikolai K full_name: Leopold, Nikolai K id: 4BC40BEC-F248-11E8-B48F-1D18A9856A87 last_name: Leopold orcid: 0000-0002-0495-6822 - first_name: Sören P full_name: Petrat, Sören P id: 40AC02DC-F248-11E8-B48F-1D18A9856A87 last_name: Petrat orcid: 0000-0002-9166-5889 citation: ama: Leopold NK, Petrat SP. Mean-field dynamics for the Nelson model with fermions. Annales Henri Poincare. 2019;20(10):3471–3508. doi:10.1007/s00023-019-00828-w apa: Leopold, N. K., & Petrat, S. P. (2019). Mean-field dynamics for the Nelson model with fermions. Annales Henri Poincare. Springer Nature. https://doi.org/10.1007/s00023-019-00828-w chicago: Leopold, Nikolai K, and Sören P Petrat. “Mean-Field Dynamics for the Nelson Model with Fermions.” Annales Henri Poincare. Springer Nature, 2019. https://doi.org/10.1007/s00023-019-00828-w. ieee: N. K. Leopold and S. P. Petrat, “Mean-field dynamics for the Nelson model with fermions,” Annales Henri Poincare, vol. 20, no. 10. Springer Nature, pp. 3471–3508, 2019. ista: Leopold NK, Petrat SP. 2019. Mean-field dynamics for the Nelson model with fermions. Annales Henri Poincare. 20(10), 3471–3508. mla: Leopold, Nikolai K., and Sören P. Petrat. “Mean-Field Dynamics for the Nelson Model with Fermions.” Annales Henri Poincare, vol. 20, no. 10, Springer Nature, 2019, pp. 3471–3508, doi:10.1007/s00023-019-00828-w. short: N.K. Leopold, S.P. Petrat, Annales Henri Poincare 20 (2019) 3471–3508. date_created: 2019-08-11T21:59:21Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-29T07:09:06Z day: '01' ddc: - '510' department: - _id: RoSe doi: 10.1007/s00023-019-00828-w ec_funded: 1 external_id: arxiv: - '1807.06781' isi: - '000487036900008' file: - access_level: open_access checksum: b6dbf0d837d809293d449adf77138904 content_type: application/pdf creator: dernst date_created: 2019-08-12T12:05:58Z date_updated: 2020-07-14T12:47:40Z file_id: '6801' file_name: 2019_AnnalesHenriPoincare_Leopold.pdf file_size: 681139 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 20' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 3471–3508 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Annales Henri Poincare publication_identifier: eissn: - 1424-0661 issn: - 1424-0637 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Mean-field dynamics for the Nelson model with fermions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2019' ... --- _id: '6795' abstract: - lang: eng text: The green‐beard effect is one proposed mechanism predicted to underpin the evolu‐tion of altruistic behavior. It relies on the recognition and the selective help of altruists to each other in order to promote and sustain altruistic behavior. However, this mechanism has often been dismissed as unlikely or uncommon, as it is assumed that both the signaling trait and altruistic trait need to be encoded by the same gene or through tightly linked genes. Here, we use models of indirect genetic effects (IGEs) to find the minimum correlation between the signaling and altruistic trait required for the evolution of the latter. We show that this correlation threshold depends on the strength of the interaction (influence of the green beard on the expression of the altruistic trait), as well as the costs and benefits of the altruistic behavior. We further show that this correlation does not necessarily have to be high and support our analytical results by simulations. article_processing_charge: No article_type: original author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Hager R. Green beards in the light of indirect genetic effects. Ecology and Evolution. 2019;9(17):9597-9608. doi:10.1002/ece3.5484 apa: Trubenova, B., & Hager, R. (2019). Green beards in the light of indirect genetic effects. Ecology and Evolution. Wiley. https://doi.org/10.1002/ece3.5484 chicago: Trubenova, Barbora, and Reinmar Hager. “Green Beards in the Light of Indirect Genetic Effects.” Ecology and Evolution. Wiley, 2019. https://doi.org/10.1002/ece3.5484. ieee: B. Trubenova and R. Hager, “Green beards in the light of indirect genetic effects,” Ecology and Evolution, vol. 9, no. 17. Wiley, pp. 9597–9608, 2019. ista: Trubenova B, Hager R. 2019. Green beards in the light of indirect genetic effects. Ecology and Evolution. 9(17), 9597–9608. mla: Trubenova, Barbora, and Reinmar Hager. “Green Beards in the Light of Indirect Genetic Effects.” Ecology and Evolution, vol. 9, no. 17, Wiley, 2019, pp. 9597–608, doi:10.1002/ece3.5484. short: B. Trubenova, R. Hager, Ecology and Evolution 9 (2019) 9597–9608. date_created: 2019-08-11T21:59:24Z date_published: 2019-09-01T00:00:00Z date_updated: 2023-08-29T07:03:10Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1002/ece3.5484 ec_funded: 1 external_id: isi: - '000479973400001' file: - access_level: open_access checksum: adcb70af4901977d95b8747eeee01bd7 content_type: application/pdf creator: dernst date_created: 2019-08-12T07:30:30Z date_updated: 2020-07-14T12:47:40Z file_id: '6799' file_name: 2019_EcologyEvolution_Trubenova.pdf file_size: 2839636 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '17' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 9597-9608 project: - _id: 25AEDD42-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '704172' name: Rate of Adaptation in Changing Environment publication: Ecology and Evolution publication_identifier: eissn: - '20457758' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Green beards in the light of indirect genetic effects tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2019' ... --- _id: '6793' abstract: - lang: eng text: The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry. article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Ivan full_name: Izmestiev, Ivan last_name: Izmestiev citation: ama: Akopyan A, Izmestiev I. The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. 2019;51(5):765-775. doi:10.1112/blms.12276 apa: Akopyan, A., & Izmestiev, I. (2019). The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/blms.12276 chicago: Akopyan, Arseniy, and Ivan Izmestiev. “The Regge Symmetry, Confocal Conics, and the Schläfli Formula.” Bulletin of the London Mathematical Society. London Mathematical Society, 2019. https://doi.org/10.1112/blms.12276. ieee: A. Akopyan and I. Izmestiev, “The Regge symmetry, confocal conics, and the Schläfli formula,” Bulletin of the London Mathematical Society, vol. 51, no. 5. London Mathematical Society, pp. 765–775, 2019. ista: Akopyan A, Izmestiev I. 2019. The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. 51(5), 765–775. mla: Akopyan, Arseniy, and Ivan Izmestiev. “The Regge Symmetry, Confocal Conics, and the Schläfli Formula.” Bulletin of the London Mathematical Society, vol. 51, no. 5, London Mathematical Society, 2019, pp. 765–75, doi:10.1112/blms.12276. short: A. Akopyan, I. Izmestiev, Bulletin of the London Mathematical Society 51 (2019) 765–775. date_created: 2019-08-11T21:59:23Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-29T07:08:34Z day: '01' department: - _id: HeEd doi: 10.1112/blms.12276 ec_funded: 1 external_id: arxiv: - '1903.04929' isi: - '000478560200001' intvolume: ' 51' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.04929 month: '10' oa: 1 oa_version: Preprint page: 765-775 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: Bulletin of the London Mathematical Society publication_identifier: eissn: - '14692120' issn: - '00246093' publication_status: published publisher: London Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: The Regge symmetry, confocal conics, and the Schläfli formula type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 51 year: '2019' ... --- _id: '9786' article_processing_charge: No author: - first_name: Jakob full_name: Ruess, Jakob id: 4A245D00-F248-11E8-B48F-1D18A9856A87 last_name: Ruess orcid: 0000-0003-1615-3282 - first_name: Maros full_name: Pleska, Maros id: 4569785E-F248-11E8-B48F-1D18A9856A87 last_name: Pleska orcid: 0000-0001-7460-7479 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Ruess J, Pleska M, Guet CC, Tkačik G. Supporting text and results. 2019. doi:10.1371/journal.pcbi.1007168.s001 apa: Ruess, J., Pleska, M., Guet, C. C., & Tkačik, G. (2019). Supporting text and results. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1007168.s001 chicago: Ruess, Jakob, Maros Pleska, Calin C Guet, and Gašper Tkačik. “Supporting Text and Results.” Public Library of Science, 2019. https://doi.org/10.1371/journal.pcbi.1007168.s001. ieee: J. Ruess, M. Pleska, C. C. Guet, and G. Tkačik, “Supporting text and results.” Public Library of Science, 2019. ista: Ruess J, Pleska M, Guet CC, Tkačik G. 2019. Supporting text and results, Public Library of Science, 10.1371/journal.pcbi.1007168.s001. mla: Ruess, Jakob, et al. Supporting Text and Results. Public Library of Science, 2019, doi:10.1371/journal.pcbi.1007168.s001. short: J. Ruess, M. Pleska, C.C. Guet, G. Tkačik, (2019). date_created: 2021-08-06T08:23:43Z date_published: 2019-07-02T00:00:00Z date_updated: 2023-08-29T07:10:05Z day: '02' department: - _id: CaGu - _id: GaTk doi: 10.1371/journal.pcbi.1007168.s001 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '6784' relation: used_in_publication status: public status: public title: Supporting text and results type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '6831' abstract: - lang: eng text: "* Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less information is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life‐cycle dynamics.\r\n* Here, we investigated patterns of genetically based sexual dimorphism in vegetative and reproductive traits of a wind‐pollinated dioecious plant, Rumex hastatulus, across three life‐cycle stages using open‐pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1Y2) of the species.\r\n* The direction and degree of sexual dimorphism was highly variable among populations and life‐cycle stages. Sex‐specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races.\r\n* Sex‐specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life‐cycle." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Gemma full_name: Puixeu Sala, Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala orcid: 0000-0001-8330-1754 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - first_name: David full_name: Field, David last_name: Field orcid: 0000-0002-4014-8478 - first_name: Spencer C.H. full_name: Barrett, Spencer C.H. last_name: Barrett citation: ama: 'Puixeu Sala G, Pickup M, Field D, Barrett SCH. Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics. New Phytologist. 2019;224(3):1108-1120. doi:10.1111/nph.16050' apa: 'Puixeu Sala, G., Pickup, M., Field, D., & Barrett, S. C. H. (2019). Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics. New Phytologist. Wiley. https://doi.org/10.1111/nph.16050' chicago: 'Puixeu Sala, Gemma, Melinda Pickup, David Field, and Spencer C.H. Barrett. “Variation in Sexual Dimorphism in a Wind-Pollinated Plant: The Influence of Geographical Context and Life-Cycle Dynamics.” New Phytologist. Wiley, 2019. https://doi.org/10.1111/nph.16050.' ieee: 'G. Puixeu Sala, M. Pickup, D. Field, and S. C. H. Barrett, “Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics,” New Phytologist, vol. 224, no. 3. Wiley, pp. 1108–1120, 2019.' ista: 'Puixeu Sala G, Pickup M, Field D, Barrett SCH. 2019. Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics. New Phytologist. 224(3), 1108–1120.' mla: 'Puixeu Sala, Gemma, et al. “Variation in Sexual Dimorphism in a Wind-Pollinated Plant: The Influence of Geographical Context and Life-Cycle Dynamics.” New Phytologist, vol. 224, no. 3, Wiley, 2019, pp. 1108–20, doi:10.1111/nph.16050.' short: G. Puixeu Sala, M. Pickup, D. Field, S.C.H. Barrett, New Phytologist 224 (2019) 1108–1120. date_created: 2019-08-25T22:00:51Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-08-29T07:17:07Z day: '01' ddc: - '570' department: - _id: NiBa - _id: BeVi doi: 10.1111/nph.16050 ec_funded: 1 external_id: isi: - '000481376500001' file: - access_level: open_access checksum: 6370e7567d96b7b562e77d8b89653f80 content_type: application/pdf creator: apreinsp date_created: 2019-08-27T12:44:54Z date_updated: 2020-07-14T12:47:42Z file_id: '6833' file_name: 2019_NewPhytologist_Puixeu.pdf file_size: 2314016 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 224' isi: 1 issue: '3' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1108-1120 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: New Phytologist publication_identifier: eissn: - 1469-8137 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '9803' relation: research_data status: public - id: '14058' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 224 year: '2019' ... --- _id: '6824' abstract: - lang: eng text: Platelets are small anucleate cellular fragments that are released by megakaryocytes and safeguard vascular integrity through a process termed ‘haemostasis’. However, platelets have important roles beyond haemostasis as they contribute to the initiation and coordination of intravascular immune responses. They continuously monitor blood vessel integrity and tightly coordinate vascular trafficking and functions of multiple cell types. In this way platelets act as ‘patrolling officers of the vascular highway’ that help to establish effective immune responses to infections and cancer. Here we discuss the distinct biological features of platelets that allow them to shape immune responses to pathogens and tumour cells, highlighting the parallels between these responses. article_processing_charge: No article_type: original author: - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg citation: ama: 'Gärtner FR, Massberg S. Patrolling the vascular borders: Platelets in immunity to infection and cancer. Nature Reviews Immunology. 2019;19(12):747–760. doi:10.1038/s41577-019-0202-z' apa: 'Gärtner, F. R., & Massberg, S. (2019). Patrolling the vascular borders: Platelets in immunity to infection and cancer. Nature Reviews Immunology. Springer Nature. https://doi.org/10.1038/s41577-019-0202-z' chicago: 'Gärtner, Florian R, and Steffen Massberg. “Patrolling the Vascular Borders: Platelets in Immunity to Infection and Cancer.” Nature Reviews Immunology. Springer Nature, 2019. https://doi.org/10.1038/s41577-019-0202-z.' ieee: 'F. R. Gärtner and S. Massberg, “Patrolling the vascular borders: Platelets in immunity to infection and cancer,” Nature Reviews Immunology, vol. 19, no. 12. Springer Nature, pp. 747–760, 2019.' ista: 'Gärtner FR, Massberg S. 2019. Patrolling the vascular borders: Platelets in immunity to infection and cancer. Nature Reviews Immunology. 19(12), 747–760.' mla: 'Gärtner, Florian R., and Steffen Massberg. “Patrolling the Vascular Borders: Platelets in Immunity to Infection and Cancer.” Nature Reviews Immunology, vol. 19, no. 12, Springer Nature, 2019, pp. 747–760, doi:10.1038/s41577-019-0202-z.' short: F.R. Gärtner, S. Massberg, Nature Reviews Immunology 19 (2019) 747–760. date_created: 2019-08-20T17:24:32Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-08-29T07:16:14Z day: '01' department: - _id: MiSi doi: 10.1038/s41577-019-0202-z ec_funded: 1 external_id: isi: - '000499090600011' pmid: - '31409920' intvolume: ' 19' isi: 1 issue: '12' language: - iso: eng month: '12' oa_version: None page: 747–760 pmid: 1 project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Nature Reviews Immunology publication_identifier: eissn: - 1474-1741 issn: - 1474-1733 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Patrolling the vascular borders: Platelets in immunity to infection and cancer' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2019' ... --- _id: '6832' abstract: - lang: eng text: Steady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex–dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual—apicobasal and front-back—polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover. article_processing_charge: No author: - first_name: Denis full_name: Krndija, Denis last_name: Krndija - first_name: Fatima El full_name: Marjou, Fatima El last_name: Marjou - first_name: Boris full_name: Guirao, Boris last_name: Guirao - first_name: Sophie full_name: Richon, Sophie last_name: Richon - first_name: Olivier full_name: Leroy, Olivier last_name: Leroy - first_name: Yohanns full_name: Bellaiche, Yohanns last_name: Bellaiche - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Danijela Matic full_name: Vignjevic, Danijela Matic last_name: Vignjevic citation: ama: Krndija D, Marjou FE, Guirao B, et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science. 2019;365(6454):705-710. doi:10.1126/science.aau3429 apa: Krndija, D., Marjou, F. E., Guirao, B., Richon, S., Leroy, O., Bellaiche, Y., … Vignjevic, D. M. (2019). Active cell migration is critical for steady-state epithelial turnover in the gut. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aau3429 chicago: Krndija, Denis, Fatima El Marjou, Boris Guirao, Sophie Richon, Olivier Leroy, Yohanns Bellaiche, Edouard B Hannezo, and Danijela Matic Vignjevic. “Active Cell Migration Is Critical for Steady-State Epithelial Turnover in the Gut.” Science. American Association for the Advancement of Science, 2019. https://doi.org/10.1126/science.aau3429. ieee: D. Krndija et al., “Active cell migration is critical for steady-state epithelial turnover in the gut,” Science, vol. 365, no. 6454. American Association for the Advancement of Science, pp. 705–710, 2019. ista: Krndija D, Marjou FE, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo EB, Vignjevic DM. 2019. Active cell migration is critical for steady-state epithelial turnover in the gut. Science. 365(6454), 705–710. mla: Krndija, Denis, et al. “Active Cell Migration Is Critical for Steady-State Epithelial Turnover in the Gut.” Science, vol. 365, no. 6454, American Association for the Advancement of Science, 2019, pp. 705–10, doi:10.1126/science.aau3429. short: D. Krndija, F.E. Marjou, B. Guirao, S. Richon, O. Leroy, Y. Bellaiche, E.B. Hannezo, D.M. Vignjevic, Science 365 (2019) 705–710. date_created: 2019-08-25T22:00:51Z date_published: 2019-08-16T00:00:00Z date_updated: 2023-08-29T07:16:40Z day: '16' department: - _id: EdHa doi: 10.1126/science.aau3429 external_id: isi: - '000481688700050' pmid: - '31416964' intvolume: ' 365' isi: 1 issue: '6454' language: - iso: eng month: '08' oa_version: None page: 705-710 pmid: 1 publication: Science publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: Active cell migration is critical for steady-state epithelial turnover in the gut type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 365 year: '2019' ... --- _id: '6818' abstract: - lang: eng text: Indigoidine is a blue natural pigment, which can be efficiently synthetized in E. coli. In addition to its antioxidant and antimicrobial activities indigoidine due to its stability and deep blue color can find an application as an industrial, environmentally friendly dye. Moreover, similarly to its counterpart regular indigo dye, due to its molecular structure, indigoidine is an organic semiconductor. Fully conjugated aromatic moiety and intermolecular hydrogen bonding of indigoidine result in an unusually narrow bandgap for such a small molecule. This, in its turn, result is tight molecular packing in the solid state and opens a path for a wide range of application in organic and bio-electronics, such as electrochemical and field effect transistors, organic solar cells, light and bio-sensors etc. article_number: '107768' article_processing_charge: No article_type: original author: - first_name: Cigdem full_name: Yumusak, Cigdem last_name: Yumusak - first_name: Anna Jancik full_name: Prochazkova, Anna Jancik last_name: Prochazkova - first_name: Dogukan H full_name: Apaydin, Dogukan H id: 2FF891BC-F248-11E8-B48F-1D18A9856A87 last_name: Apaydin orcid: 0000-0002-1075-8857 - first_name: Hathaichanok full_name: Seelajaroen, Hathaichanok last_name: Seelajaroen - first_name: Niyazi Serdar full_name: Sariciftci, Niyazi Serdar last_name: Sariciftci - first_name: Martin full_name: Weiter, Martin last_name: Weiter - first_name: Jozef full_name: Krajcovic, Jozef last_name: Krajcovic - first_name: Yong full_name: Qin, Yong last_name: Qin - first_name: Wei full_name: Zhang, Wei last_name: Zhang - first_name: Jixun full_name: Zhan, Jixun last_name: Zhan - first_name: Alexander full_name: Kovalenko, Alexander last_name: Kovalenko citation: ama: Yumusak C, Prochazkova AJ, Apaydin DH, et al. Indigoidine - Biosynthesized organic semiconductor. Dyes and Pigments. 2019;171. doi:10.1016/j.dyepig.2019.107768 apa: Yumusak, C., Prochazkova, A. J., Apaydin, D. H., Seelajaroen, H., Sariciftci, N. S., Weiter, M., … Kovalenko, A. (2019). Indigoidine - Biosynthesized organic semiconductor. Dyes and Pigments. Elsevier. https://doi.org/10.1016/j.dyepig.2019.107768 chicago: Yumusak, Cigdem, Anna Jancik Prochazkova, Dogukan H Apaydin, Hathaichanok Seelajaroen, Niyazi Serdar Sariciftci, Martin Weiter, Jozef Krajcovic, et al. “Indigoidine - Biosynthesized Organic Semiconductor.” Dyes and Pigments. Elsevier, 2019. https://doi.org/10.1016/j.dyepig.2019.107768. ieee: C. Yumusak et al., “Indigoidine - Biosynthesized organic semiconductor,” Dyes and Pigments, vol. 171. Elsevier, 2019. ista: Yumusak C, Prochazkova AJ, Apaydin DH, Seelajaroen H, Sariciftci NS, Weiter M, Krajcovic J, Qin Y, Zhang W, Zhan J, Kovalenko A. 2019. Indigoidine - Biosynthesized organic semiconductor. Dyes and Pigments. 171, 107768. mla: Yumusak, Cigdem, et al. “Indigoidine - Biosynthesized Organic Semiconductor.” Dyes and Pigments, vol. 171, 107768, Elsevier, 2019, doi:10.1016/j.dyepig.2019.107768. short: C. Yumusak, A.J. Prochazkova, D.H. Apaydin, H. Seelajaroen, N.S. Sariciftci, M. Weiter, J. Krajcovic, Y. Qin, W. Zhang, J. Zhan, A. Kovalenko, Dyes and Pigments 171 (2019). date_created: 2019-08-18T22:00:39Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-08-29T07:11:09Z day: '01' department: - _id: MaIb doi: 10.1016/j.dyepig.2019.107768 external_id: isi: - '000484870700099' intvolume: ' 171' isi: 1 language: - iso: eng month: '12' oa_version: None publication: Dyes and Pigments publication_identifier: issn: - 0143-7208 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Indigoidine - Biosynthesized organic semiconductor type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 171 year: '2019' ... --- _id: '6828' abstract: - lang: eng text: In this paper we construct a family of exact functors from the category of Whittaker modules of the simple complex Lie algebra of type to the category of finite-dimensional modules of the graded affine Hecke algebra of type . Using results of Backelin [2] and of Arakawa-Suzuki [1], we prove that these functors map standard modules to standard modules (or zero) and simple modules to simple modules (or zero). Moreover, we show that each simple module of the graded affine Hecke algebra appears as the image of a simple Whittaker module. Since the Whittaker category contains the BGG category as a full subcategory, our results generalize results of Arakawa-Suzuki [1], which in turn generalize Schur-Weyl duality between finite-dimensional representations of and representations of the symmetric group . article_processing_charge: No article_type: original author: - first_name: Adam full_name: Brown, Adam id: 70B7FDF6-608D-11E9-9333-8535E6697425 last_name: Brown citation: ama: Brown A. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 2019;538:261-289. doi:10.1016/j.jalgebra.2019.07.027 apa: Brown, A. (2019). Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2019.07.027 chicago: Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra. Elsevier, 2019. https://doi.org/10.1016/j.jalgebra.2019.07.027. ieee: A. Brown, “Arakawa-Suzuki functors for Whittaker modules,” Journal of Algebra, vol. 538. Elsevier, pp. 261–289, 2019. ista: Brown A. 2019. Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. 538, 261–289. mla: Brown, Adam. “Arakawa-Suzuki Functors for Whittaker Modules.” Journal of Algebra, vol. 538, Elsevier, 2019, pp. 261–89, doi:10.1016/j.jalgebra.2019.07.027. short: A. Brown, Journal of Algebra 538 (2019) 261–289. date_created: 2019-08-22T07:54:13Z date_published: 2019-11-15T00:00:00Z date_updated: 2023-08-29T07:11:47Z day: '15' department: - _id: HeEd doi: 10.1016/j.jalgebra.2019.07.027 external_id: arxiv: - '1805.04676' isi: - '000487176300011' intvolume: ' 538' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.04676 month: '11' oa: 1 oa_version: Preprint page: 261-289 publication: Journal of Algebra publication_identifier: issn: - 0021-8693 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Arakawa-Suzuki functors for Whittaker modules type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 538 year: '2019' ... --- _id: '9803' abstract: - lang: eng text: Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life-cycle dynamics. Here, we investigate patterns of genetically-based sexual dimorphism in vegetative and reproductive traits of a wind-pollinated dioecious plant, Rumex hastatulus, across three life-cycle stages using open-pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1Y2) of the species. The direction and degree of sexual dimorphism was highly variable among populations and life-cycle stages. Sex-specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. Sex-specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life cycle. article_processing_charge: No author: - first_name: Gemma full_name: Puixeu Sala, Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala orcid: 0000-0001-8330-1754 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - first_name: David full_name: Field, David last_name: Field - first_name: Spencer C.H. full_name: Barrett, Spencer C.H. last_name: Barrett citation: ama: 'Puixeu Sala G, Pickup M, Field D, Barrett SCH. Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics. 2019. doi:10.5061/dryad.n1701c9' apa: 'Puixeu Sala, G., Pickup, M., Field, D., & Barrett, S. C. H. (2019). Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics. Dryad. https://doi.org/10.5061/dryad.n1701c9' chicago: 'Puixeu Sala, Gemma, Melinda Pickup, David Field, and Spencer C.H. Barrett. “Data from: Variation in Sexual Dimorphism in a Wind-Pollinated Plant: The Influence of Geographical Context and Life-Cycle Dynamics.” Dryad, 2019. https://doi.org/10.5061/dryad.n1701c9.' ieee: 'G. Puixeu Sala, M. Pickup, D. Field, and S. C. H. Barrett, “Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics.” Dryad, 2019.' ista: 'Puixeu Sala G, Pickup M, Field D, Barrett SCH. 2019. Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics, Dryad, 10.5061/dryad.n1701c9.' mla: 'Puixeu Sala, Gemma, et al. Data from: Variation in Sexual Dimorphism in a Wind-Pollinated Plant: The Influence of Geographical Context and Life-Cycle Dynamics. Dryad, 2019, doi:10.5061/dryad.n1701c9.' short: G. Puixeu Sala, M. Pickup, D. Field, S.C.H. Barrett, (2019). date_created: 2021-08-06T11:48:42Z date_published: 2019-07-22T00:00:00Z date_updated: 2023-08-29T07:17:07Z day: '22' department: - _id: NiBa - _id: BeVi doi: 10.5061/dryad.n1701c9 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.n1701c9 month: '07' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '14058' relation: used_in_publication status: public - id: '6831' relation: used_in_publication status: public status: public title: 'Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '6836' abstract: - lang: eng text: Direct reciprocity is a powerful mechanism for the evolution of cooperation on the basis of repeated interactions1,2,3,4. It requires that interacting individuals are sufficiently equal, such that everyone faces similar consequences when they cooperate or defect. Yet inequality is ubiquitous among humans5,6 and is generally considered to undermine cooperation and welfare7,8,9,10. Most previous models of reciprocity do not include inequality11,12,13,14,15. These models assume that individuals are the same in all relevant aspects. Here we introduce a general framework to study direct reciprocity among unequal individuals. Our model allows for multiple sources of inequality. Subjects can differ in their endowments, their productivities and in how much they benefit from public goods. We find that extreme inequality prevents cooperation. But if subjects differ in productivity, some endowment inequality can be necessary for cooperation to prevail. Our mathematical predictions are supported by a behavioural experiment in which we vary the endowments and productivities of the subjects. We observe that overall welfare is maximized when the two sources of heterogeneity are aligned, such that more productive individuals receive higher endowments. By contrast, when endowments and productivities are misaligned, cooperation quickly breaks down. Our findings have implications for policy-makers concerned with equity, efficiency and the provisioning of public goods. article_processing_charge: No article_type: letter_note author: - first_name: Oliver P. full_name: Hauser, Oliver P. last_name: Hauser - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Hauser OP, Hilbe C, Chatterjee K, Nowak MA. Social dilemmas among unequals. Nature. 2019;572(7770):524-527. doi:10.1038/s41586-019-1488-5 apa: Hauser, O. P., Hilbe, C., Chatterjee, K., & Nowak, M. A. (2019). Social dilemmas among unequals. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1488-5 chicago: Hauser, Oliver P., Christian Hilbe, Krishnendu Chatterjee, and Martin A. Nowak. “Social Dilemmas among Unequals.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1488-5. ieee: O. P. Hauser, C. Hilbe, K. Chatterjee, and M. A. Nowak, “Social dilemmas among unequals,” Nature, vol. 572, no. 7770. Springer Nature, pp. 524–527, 2019. ista: Hauser OP, Hilbe C, Chatterjee K, Nowak MA. 2019. Social dilemmas among unequals. Nature. 572(7770), 524–527. mla: Hauser, Oliver P., et al. “Social Dilemmas among Unequals.” Nature, vol. 572, no. 7770, Springer Nature, 2019, pp. 524–27, doi:10.1038/s41586-019-1488-5. short: O.P. Hauser, C. Hilbe, K. Chatterjee, M.A. Nowak, Nature 572 (2019) 524–527. date_created: 2019-09-01T22:00:56Z date_published: 2019-08-22T00:00:00Z date_updated: 2023-08-29T07:42:54Z day: '22' ddc: - '000' department: - _id: KrCh doi: 10.1038/s41586-019-1488-5 ec_funded: 1 external_id: isi: - '000482219600045' file: - access_level: open_access checksum: a6e0e3168bf62de624e7772cdfaeb26f content_type: application/pdf creator: dernst date_created: 2020-05-14T10:00:32Z date_updated: 2020-07-14T12:47:42Z file_id: '7828' file_name: 2019_Nature_Hauser.pdf file_size: 18577756 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 572' isi: 1 issue: '7770' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 524-527 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/too-much-inequality-impedes-support-for-public-goods-according-to-research-published-in-nature/ scopus_import: '1' status: public title: Social dilemmas among unequals type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 572 year: '2019' ... --- _id: '6844' abstract: - lang: eng text: Studying the progression of the proliferative and differentiative patterns of neural stem cells at the individual cell level is crucial to the understanding of cortex development and how the disruption of such patterns can lead to malformations and neurodevelopmental diseases. However, our understanding of the precise lineage progression programme at single-cell resolution is still incomplete due to the technical variations in lineage- tracing approaches. One of the key challenges involves developing a robust theoretical framework in which we can integrate experimental observations and introduce correction factors to obtain a reliable and representative description of the temporal modulation of proliferation and differentiation. In order to obtain more conclusive insights, we carry out virtual clonal analysis using mathematical modelling and compare our results against experimental data. Using a dataset obtained with Mosaic Analysis with Double Markers, we illustrate how the theoretical description can be exploited to interpret and reconcile the disparity between virtual and experimental results. article_processing_charge: No article_type: original author: - first_name: Noemi full_name: Picco, Noemi last_name: Picco - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Julio full_name: Rodarte, Julio id: 3C70A038-F248-11E8-B48F-1D18A9856A87 last_name: Rodarte - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Zoltán full_name: Molnár, Zoltán last_name: Molnár - first_name: Philip K. full_name: Maini, Philip K. last_name: Maini - first_name: Thomas E. full_name: Woolley, Thomas E. last_name: Woolley citation: ama: Picco N, Hippenmeyer S, Rodarte J, et al. A mathematical insight into cell labelling experiments for clonal analysis. Journal of Anatomy. 2019;235(3):686-696. doi:10.1111/joa.13001 apa: Picco, N., Hippenmeyer, S., Rodarte, J., Streicher, C., Molnár, Z., Maini, P. K., & Woolley, T. E. (2019). A mathematical insight into cell labelling experiments for clonal analysis. Journal of Anatomy. Wiley. https://doi.org/10.1111/joa.13001 chicago: Picco, Noemi, Simon Hippenmeyer, Julio Rodarte, Carmen Streicher, Zoltán Molnár, Philip K. Maini, and Thomas E. Woolley. “A Mathematical Insight into Cell Labelling Experiments for Clonal Analysis.” Journal of Anatomy. Wiley, 2019. https://doi.org/10.1111/joa.13001. ieee: N. Picco et al., “A mathematical insight into cell labelling experiments for clonal analysis,” Journal of Anatomy, vol. 235, no. 3. Wiley, pp. 686–696, 2019. ista: Picco N, Hippenmeyer S, Rodarte J, Streicher C, Molnár Z, Maini PK, Woolley TE. 2019. A mathematical insight into cell labelling experiments for clonal analysis. Journal of Anatomy. 235(3), 686–696. mla: Picco, Noemi, et al. “A Mathematical Insight into Cell Labelling Experiments for Clonal Analysis.” Journal of Anatomy, vol. 235, no. 3, Wiley, 2019, pp. 686–96, doi:10.1111/joa.13001. short: N. Picco, S. Hippenmeyer, J. Rodarte, C. Streicher, Z. Molnár, P.K. Maini, T.E. Woolley, Journal of Anatomy 235 (2019) 686–696. date_created: 2019-09-02T11:57:28Z date_published: 2019-09-01T00:00:00Z date_updated: 2023-08-29T07:19:39Z day: '01' ddc: - '570' department: - _id: SiHi doi: 10.1111/joa.13001 ec_funded: 1 external_id: isi: - '000482426800017' file: - access_level: open_access checksum: 160f960844b204057f20896e0e1f8ee7 content_type: application/pdf creator: dernst date_created: 2019-09-02T12:05:18Z date_updated: 2020-07-14T12:47:42Z file_id: '6845' file_name: 2019_JournalAnatomy_Picco.pdf file_size: 1192994 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 235' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '09' oa: 1 oa_version: Published Version page: 686-696 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Journal of Anatomy publication_identifier: eissn: - 1469-7580 issn: - 0021-8782 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: A mathematical insight into cell labelling experiments for clonal analysis tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 235 year: '2019' ... --- _id: '6855' abstract: - lang: eng text: Many traits of interest are highly heritable and genetically complex, meaning that much of the variation they exhibit arises from differences at numerous loci in the genome. Complex traits and their evolution have been studied for more than a century, but only in the last decade have genome-wide association studies (GWASs) in humans begun to reveal their genetic basis. Here, we bring these threads of research together to ask how findings from GWASs can further our understanding of the processes that give rise to heritable variation in complex traits and of the genetic basis of complex trait evolution in response to changing selection pressures (i.e., of polygenic adaptation). Conversely, we ask how evolutionary thinking helps us to interpret findings from GWASs and informs related efforts of practical importance. article_processing_charge: No author: - first_name: Guy full_name: Sella, Guy last_name: Sella - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Sella G, Barton NH. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annual Review of Genomics and Human Genetics. 2019;20:461-493. doi:10.1146/annurev-genom-083115-022316 apa: Sella, G., & Barton, N. H. (2019). Thinking about the evolution of complex traits in the era of genome-wide association studies. Annual Review of Genomics and Human Genetics. Annual Reviews. https://doi.org/10.1146/annurev-genom-083115-022316 chicago: Sella, Guy, and Nicholas H Barton. “Thinking about the Evolution of Complex Traits in the Era of Genome-Wide Association Studies.” Annual Review of Genomics and Human Genetics. Annual Reviews, 2019. https://doi.org/10.1146/annurev-genom-083115-022316. ieee: G. Sella and N. H. Barton, “Thinking about the evolution of complex traits in the era of genome-wide association studies,” Annual Review of Genomics and Human Genetics, vol. 20. Annual Reviews, pp. 461–493, 2019. ista: Sella G, Barton NH. 2019. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annual Review of Genomics and Human Genetics. 20, 461–493. mla: Sella, Guy, and Nicholas H. Barton. “Thinking about the Evolution of Complex Traits in the Era of Genome-Wide Association Studies.” Annual Review of Genomics and Human Genetics, vol. 20, Annual Reviews, 2019, pp. 461–93, doi:10.1146/annurev-genom-083115-022316. short: G. Sella, N.H. Barton, Annual Review of Genomics and Human Genetics 20 (2019) 461–493. date_created: 2019-09-07T14:28:29Z date_published: 2019-07-05T00:00:00Z date_updated: 2023-08-29T07:49:38Z day: '05' ddc: - '576' department: - _id: NiBa doi: 10.1146/annurev-genom-083115-022316 external_id: isi: - '000485148400020' pmid: - '31283361' file: - access_level: open_access checksum: 23d3978cf4739a89ce2c3e779f9305ca content_type: application/pdf creator: dernst date_created: 2019-09-09T07:22:12Z date_updated: 2020-07-14T12:47:42Z file_id: '6862' file_name: 2019_AnnualReview_Sella.pdf file_size: 411491 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 20' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 461-493 pmid: 1 publication: Annual Review of Genomics and Human Genetics publication_identifier: eissn: - 1545-293X issn: - 1527-8204 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Thinking about the evolution of complex traits in the era of genome-wide association studies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2019' ... --- _id: '6840' abstract: - lang: eng text: "We discuss thermodynamic properties of harmonically trapped\r\nimperfect quantum gases. The spatial inhomogeneity of these systems imposes\r\na redefinition of the mean-field interparticle potential energy as compared\r\nto the homogeneous case. In our approach, it takes the form a\r\n2N2 ωd, where\r\nN is the number of particles, ω—the harmonic trap frequency, d—system’s\r\ndimensionality, and a is a parameter characterizing the interparticle interaction.\r\nWe provide arguments that this model corresponds to the limiting case of\r\na long-ranged interparticle potential of vanishingly small amplitude. This\r\nconclusion is drawn from a computation similar to the well-known Kac scaling\r\nprocedure, which is presented here in a form adapted to the case of an isotropic\r\nharmonic trap. We show that within the model, the imperfect gas of trapped\r\nrepulsive bosons undergoes the Bose–Einstein condensation provided d > 1.\r\nThe main result of our analysis is that in d = 1 the gas of attractive imperfect\r\nfermions with a = −aF < 0 is thermodynamically equivalent to the gas of\r\nrepulsive bosons with a = aB > 0 provided the parameters aF and aB fulfill\r\nthe relation aB + aF = \x1F. This result supplements similar recent conclusion\r\nabout thermodynamic equivalence of two-dimensional (2D) uniform imperfect\r\nrepulsive Bose and attractive Fermi gases." article_number: '063101' article_processing_charge: No author: - first_name: Krzysztof full_name: Mysliwy, Krzysztof id: 316457FC-F248-11E8-B48F-1D18A9856A87 last_name: Mysliwy - first_name: Marek full_name: Napiórkowski, Marek last_name: Napiórkowski citation: ama: 'Mysliwy K, Napiórkowski M. Thermodynamics of inhomogeneous imperfect quantum gases in harmonic traps. Journal of Statistical Mechanics: Theory and Experiment. 2019;2019(6). doi:10.1088/1742-5468/ab190d' apa: 'Mysliwy, K., & Napiórkowski, M. (2019). Thermodynamics of inhomogeneous imperfect quantum gases in harmonic traps. Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing. https://doi.org/10.1088/1742-5468/ab190d' chicago: 'Mysliwy, Krzysztof, and Marek Napiórkowski. “Thermodynamics of Inhomogeneous Imperfect Quantum Gases in Harmonic Traps.” Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing, 2019. https://doi.org/10.1088/1742-5468/ab190d.' ieee: 'K. Mysliwy and M. Napiórkowski, “Thermodynamics of inhomogeneous imperfect quantum gases in harmonic traps,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2019, no. 6. IOP Publishing, 2019.' ista: 'Mysliwy K, Napiórkowski M. 2019. Thermodynamics of inhomogeneous imperfect quantum gases in harmonic traps. Journal of Statistical Mechanics: Theory and Experiment. 2019(6), 063101.' mla: 'Mysliwy, Krzysztof, and Marek Napiórkowski. “Thermodynamics of Inhomogeneous Imperfect Quantum Gases in Harmonic Traps.” Journal of Statistical Mechanics: Theory and Experiment, vol. 2019, no. 6, 063101, IOP Publishing, 2019, doi:10.1088/1742-5468/ab190d.' short: 'K. Mysliwy, M. Napiórkowski, Journal of Statistical Mechanics: Theory and Experiment 2019 (2019).' date_created: 2019-09-01T22:00:59Z date_published: 2019-06-13T00:00:00Z date_updated: 2023-08-29T07:19:13Z day: '13' department: - _id: RoSe doi: 10.1088/1742-5468/ab190d ec_funded: 1 external_id: arxiv: - '1810.02209' isi: - '000471650100001' intvolume: ' 2019' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.02209 month: '06' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 'Journal of Statistical Mechanics: Theory and Experiment' publication_identifier: eissn: - 1742-5468 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Thermodynamics of inhomogeneous imperfect quantum gases in harmonic traps type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2019 year: '2019' ... --- _id: '6843' abstract: - lang: eng text: The aim of this short paper is to offer a complete characterization of all (not necessarily surjective) isometric embeddings of the Wasserstein space Wp(X), where S is a countable discrete metric space and 0Journal of Mathematical Analysis and Applications. 2019;480(2). doi:10.1016/j.jmaa.2019.123435 apa: Gehér, G. P., Titkos, T., & Virosztek, D. (2019). On isometric embeddings of Wasserstein spaces – the discrete case. Journal of Mathematical Analysis and Applications. Elsevier. https://doi.org/10.1016/j.jmaa.2019.123435 chicago: Gehér, György Pál, Tamás Titkos, and Daniel Virosztek. “On Isometric Embeddings of Wasserstein Spaces – the Discrete Case.” Journal of Mathematical Analysis and Applications. Elsevier, 2019. https://doi.org/10.1016/j.jmaa.2019.123435. ieee: G. P. Gehér, T. Titkos, and D. Virosztek, “On isometric embeddings of Wasserstein spaces – the discrete case,” Journal of Mathematical Analysis and Applications, vol. 480, no. 2. Elsevier, 2019. ista: Gehér GP, Titkos T, Virosztek D. 2019. On isometric embeddings of Wasserstein spaces – the discrete case. Journal of Mathematical Analysis and Applications. 480(2), 123435. mla: Gehér, György Pál, et al. “On Isometric Embeddings of Wasserstein Spaces – the Discrete Case.” Journal of Mathematical Analysis and Applications, vol. 480, no. 2, 123435, Elsevier, 2019, doi:10.1016/j.jmaa.2019.123435. short: G.P. Gehér, T. Titkos, D. Virosztek, Journal of Mathematical Analysis and Applications 480 (2019). date_created: 2019-09-01T22:01:01Z date_published: 2019-12-15T00:00:00Z date_updated: 2023-08-29T07:18:50Z day: '15' department: - _id: LaEr doi: 10.1016/j.jmaa.2019.123435 ec_funded: 1 external_id: arxiv: - '1809.01101' isi: - '000486563900031' intvolume: ' 480' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.01101 month: '12' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Mathematical Analysis and Applications publication_identifier: eissn: - '10960813' issn: - 0022247X publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: On isometric embeddings of Wasserstein spaces – the discrete case type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 480 year: '2019' ... --- _id: '6835' abstract: - lang: eng text: We derive the Hasse principle and weak approximation for fibrations of certain varieties in the spirit of work by Colliot-Thélène–Sansuc and Harpaz–Skorobogatov–Wittenberg. Our varieties are defined through polynomials in many variables and part of our work is devoted to establishing Schinzel's hypothesis for polynomials of this kind. This last part is achieved by using arguments behind Birch's well-known result regarding the Hasse principle for complete intersections with the notable difference that we prove our result in 50% fewer variables than in the classical Birch setting. We also study the problem of square-free values of an integer polynomial with 66.6% fewer variables than in the Birch setting. article_number: '102794' article_processing_charge: No article_type: original author: - first_name: Kevin N full_name: Destagnol, Kevin N id: 44DDECBC-F248-11E8-B48F-1D18A9856A87 last_name: Destagnol - first_name: Efthymios full_name: Sofos, Efthymios last_name: Sofos citation: ama: Destagnol KN, Sofos E. Rational points and prime values of polynomials in moderately many variables. Bulletin des Sciences Mathematiques. 2019;156(11). doi:10.1016/j.bulsci.2019.102794 apa: Destagnol, K. N., & Sofos, E. (2019). Rational points and prime values of polynomials in moderately many variables. Bulletin Des Sciences Mathematiques. Elsevier. https://doi.org/10.1016/j.bulsci.2019.102794 chicago: Destagnol, Kevin N, and Efthymios Sofos. “Rational Points and Prime Values of Polynomials in Moderately Many Variables.” Bulletin Des Sciences Mathematiques. Elsevier, 2019. https://doi.org/10.1016/j.bulsci.2019.102794. ieee: K. N. Destagnol and E. Sofos, “Rational points and prime values of polynomials in moderately many variables,” Bulletin des Sciences Mathematiques, vol. 156, no. 11. Elsevier, 2019. ista: Destagnol KN, Sofos E. 2019. Rational points and prime values of polynomials in moderately many variables. Bulletin des Sciences Mathematiques. 156(11), 102794. mla: Destagnol, Kevin N., and Efthymios Sofos. “Rational Points and Prime Values of Polynomials in Moderately Many Variables.” Bulletin Des Sciences Mathematiques, vol. 156, no. 11, 102794, Elsevier, 2019, doi:10.1016/j.bulsci.2019.102794. short: K.N. Destagnol, E. Sofos, Bulletin Des Sciences Mathematiques 156 (2019). date_created: 2019-09-01T22:00:55Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-08-29T07:18:02Z day: '01' department: - _id: TiBr doi: 10.1016/j.bulsci.2019.102794 external_id: arxiv: - '1801.03082' isi: - '000496342100002' intvolume: ' 156' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1801.03082 month: '11' oa: 1 oa_version: Preprint publication: Bulletin des Sciences Mathematiques publication_identifier: issn: - 0007-4497 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Rational points and prime values of polynomials in moderately many variables type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 156 year: '2019' ... --- _id: '6837' abstract: - lang: eng text: Migrasomes are a recently discovered type of extracellular vesicles that are characteristically generated along retraction fibers in migrating cells. Two studies now show how migrasomes are formed and how they function in the physiologically relevant context of the developing zebrafish embryo. article_processing_charge: No author: - first_name: Ste full_name: Tavano, Ste id: 2F162F0C-F248-11E8-B48F-1D18A9856A87 last_name: Tavano orcid: 0000-0001-9970-7804 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Tavano S, Heisenberg C-PJ. Migrasomes take center stage. Nature Cell Biology. 2019;21(8):918-920. doi:10.1038/s41556-019-0369-3 apa: Tavano, S., & Heisenberg, C.-P. J. (2019). Migrasomes take center stage. Nature Cell Biology. Springer Nature. https://doi.org/10.1038/s41556-019-0369-3 chicago: Tavano, Ste, and Carl-Philipp J Heisenberg. “Migrasomes Take Center Stage.” Nature Cell Biology. Springer Nature, 2019. https://doi.org/10.1038/s41556-019-0369-3. ieee: S. Tavano and C.-P. J. Heisenberg, “Migrasomes take center stage,” Nature Cell Biology, vol. 21, no. 8. Springer Nature, pp. 918–920, 2019. ista: Tavano S, Heisenberg C-PJ. 2019. Migrasomes take center stage. Nature Cell Biology. 21(8), 918–920. mla: Tavano, Ste, and Carl-Philipp J. Heisenberg. “Migrasomes Take Center Stage.” Nature Cell Biology, vol. 21, no. 8, Springer Nature, 2019, pp. 918–20, doi:10.1038/s41556-019-0369-3. short: S. Tavano, C.-P.J. Heisenberg, Nature Cell Biology 21 (2019) 918–920. date_created: 2019-09-01T22:00:57Z date_published: 2019-08-01T00:00:00Z date_updated: 2023-08-29T07:42:20Z day: '01' department: - _id: CaHe doi: 10.1038/s41556-019-0369-3 external_id: isi: - '000478029000003' pmid: - '31371826' intvolume: ' 21' isi: 1 issue: '8' language: - iso: eng month: '08' oa_version: None page: 918-920 pmid: 1 publication: Nature Cell Biology publication_identifier: eissn: - 1476-4679 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Migrasomes take center stage type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2019' ... --- _id: '6867' abstract: - lang: eng text: A novel magnetic scratch method achieves repeatability, reproducibility and geometric control greater than pipette scratch assays and closely approximating the precision of cell exclusion assays while inducing the cell injury inherently necessary for wound healing assays. The magnetic scratch is affordable, easily implemented and standardisable and thus may contribute toward better comparability of data generated in different studies and laboratories. article_number: '12625' article_processing_charge: No author: - first_name: M. full_name: Fenu, M. last_name: Fenu - first_name: T. full_name: Bettermann, T. last_name: Bettermann - first_name: C. full_name: Vogl, C. last_name: Vogl - first_name: Nasser full_name: Darwish-Miranda, Nasser id: 39CD9926-F248-11E8-B48F-1D18A9856A87 last_name: Darwish-Miranda orcid: 0000-0002-8821-8236 - first_name: J. full_name: Schramel, J. last_name: Schramel - first_name: F. full_name: Jenner, F. last_name: Jenner - first_name: I. full_name: Ribitsch, I. last_name: Ribitsch citation: ama: Fenu M, Bettermann T, Vogl C, et al. A novel magnet-based scratch method for standardisation of wound-healing assays. Scientific Reports. 2019;9(1). doi:10.1038/s41598-019-48930-7 apa: Fenu, M., Bettermann, T., Vogl, C., Darwish-Miranda, N., Schramel, J., Jenner, F., & Ribitsch, I. (2019). A novel magnet-based scratch method for standardisation of wound-healing assays. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-019-48930-7 chicago: Fenu, M., T. Bettermann, C. Vogl, Nasser Darwish-Miranda, J. Schramel, F. Jenner, and I. Ribitsch. “A Novel Magnet-Based Scratch Method for Standardisation of Wound-Healing Assays.” Scientific Reports. Springer Nature, 2019. https://doi.org/10.1038/s41598-019-48930-7. ieee: M. Fenu et al., “A novel magnet-based scratch method for standardisation of wound-healing assays,” Scientific Reports, vol. 9, no. 1. Springer Nature, 2019. ista: Fenu M, Bettermann T, Vogl C, Darwish-Miranda N, Schramel J, Jenner F, Ribitsch I. 2019. A novel magnet-based scratch method for standardisation of wound-healing assays. Scientific Reports. 9(1), 12625. mla: Fenu, M., et al. “A Novel Magnet-Based Scratch Method for Standardisation of Wound-Healing Assays.” Scientific Reports, vol. 9, no. 1, 12625, Springer Nature, 2019, doi:10.1038/s41598-019-48930-7. short: M. Fenu, T. Bettermann, C. Vogl, N. Darwish-Miranda, J. Schramel, F. Jenner, I. Ribitsch, Scientific Reports 9 (2019). date_created: 2019-09-15T22:00:42Z date_published: 2019-09-02T00:00:00Z date_updated: 2023-08-29T07:55:15Z day: '02' ddc: - '570' department: - _id: Bio doi: 10.1038/s41598-019-48930-7 external_id: isi: - '000483697800007' pmid: - '31477739' file: - access_level: open_access checksum: 9cfd986d4108e288cc72276ef047ab0c content_type: application/pdf creator: dernst date_created: 2019-09-16T12:42:40Z date_updated: 2020-07-14T12:47:42Z file_id: '6879' file_name: 2019_ScientificReports_Fenu.pdf file_size: 3523795 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_identifier: eissn: - '20452322' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A novel magnet-based scratch method for standardisation of wound-healing assays tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2019' ... --- _id: '6859' abstract: - lang: eng text: V (vacuolar)/A (archaeal)-type adenosine triphosphatases (ATPases), found in archaeaand eubacteria, couple ATP hydrolysis or synthesis to proton translocation across theplasma membrane using the rotary-catalysis mechanism. They belong to the V-typeATPase family, which differs from the mitochondrial/chloroplast F-type ATP synthasesin overall architecture. We solved cryo–electron microscopy structures of the intactThermus thermophilusV/A-ATPase, reconstituted into lipid nanodiscs, in three rotationalstates and two substates. These structures indicate substantial flexibility betweenV1and Voin a working enzyme, which results from mechanical competition between centralshaft rotation and resistance from the peripheral stalks. We also describedetails of adenosine diphosphate inhibition release, V1-Votorque transmission, andproton translocation, which are relevant for the entire V-type ATPase family. acknowledged_ssus: - _id: ScienComp article_number: eaaw9144 article_processing_charge: No author: - first_name: Long full_name: Zhou, Long id: 3E751364-F248-11E8-B48F-1D18A9856A87 last_name: Zhou orcid: 0000-0002-1864-8951 - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Zhou L, Sazanov LA. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science. 2019;365(6455). doi:10.1126/science.aaw9144 apa: Zhou, L., & Sazanov, L. A. (2019). Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science. AAAS. https://doi.org/10.1126/science.aaw9144 chicago: Zhou, Long, and Leonid A Sazanov. “Structure and Conformational Plasticity of the Intact Thermus Thermophilus V/A-Type ATPase.” Science. AAAS, 2019. https://doi.org/10.1126/science.aaw9144. ieee: L. Zhou and L. A. Sazanov, “Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase,” Science, vol. 365, no. 6455. AAAS, 2019. ista: Zhou L, Sazanov LA. 2019. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science. 365(6455), eaaw9144. mla: Zhou, Long, and Leonid A. Sazanov. “Structure and Conformational Plasticity of the Intact Thermus Thermophilus V/A-Type ATPase.” Science, vol. 365, no. 6455, eaaw9144, AAAS, 2019, doi:10.1126/science.aaw9144. short: L. Zhou, L.A. Sazanov, Science 365 (2019). date_created: 2019-09-07T19:04:45Z date_published: 2019-08-23T00:00:00Z date_updated: 2023-08-29T07:52:02Z day: '23' department: - _id: LeSa doi: 10.1126/science.aaw9144 external_id: isi: - '000482464000043' pmid: - '31439765' intvolume: ' 365' isi: 1 issue: '6455' language: - iso: eng month: '08' oa_version: None pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: AAAS quality_controlled: '1' related_material: link: - description: News on IST Website relation: press_release url: https://ist.ac.at/en/news/structure-of-protein-nano-turbine-revealed/ scopus_import: '1' status: public title: Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 365 year: '2019' ... --- _id: '6858' article_processing_charge: No article_type: review author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. Is speciation driven by cycles of mixing and isolation? National Science Review. 2019;6(2):291-292. doi:10.1093/nsr/nwy113 apa: Barton, N. H. (2019). Is speciation driven by cycles of mixing and isolation? National Science Review. Oxford University Press. https://doi.org/10.1093/nsr/nwy113 chicago: Barton, Nicholas H. “Is Speciation Driven by Cycles of Mixing and Isolation?” National Science Review. Oxford University Press, 2019. https://doi.org/10.1093/nsr/nwy113. ieee: N. H. Barton, “Is speciation driven by cycles of mixing and isolation?,” National Science Review, vol. 6, no. 2. Oxford University Press, pp. 291–292, 2019. ista: Barton NH. 2019. Is speciation driven by cycles of mixing and isolation? National Science Review. 6(2), 291–292. mla: Barton, Nicholas H. “Is Speciation Driven by Cycles of Mixing and Isolation?” National Science Review, vol. 6, no. 2, Oxford University Press, 2019, pp. 291–92, doi:10.1093/nsr/nwy113. short: N.H. Barton, National Science Review 6 (2019) 291–292. date_created: 2019-09-07T14:43:02Z date_published: 2019-03-01T00:00:00Z date_updated: 2023-08-29T07:51:09Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1093/nsr/nwy113 external_id: isi: - '000467957400025' file: - access_level: open_access checksum: 571d60fa21a568607d1fd04e119da88c content_type: application/pdf creator: dernst date_created: 2020-10-02T09:16:44Z date_updated: 2020-10-02T09:16:44Z file_id: '8595' file_name: 2019_NSR_Barton.pdf file_size: 106463 relation: main_file success: 1 file_date_updated: 2020-10-02T09:16:44Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '2' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 291-292 publication: National Science Review publication_identifier: eissn: - 2053-714X issn: - 2095-5138 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Is speciation driven by cycles of mixing and isolation? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2019' ... --- _id: '6868' abstract: - lang: eng text: "Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical rhythmicity and excitability in the heart and brain, but the function of HCN channels at the subcellular level in axons remains poorly understood. Here, we show that the action potential conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels ensure reliable high-frequency firing and are strongly modulated by cAMP (EC50 40 mM; estimated endogenous cAMP concentration 13 mM). In addition, immunogold-electron microscopy revealed HCN2 as the dominating subunit in cerebellar mossy fibers. Computational modeling indicated that HCN2 channels control conduction velocity primarily by altering the resting membrane potential\r\nand are associated with significant metabolic costs. These results suggest that the cAMP-HCN pathway provides neuromodulators with an opportunity to finely tune energy consumption and temporal delays across axons in the brain." article_number: e42766 article_processing_charge: No article_type: original author: - first_name: Niklas full_name: Byczkowicz, Niklas last_name: Byczkowicz - first_name: Abdelmoneim full_name: Eshra, Abdelmoneim last_name: Eshra - first_name: Jacqueline-Claire full_name: Montanaro-Punzengruber, Jacqueline-Claire id: 3786AB44-F248-11E8-B48F-1D18A9856A87 last_name: Montanaro-Punzengruber - first_name: Andrea full_name: Trevisiol, Andrea last_name: Trevisiol - first_name: Johannes full_name: Hirrlinger, Johannes last_name: Hirrlinger - first_name: Maarten Hp full_name: Kole, Maarten Hp last_name: Kole - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Stefan full_name: Hallermann, Stefan last_name: Hallermann citation: ama: Byczkowicz N, Eshra A, Montanaro-Punzengruber J-C, et al. HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. eLife. 2019;8. doi:10.7554/eLife.42766 apa: Byczkowicz, N., Eshra, A., Montanaro-Punzengruber, J.-C., Trevisiol, A., Hirrlinger, J., Kole, M. H., … Hallermann, S. (2019). HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.42766 chicago: Byczkowicz, Niklas, Abdelmoneim Eshra, Jacqueline-Claire Montanaro-Punzengruber, Andrea Trevisiol, Johannes Hirrlinger, Maarten Hp Kole, Ryuichi Shigemoto, and Stefan Hallermann. “HCN Channel-Mediated Neuromodulation Can Control Action Potential Velocity and Fidelity in Central Axons.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.42766. ieee: N. Byczkowicz et al., “HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Byczkowicz N, Eshra A, Montanaro-Punzengruber J-C, Trevisiol A, Hirrlinger J, Kole MH, Shigemoto R, Hallermann S. 2019. HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons. eLife. 8, e42766. mla: Byczkowicz, Niklas, et al. “HCN Channel-Mediated Neuromodulation Can Control Action Potential Velocity and Fidelity in Central Axons.” ELife, vol. 8, e42766, eLife Sciences Publications, 2019, doi:10.7554/eLife.42766. short: N. Byczkowicz, A. Eshra, J.-C. Montanaro-Punzengruber, A. Trevisiol, J. Hirrlinger, M.H. Kole, R. Shigemoto, S. Hallermann, ELife 8 (2019). date_created: 2019-09-15T22:00:43Z date_published: 2019-09-09T00:00:00Z date_updated: 2023-08-30T06:17:06Z day: '09' ddc: - '570' department: - _id: RySh doi: 10.7554/eLife.42766 external_id: isi: - '000485663900001' file: - access_level: open_access checksum: c350b7861ef0fb537cae8a3232aec016 content_type: application/pdf creator: dernst date_created: 2019-09-16T13:14:33Z date_updated: 2020-07-14T12:47:42Z file_id: '6880' file_name: 2019_eLife_Byczkowicz.pdf file_size: 4008137 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: HCN channel-mediated neuromodulation can control action potential velocity and fidelity in central axons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '6897' abstract: - lang: eng text: The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: "We thank Jiri Friml and Phillip Brewer for inspiring discussion and for help in preparing the manuscript. This research was supported by the Scientific Service Units (SSU) of IST-Austria through resources provided by the Bioimaging Facility\r\n(BIF), the Life Science Facility (LSF).\r\nThis work was supported by grants from the European Research Council (Starting Independent Research Grant ERC-2007-Stg- 207362-HCPO to E.B.). J.P. and M.S. received funds from European Regional Development Fund-Project ‘Centre for Experimental Plant Biology’ (No. CZ.02.1.01/0.0/0.0/16_019/0000738)." article_number: dev175919 article_processing_charge: No article_type: original author: - first_name: Qiang full_name: Zhu, Qiang id: 40A4B9E6-F248-11E8-B48F-1D18A9856A87 last_name: Zhu - first_name: Marçal full_name: Gallemi, Marçal id: 460C6802-F248-11E8-B48F-1D18A9856A87 last_name: Gallemi orcid: 0000-0003-4675-6893 - first_name: Jiří full_name: Pospíšil, Jiří last_name: Pospíšil - first_name: Petra full_name: Žádníková, Petra last_name: Žádníková - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Zhu Q, Gallemi M, Pospíšil J, Žádníková P, Strnad M, Benková E. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development. 2019;146(17). doi:10.1242/dev.175919 apa: Zhu, Q., Gallemi, M., Pospíšil, J., Žádníková, P., Strnad, M., & Benková, E. (2019). Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development. The Company of Biologists. https://doi.org/10.1242/dev.175919 chicago: Zhu, Qiang, Marçal Gallemi, Jiří Pospíšil, Petra Žádníková, Miroslav Strnad, and Eva Benková. “Root Gravity Response Module Guides Differential Growth Determining Both Root Bending and Apical Hook Formation in Arabidopsis.” Development. The Company of Biologists, 2019. https://doi.org/10.1242/dev.175919. ieee: Q. Zhu, M. Gallemi, J. Pospíšil, P. Žádníková, M. Strnad, and E. Benková, “Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis,” Development, vol. 146, no. 17. The Company of Biologists, 2019. ista: Zhu Q, Gallemi M, Pospíšil J, Žádníková P, Strnad M, Benková E. 2019. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development. 146(17), dev175919. mla: Zhu, Qiang, et al. “Root Gravity Response Module Guides Differential Growth Determining Both Root Bending and Apical Hook Formation in Arabidopsis.” Development, vol. 146, no. 17, dev175919, The Company of Biologists, 2019, doi:10.1242/dev.175919. short: Q. Zhu, M. Gallemi, J. Pospíšil, P. Žádníková, M. Strnad, E. Benková, Development 146 (2019). date_created: 2019-09-22T22:00:36Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:19:04Z day: '12' department: - _id: EvBe doi: 10.1242/dev.175919 ec_funded: 1 external_id: isi: - '000486297400011' pmid: - '31391194' intvolume: ' 146' isi: 1 issue: '17' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1242/dev.175919 month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis publication: Development publication_identifier: eissn: - '14779129' publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 146 year: '2019' ... --- _id: '6896' abstract: - lang: eng text: "Until recently, a great amount of brain studies have been conducted in human post mortem tissues, cell lines and model organisms. These researches provided useful insights regarding cell-cell interactions occurring in the brain. However, such approaches suffer from technical limitations and inaccurate modeling of the tissue 3D cytoarchitecture. Importantly, they might lack a human genetic background essential for disease modeling. With the development of protocols to generate human cerebral organoids, we are now closer to reproducing the early stages of human brain development in vitro. As a result, more relevant cell-cell interaction studies can be conducted.\r\n\r\nIn this review, we discuss the advantages of 3D cultures over 2D in modulating brain cell-cell interactions during physiological and pathological development, as well as the progress made in developing organoids in which neurons, macroglia, microglia and vascularization are present. Finally, we debate the limitations of those models and possible future directions." article_number: '146458' article_processing_charge: No article_type: original author: - first_name: Bárbara full_name: Oliveira, Bárbara id: 3B03AA1A-F248-11E8-B48F-1D18A9856A87 last_name: Oliveira - first_name: Aysan Çerağ full_name: Yahya, Aysan Çerağ id: 365A65F8-F248-11E8-B48F-1D18A9856A87 last_name: Yahya - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Oliveira B, Yahya AÇ, Novarino G. Modeling cell-cell interactions in the brain using cerebral organoids. Brain Research. 2019;1724. doi:10.1016/j.brainres.2019.146458 apa: Oliveira, B., Yahya, A. Ç., & Novarino, G. (2019). Modeling cell-cell interactions in the brain using cerebral organoids. Brain Research. Elsevier. https://doi.org/10.1016/j.brainres.2019.146458 chicago: Oliveira, Bárbara, Aysan Çerağ Yahya, and Gaia Novarino. “Modeling Cell-Cell Interactions in the Brain Using Cerebral Organoids.” Brain Research. Elsevier, 2019. https://doi.org/10.1016/j.brainres.2019.146458. ieee: B. Oliveira, A. Ç. Yahya, and G. Novarino, “Modeling cell-cell interactions in the brain using cerebral organoids,” Brain Research, vol. 1724. Elsevier, 2019. ista: Oliveira B, Yahya AÇ, Novarino G. 2019. Modeling cell-cell interactions in the brain using cerebral organoids. Brain Research. 1724, 146458. mla: Oliveira, Bárbara, et al. “Modeling Cell-Cell Interactions in the Brain Using Cerebral Organoids.” Brain Research, vol. 1724, 146458, Elsevier, 2019, doi:10.1016/j.brainres.2019.146458. short: B. Oliveira, A.Ç. Yahya, G. Novarino, Brain Research 1724 (2019). date_created: 2019-09-22T22:00:35Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-08-30T06:19:49Z day: '01' department: - _id: GaNo doi: 10.1016/j.brainres.2019.146458 external_id: isi: - '000491646600033' pmid: - '31521639' intvolume: ' 1724' isi: 1 language: - iso: eng month: '12' oa_version: None pmid: 1 publication: Brain Research publication_identifier: eissn: - '18726240' issn: - '00068993' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Modeling cell-cell interactions in the brain using cerebral organoids type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 1724 year: '2019' ... --- _id: '9731' abstract: - lang: eng text: OGs with putative pseudogenes by the number of affected genomes in different chlamydial species. Frameshift and nonsense mutations located less than 60 bp upstreamof the gene end or present in a single genome from the corresponding OG were excluded. (CSV 31 kb) article_processing_charge: No author: - first_name: Olga full_name: Sigalova, Olga last_name: Sigalova - first_name: Andrei full_name: Chaplin, Andrei last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel full_name: Shelyakin, Pavel last_name: Shelyakin - first_name: Vsevolod full_name: Filaretov, Vsevolod last_name: Filaretov - first_name: Evgeny full_name: Akkuratov, Evgeny last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova O, Chaplin A, Bochkareva O, et al. Additional file 11 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808772.v1 apa: Sigalova, O., Chaplin, A., Bochkareva, O., Shelyakin, P., Filaretov, V., Akkuratov, E., … Gelfand, M. S. (2019). Additional file 11 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808772.v1 chicago: Sigalova, Olga, Andrei Chaplin, Olga Bochkareva, Pavel Shelyakin, Vsevolod Filaretov, Evgeny Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 11 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808772.v1. ieee: O. Sigalova et al., “Additional file 11 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova O, Chaplin A, Bochkareva O, Shelyakin P, Filaretov V, Akkuratov E, Burskaia V, Gelfand MS. 2019. Additional file 11 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808772.v1. mla: Sigalova, Olga, et al. Additional File 11 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808772.v1. short: O. Sigalova, A. Chaplin, O. Bochkareva, P. Shelyakin, V. Filaretov, E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-07-27T14:09:11Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808772.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808772.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 11 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9783' abstract: - lang: eng text: Predicted frameshift and nonsense mutations in Chlamydial pan-genome. For the analysis of putative pseudogenes, events located less than 60 bp. away from gene end or present in a single genome from the corresponding OG were excluded. (CSV 600 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 10 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808760.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 10 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808760.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 10 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808760.v1. ieee: O. M. Sigalova et al., “Additional file 10 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 10 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808760.v1. mla: Sigalova, Olga M., et al. Additional File 10 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808760.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-06T07:59:56Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808760.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808760.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 10 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9897' abstract: - lang: eng text: Frameshift and nonsense mutations near homopolymeric tracts of OG1 genes. Only 374 genes with typical length and domain composition were considered. (CSV 6 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 20 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808850.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 20 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808850.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 20 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808850.v1. ieee: O. M. Sigalova et al., “Additional file 20 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 20 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808850.v1. mla: Sigalova, Olga M., et al. Additional File 20 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808850.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T07:58:15Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808850.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808850.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 20 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9890' abstract: - lang: eng text: Distribution of OGs with mosaic phyletic patterns across species (complete genomes only). (CSV 7 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 15 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808802.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 15 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808802.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 15 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808802.v1. ieee: O. M. Sigalova et al., “Additional file 15 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 15 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808802.v1. mla: Sigalova, Olga M., et al. Additional File 15 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808802.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-11T14:26:40Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808802.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808802.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 15 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9892' abstract: - lang: eng text: Distribution of OGs with mosaic phyletic patterns across species (all genomes). (CSV 10 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V full_name: Chaplin, Andrei V last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 16 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808814.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 16 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808814.v1 chicago: Sigalova, Olga M., Andrei V Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 16 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808814.v1. ieee: O. M. Sigalova et al., “Additional file 16 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 16 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808814.v1. mla: Sigalova, Olga M., et al. Additional File 16 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808814.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T07:11:53Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808814.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808814.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 16 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9893' abstract: - lang: eng text: Summary of peripheral genesa phyletic patterns and tree concordance. (CSV 26 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 17 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808820.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 17 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808820.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 17 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808820.v1. ieee: O. M. Sigalova et al., “Additional file 17 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 17 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808820.v1. mla: Sigalova, Olga M., et al. Additional File 17 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808820.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T07:20:10Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808820.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808820.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 17 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9894' abstract: - lang: eng text: Orthologous families (OFs) derived by MCL clustering of OGs. (CSV 189 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 18 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808826.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 18 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808826.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 18 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808826.v1. ieee: O. M. Sigalova et al., “Additional file 18 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 18 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808826.v1. mla: Sigalova, Olga M., et al. Additional File 18 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808826.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T07:25:07Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808826.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808826.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 18 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9895' abstract: - lang: eng text: Additional information on proteins from OG1. (CSV 30 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 19 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808835.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 19 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808835.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 19 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808835.v1. ieee: O. M. Sigalova et al., “Additional file 19 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 19 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808835.v1. mla: Sigalova, Olga M., et al. Additional File 19 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808835.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T07:44:52Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808835.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808835.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 19 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9896' abstract: - lang: eng text: Summary of the analysed genomes. (CSV 24 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808841.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808841.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 1 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808841.v1. ieee: O. M. Sigalova et al., “Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808841.v1. mla: Sigalova, Olga M., et al. Additional File 1 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808841.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T07:50:53Z date_published: 2019-09-02T00:00:00Z date_updated: 2023-08-30T06:20:21Z day: '02' department: - _id: FyKo doi: 10.6084/m9.figshare.9808841.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808841.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 1 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '6899' abstract: - lang: eng text: Intra-organ communication guides morphogenetic processes that are essential for an organ to carry out complex physiological functions. In the heart, the growth of the myocardium is tightly coupled to that of the endocardium, a specialized endothelial tissue that lines its interior. Several molecular pathways have been implicated in the communication between these tissues including secreted factors, components of the extracellular matrix, or proteins involved in cell-cell communication. Yet, it is unknown how the growth of the endocardium is coordinated with that of the myocardium. Here, we show that an increased expansion of the myocardial atrial chamber volume generates higher junctional forces within endocardial cells. This leads to biomechanical signaling involving VE-cadherin, triggering nuclear localization of the Hippo pathway transcriptional regulator Yap1 and endocardial proliferation. Our work suggests that the growth of the endocardium results from myocardial chamber volume expansion and ends when the tension on the tissue is relaxed. article_processing_charge: No author: - first_name: Dorothee full_name: Bornhorst, Dorothee last_name: Bornhorst - first_name: Peng full_name: Xia, Peng id: 4AB6C7D0-F248-11E8-B48F-1D18A9856A87 last_name: Xia orcid: 0000-0002-5419-7756 - first_name: Hiroyuki full_name: Nakajima, Hiroyuki last_name: Nakajima - first_name: Chaitanya full_name: Dingare, Chaitanya last_name: Dingare - first_name: Wiebke full_name: Herzog, Wiebke last_name: Herzog - first_name: Virginie full_name: Lecaudey, Virginie last_name: Lecaudey - first_name: Naoki full_name: Mochizuki, Naoki last_name: Mochizuki - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Deborah full_name: Yelon, Deborah last_name: Yelon - first_name: Salim full_name: Abdelilah-Seyfried, Salim last_name: Abdelilah-Seyfried citation: ama: Bornhorst D, Xia P, Nakajima H, et al. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature communications. 2019;10(1):4113. doi:10.1038/s41467-019-12068-x apa: Bornhorst, D., Xia, P., Nakajima, H., Dingare, C., Herzog, W., Lecaudey, V., … Abdelilah-Seyfried, S. (2019). Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/s41467-019-12068-x chicago: Bornhorst, Dorothee, Peng Xia, Hiroyuki Nakajima, Chaitanya Dingare, Wiebke Herzog, Virginie Lecaudey, Naoki Mochizuki, Carl-Philipp J Heisenberg, Deborah Yelon, and Salim Abdelilah-Seyfried. “Biomechanical Signaling within the Developing Zebrafish Heart Attunes Endocardial Growth to Myocardial Chamber Dimensions.” Nature Communications. Nature Publishing Group, 2019. https://doi.org/10.1038/s41467-019-12068-x. ieee: D. Bornhorst et al., “Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions,” Nature communications, vol. 10, no. 1. Nature Publishing Group, p. 4113, 2019. ista: Bornhorst D, Xia P, Nakajima H, Dingare C, Herzog W, Lecaudey V, Mochizuki N, Heisenberg C-PJ, Yelon D, Abdelilah-Seyfried S. 2019. Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions. Nature communications. 10(1), 4113. mla: Bornhorst, Dorothee, et al. “Biomechanical Signaling within the Developing Zebrafish Heart Attunes Endocardial Growth to Myocardial Chamber Dimensions.” Nature Communications, vol. 10, no. 1, Nature Publishing Group, 2019, p. 4113, doi:10.1038/s41467-019-12068-x. short: D. Bornhorst, P. Xia, H. Nakajima, C. Dingare, W. Herzog, V. Lecaudey, N. Mochizuki, C.-P.J. Heisenberg, D. Yelon, S. Abdelilah-Seyfried, Nature Communications 10 (2019) 4113. date_created: 2019-09-22T22:00:37Z date_published: 2019-09-11T00:00:00Z date_updated: 2023-08-30T06:21:23Z day: '11' ddc: - '570' department: - _id: CaHe doi: 10.1038/s41467-019-12068-x external_id: isi: - '000485216800009' pmid: - '31511517' file: - access_level: open_access checksum: 62c2512712e16d27c1797d318d14ba9f content_type: application/pdf creator: kschuh date_created: 2019-10-01T11:18:50Z date_updated: 2020-07-14T12:47:44Z file_id: '6926' file_name: 2019_Nature_Bornhorst.pdf file_size: 3905793 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '4113' pmid: 1 publication: Nature communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Nature Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Biomechanical signaling within the developing zebrafish heart attunes endocardial growth to myocardial chamber dimensions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6898' abstract: - lang: eng text: "Background\r\n\r\nChlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria.\r\nResults\r\n\r\nWe report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system.\r\nConclusions\r\n\r\nThis combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity." article_number: '710' article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. 2019;20(1). doi:10.1186/s12864-019-6059-5 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. BioMed Central. https://doi.org/10.1186/s12864-019-6059-5 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” BMC Genomics. BioMed Central, 2019. https://doi.org/10.1186/s12864-019-6059-5. ieee: O. M. Sigalova et al., “Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction,” BMC Genomics, vol. 20, no. 1. BioMed Central, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. 20(1), 710. mla: Sigalova, Olga M., et al. “Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” BMC Genomics, vol. 20, no. 1, 710, BioMed Central, 2019, doi:10.1186/s12864-019-6059-5. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, BMC Genomics 20 (2019). date_created: 2019-09-22T22:00:36Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:22Z day: '12' ddc: - '570' department: - _id: FyKo doi: 10.1186/s12864-019-6059-5 external_id: isi: - '000485256100001' file: - access_level: open_access checksum: b798773c5823012d31c812c9f7975da2 content_type: application/pdf creator: kschuh date_created: 2019-10-01T10:33:17Z date_updated: 2020-07-14T12:47:44Z file_id: '6924' file_name: 2019_BioMed_Sigalova.pdf file_size: 4157175 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 20' isi: 1 issue: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: BMC Genomics publication_identifier: eissn: - '14712164' publication_status: published publisher: BioMed Central quality_controlled: '1' related_material: record: - id: '9731' relation: research_data status: public - id: '9783' relation: research_data status: public - id: '9890' relation: research_data status: public - id: '9892' relation: research_data status: public - id: '9893' relation: research_data status: public - id: '9894' relation: research_data status: public - id: '9895' relation: research_data status: public - id: '9896' relation: research_data status: public - id: '9897' relation: research_data status: public - id: '9898' relation: research_data status: public - id: '9899' relation: research_data status: public - id: '9900' relation: research_data status: public - id: '9901' relation: research_data status: public scopus_import: '1' status: public title: Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2019' ... --- _id: '6920' article_processing_charge: No article_type: original author: - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Artner C, Benková E. Ethylene and cytokinin - partners in root growth regulation. Molecular Plant. 2019;12(10):1312-1314. doi:10.1016/j.molp.2019.09.003 apa: Artner, C., & Benková, E. (2019). Ethylene and cytokinin - partners in root growth regulation. Molecular Plant. Cell Press. https://doi.org/10.1016/j.molp.2019.09.003 chicago: Artner, Christina, and Eva Benková. “Ethylene and Cytokinin - Partners in Root Growth Regulation.” Molecular Plant. Cell Press, 2019. https://doi.org/10.1016/j.molp.2019.09.003. ieee: C. Artner and E. Benková, “Ethylene and cytokinin - partners in root growth regulation,” Molecular Plant, vol. 12, no. 10. Cell Press, pp. 1312–1314, 2019. ista: Artner C, Benková E. 2019. Ethylene and cytokinin - partners in root growth regulation. Molecular Plant. 12(10), 1312–1314. mla: Artner, Christina, and Eva Benková. “Ethylene and Cytokinin - Partners in Root Growth Regulation.” Molecular Plant, vol. 12, no. 10, Cell Press, 2019, pp. 1312–14, doi:10.1016/j.molp.2019.09.003. short: C. Artner, E. Benková, Molecular Plant 12 (2019) 1312–1314. date_created: 2019-09-30T10:00:40Z date_published: 2019-10-07T00:00:00Z date_updated: 2023-08-30T06:55:02Z day: '07' department: - _id: EvBe doi: 10.1016/j.molp.2019.09.003 external_id: isi: - '000489132500002' pmid: - '31541740' intvolume: ' 12' isi: 1 issue: '10' language: - iso: eng month: '10' oa_version: None page: 1312-1314 pmid: 1 project: - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals publication: Molecular Plant publication_identifier: issn: - 1674-2052 - 1752-9867 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Ethylene and cytokinin - partners in root growth regulation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2019' ... --- _id: '9898' abstract: - lang: eng text: All polyN tracts of length 5 or more nucleotides in sequences of genes from OG1. Sequences were extracted and scanned prior to automatic correction for frameshifts implemented in the RAST pipeline. (CSV 133 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808859.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808859.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 21 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808859.v1. ieee: O. M. Sigalova et al., “Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808859.v1. mla: Sigalova, Olga M., et al. Additional File 21 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808859.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T08:10:23Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:22Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808859.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808859.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 21 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9901' abstract: - lang: eng text: Clusters of Orthologous Genes (COGs) and corresponding functional categories assigned to OGs. (CSV 117 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 9 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808907.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 9 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808907.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 9 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808907.v1. ieee: O. M. Sigalova et al., “Additional file 9 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 9 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808907.v1. mla: Sigalova, Olga M., et al. Additional File 9 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808907.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T10:54:03Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:22Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808907.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808907.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 9 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9899' abstract: - lang: eng text: Summary of orthologous groups (OGs) for 227 genomes of genus Chlamydia. (CSV 362 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808865.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808865.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 2 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808865.v1. ieee: O. M. Sigalova et al., “Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808865.v1. mla: Sigalova, Olga M., et al. Additional File 2 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808865.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T08:18:09Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:22Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808865.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808865.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 2 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '9900' abstract: - lang: eng text: Pan-genome statistics by species. (CSV 3 kb) article_processing_charge: No author: - first_name: Olga M. full_name: Sigalova, Olga M. last_name: Sigalova - first_name: Andrei V. full_name: Chaplin, Andrei V. last_name: Chaplin - first_name: Olga full_name: Bochkareva, Olga id: C4558D3C-6102-11E9-A62E-F418E6697425 last_name: Bochkareva orcid: 0000-0003-1006-6639 - first_name: Pavel V. full_name: Shelyakin, Pavel V. last_name: Shelyakin - first_name: Vsevolod A. full_name: Filaretov, Vsevolod A. last_name: Filaretov - first_name: Evgeny E. full_name: Akkuratov, Evgeny E. last_name: Akkuratov - first_name: Valentina full_name: Burskaia, Valentina last_name: Burskaia - first_name: Mikhail S. full_name: Gelfand, Mikhail S. last_name: Gelfand citation: ama: Sigalova OM, Chaplin AV, Bochkareva O, et al. Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. 2019. doi:10.6084/m9.figshare.9808886.v1 apa: Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. Springer Nature. https://doi.org/10.6084/m9.figshare.9808886.v1 chicago: Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Additional File 5 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” Springer Nature, 2019. https://doi.org/10.6084/m9.figshare.9808886.v1. ieee: O. M. Sigalova et al., “Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction.” Springer Nature, 2019. ista: Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction, Springer Nature, 10.6084/m9.figshare.9808886.v1. mla: Sigalova, Olga M., et al. Additional File 5 of Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction. Springer Nature, 2019, doi:10.6084/m9.figshare.9808886.v1. short: O.M. Sigalova, A.V. Chaplin, O. Bochkareva, P.V. Shelyakin, V.A. Filaretov, E.E. Akkuratov, V. Burskaia, M.S. Gelfand, (2019). date_created: 2021-08-12T08:44:49Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:20:22Z day: '12' department: - _id: FyKo doi: 10.6084/m9.figshare.9808886.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.9808886.v1 month: '09' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '6898' relation: used_in_publication status: public status: public title: Additional file 5 of Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '6936' abstract: - lang: eng text: "A key challenge for community ecology is to understand to what extent observational data can be used to infer the underlying community assembly processes. As different processes can lead to similar or even identical patterns, statistical analyses of non‐manipulative observational data never yield undisputable causal inference on the underlying processes. Still, most empirical studies in community ecology are based on observational data, and hence understanding under which circumstances such data can shed light on assembly processes is a central concern for community ecologists. We simulated a spatial agent‐based model that generates variation in metacommunity dynamics across multiple axes, including the four classic metacommunity paradigms as special cases. We further simulated a virtual ecologist who analysed snapshot data sampled from the simulations using eighteen output metrics derived from beta‐diversity and habitat variation indices, variation partitioning and joint species distribution modelling. Our results indicated two main axes of variation in the output metrics. The first axis of variation described whether the landscape has patchy or continuous variation, and thus was essentially independent of the properties of the species community. The second axis of variation related to the level of predictability of the metacommunity. The most predictable communities were niche‐based metacommunities inhabiting static landscapes with marked environmental heterogeneity, such as metacommunities following the species sorting paradigm or the mass effects paradigm. The most unpredictable communities were neutral‐based metacommunities inhabiting dynamics landscapes with little spatial heterogeneity, such as metacommunities following the neutral or patch sorting paradigms. The output metrics from joint species distribution modelling yielded generally the highest resolution to disentangle among the simulated scenarios. Yet, the different types of statistical approaches utilized in this study carried complementary information, and thus our results suggest that the most comprehensive evaluation of metacommunity structure can be obtained by combining them.\r\n" article_processing_charge: No article_type: original author: - first_name: Otso full_name: Ovaskainen, Otso last_name: Ovaskainen - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 - first_name: Nerea full_name: Abrego, Nerea last_name: Abrego citation: ama: Ovaskainen O, Rybicki J, Abrego N. What can observational data reveal about metacommunity processes? Ecography. 2019;42(11):1877-1886. doi:10.1111/ecog.04444 apa: Ovaskainen, O., Rybicki, J., & Abrego, N. (2019). What can observational data reveal about metacommunity processes? Ecography. Wiley. https://doi.org/10.1111/ecog.04444 chicago: Ovaskainen, Otso, Joel Rybicki, and Nerea Abrego. “What Can Observational Data Reveal about Metacommunity Processes?” Ecography. Wiley, 2019. https://doi.org/10.1111/ecog.04444. ieee: O. Ovaskainen, J. Rybicki, and N. Abrego, “What can observational data reveal about metacommunity processes?,” Ecography, vol. 42, no. 11. Wiley, pp. 1877–1886, 2019. ista: Ovaskainen O, Rybicki J, Abrego N. 2019. What can observational data reveal about metacommunity processes? Ecography. 42(11), 1877–1886. mla: Ovaskainen, Otso, et al. “What Can Observational Data Reveal about Metacommunity Processes?” Ecography, vol. 42, no. 11, Wiley, 2019, pp. 1877–86, doi:10.1111/ecog.04444. short: O. Ovaskainen, J. Rybicki, N. Abrego, Ecography 42 (2019) 1877–1886. date_created: 2019-10-08T13:01:24Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-08-30T06:57:25Z day: '01' ddc: - '577' department: - _id: DaAl doi: 10.1111/ecog.04444 ec_funded: 1 external_id: isi: - '000486348700001' file: - access_level: open_access checksum: 6c9fbbd5ea8ce10ae93e55ad560a7bf9 content_type: application/pdf creator: jrybicki date_created: 2019-10-08T13:07:44Z date_updated: 2020-07-14T12:47:45Z file_id: '6937' file_name: ecog.04444.pdf file_size: 1682718 relation: main_file file_date_updated: 2020-07-14T12:47:45Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1877-1886 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Ecography publication_identifier: eissn: - 1600-0587 issn: - 0906-7590 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: What can observational data reveal about metacommunity processes? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 42 year: '2019' ... --- _id: '6857' abstract: - lang: eng text: "Gene Drives are regarded as future tools with a high potential for population control. Due to their inherent ability to overcome the rules of Mendelian inheritance, gene drives (GD) may spread genes rapidly through populations of sexually reproducing organisms. A release of organisms carrying a GD would constitute a paradigm shift in the handling of genetically modified organisms because gene drive organisms (GDO) are designed to drive their transgenes into wild populations and thereby increase the number of GDOs. The rapid development in this field and its focus on wild populations demand a prospective risk assessment with a focus on exposure related aspects. Presently, it is unclear how adequate risk management could be guaranteed to limit the spread of GDs in time and space, in order to avoid potential adverse effects in socio‐ecological systems.\r\n\r\nThe recent workshop on the “Evaluation of Spatial and Temporal Control of Gene Drives” hosted by the Institute of Safety/Security and Risk Sciences (ISR) in Vienna aimed at gaining some insight into the potential population dynamic behavior of GDs and appropriate measures of control. Scientists from France, Germany, England, and the USA discussed both topics in this meeting on April 4–5, 2019. This article summarizes results of the workshop." article_number: '1900151' article_processing_charge: No article_type: original author: - first_name: B full_name: Giese, B last_name: Giese - first_name: J L full_name: Friess, J L last_name: Friess - first_name: 'M F ' full_name: 'Schetelig, M F ' last_name: Schetelig - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Philip full_name: Messer, Philip last_name: Messer - first_name: Florence full_name: Debarre, Florence last_name: Debarre - first_name: H full_name: Meimberg, H last_name: Meimberg - first_name: N full_name: Windbichler, N last_name: Windbichler - first_name: C full_name: Boete, C last_name: Boete citation: ama: 'Giese B, Friess JL, Schetelig MF, et al. Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna. BioEssays. 2019;41(11). doi:10.1002/bies.201900151' apa: 'Giese, B., Friess, J. L., Schetelig, M. F., Barton, N. H., Messer, P., Debarre, F., … Boete, C. (2019). Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna. BioEssays. Wiley. https://doi.org/10.1002/bies.201900151' chicago: 'Giese, B, J L Friess, M F Schetelig, Nicholas H Barton, Philip Messer, Florence Debarre, H Meimberg, N Windbichler, and C Boete. “Gene Drives: Dynamics and Regulatory Matters – A Report from the Workshop ‘Evaluation of Spatial and Temporal Control of Gene Drives’, 4 – 5 April 2019, Vienna.” BioEssays. Wiley, 2019. https://doi.org/10.1002/bies.201900151.' ieee: 'B. Giese et al., “Gene Drives: Dynamics and regulatory matters – A report from the workshop ‘Evaluation of spatial and temporal control of Gene Drives’, 4 – 5 April 2019, Vienna,” BioEssays, vol. 41, no. 11. Wiley, 2019.' ista: 'Giese B, Friess JL, Schetelig MF, Barton NH, Messer P, Debarre F, Meimberg H, Windbichler N, Boete C. 2019. Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna. BioEssays. 41(11), 1900151.' mla: 'Giese, B., et al. “Gene Drives: Dynamics and Regulatory Matters – A Report from the Workshop ‘Evaluation of Spatial and Temporal Control of Gene Drives’, 4 – 5 April 2019, Vienna.” BioEssays, vol. 41, no. 11, 1900151, Wiley, 2019, doi:10.1002/bies.201900151.' short: B. Giese, J.L. Friess, M.F. Schetelig, N.H. Barton, P. Messer, F. Debarre, H. Meimberg, N. Windbichler, C. Boete, BioEssays 41 (2019). date_created: 2019-09-07T14:40:03Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-08-30T06:56:26Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1002/bies.201900151 external_id: isi: - '000489502000001' file: - access_level: open_access checksum: 8cc7551bff70b2658f8d5630f228ee12 content_type: application/pdf creator: dernst date_created: 2019-10-11T06:59:26Z date_updated: 2020-07-14T12:47:42Z file_id: '6939' file_name: 2019_BioEssays_Giese.pdf file_size: 193248 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: BioEssays publication_identifier: eissn: - 1521-1878 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2019' ... --- _id: '6890' abstract: - lang: eng text: Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods. article_processing_charge: No author: - first_name: Martin full_name: Obr, Martin id: 4741CA5A-F248-11E8-B48F-1D18A9856A87 last_name: Obr orcid: 0000-0003-1756-6564 - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: 'Obr M, Schur FK. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. In: Rey FA, ed. Complementary Strategies to Study Virus Structure and Function. Vol 105. Advances in Virus Research. Elsevier; 2019:117-159. doi:10.1016/bs.aivir.2019.07.008' apa: Obr, M., & Schur, F. K. (2019). Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. In F. A. Rey (Ed.), Complementary Strategies to Study Virus Structure and Function (Vol. 105, pp. 117–159). Elsevier. https://doi.org/10.1016/bs.aivir.2019.07.008 chicago: Obr, Martin, and Florian KM Schur. “Structural Analysis of Pleomorphic and Asymmetric Viruses Using Cryo-Electron Tomography and Subtomogram Averaging.” In Complementary Strategies to Study Virus Structure and Function, edited by Félix A. Rey, 105:117–59. Advances in Virus Research. Elsevier, 2019. https://doi.org/10.1016/bs.aivir.2019.07.008. ieee: M. Obr and F. K. Schur, “Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging,” in Complementary Strategies to Study Virus Structure and Function, vol. 105, F. A. Rey, Ed. Elsevier, 2019, pp. 117–159. ista: 'Obr M, Schur FK. 2019.Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. In: Complementary Strategies to Study Virus Structure and Function. vol. 105, 117–159.' mla: Obr, Martin, and Florian KM Schur. “Structural Analysis of Pleomorphic and Asymmetric Viruses Using Cryo-Electron Tomography and Subtomogram Averaging.” Complementary Strategies to Study Virus Structure and Function, edited by Félix A. Rey, vol. 105, Elsevier, 2019, pp. 117–59, doi:10.1016/bs.aivir.2019.07.008. short: M. Obr, F.K. Schur, in:, F.A. Rey (Ed.), Complementary Strategies to Study Virus Structure and Function, Elsevier, 2019, pp. 117–159. date_created: 2019-09-18T08:15:37Z date_published: 2019-08-27T00:00:00Z date_updated: 2023-08-30T06:56:00Z day: '27' department: - _id: FlSc doi: 10.1016/bs.aivir.2019.07.008 editor: - first_name: Félix A. full_name: Rey, Félix A. last_name: Rey external_id: isi: - '000501594500006' pmid: - ' 31522703' intvolume: ' 105' isi: 1 language: - iso: eng month: '08' oa_version: None page: 117-159 pmid: 1 publication: Complementary Strategies to Study Virus Structure and Function publication_identifier: isbn: - '9780128184561' issn: - 0065-3527 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' series_title: Advances in Virus Research status: public title: Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging type: book_chapter user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 105 year: '2019' ... --- _id: '6940' abstract: - lang: eng text: "We study the effect of a linear tunneling coupling between two-dimensional systems, each separately\r\nexhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there\r\nare two phases: one where the one-body correlation functions are algebraically decaying and the other with\r\nexponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law\r\ndecay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite\r\ntemperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is\r\npresent. We provide a picture of the phase diagram using a renormalization group approach." acknowledgement: "We thank S. Chiacchiera, G. Delfino, N. Dupuis, T. Enss, M. Fabrizio and G. Gori for many stimulating discussions.\r\nG.B. acknowledges support from the Austrian Science Fund (FWF), under project No. M2461-N27. N.D. acknowledges\r\nsupport from Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and from the DFG Collaborative Research Centre “SFB 1225 ISOQUANT”. Support from the CNR/MTA Italy-Hungary 2019-2021 Joint Project “Strongly interacting systems in confined geometries” is gratefully acknowledged." article_number: '100601' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Nicolò full_name: Defenu, Nicolò last_name: Defenu - first_name: István full_name: Nándori, István last_name: Nándori - first_name: Luca full_name: Salasnich, Luca last_name: Salasnich - first_name: Andrea full_name: Trombettoni, Andrea last_name: Trombettoni citation: ama: Bighin G, Defenu N, Nándori I, Salasnich L, Trombettoni A. Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. 2019;123(10). doi:10.1103/physrevlett.123.100601 apa: Bighin, G., Defenu, N., Nándori, I., Salasnich, L., & Trombettoni, A. (2019). Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.123.100601 chicago: Bighin, Giacomo, Nicolò Defenu, István Nándori, Luca Salasnich, and Andrea Trombettoni. “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/physrevlett.123.100601. ieee: G. Bighin, N. Defenu, I. Nándori, L. Salasnich, and A. Trombettoni, “Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models,” Physical Review Letters, vol. 123, no. 10. American Physical Society, 2019. ista: Bighin G, Defenu N, Nándori I, Salasnich L, Trombettoni A. 2019. Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. 123(10), 100601. mla: Bighin, Giacomo, et al. “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models.” Physical Review Letters, vol. 123, no. 10, 100601, American Physical Society, 2019, doi:10.1103/physrevlett.123.100601. short: G. Bighin, N. Defenu, I. Nándori, L. Salasnich, A. Trombettoni, Physical Review Letters 123 (2019). date_created: 2019-10-14T06:31:13Z date_published: 2019-09-06T00:00:00Z date_updated: 2023-08-30T06:57:53Z day: '06' department: - _id: MiLe doi: 10.1103/physrevlett.123.100601 external_id: arxiv: - '1907.06253' isi: - '000483587200004' intvolume: ' 123' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.06253 month: '09' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News auf IST Website relation: press_release url: https://ist.ac.at/en/news/new-form-of-magnetism-found/ scopus_import: '1' status: public title: Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 123 year: '2019' ... --- _id: '6919' article_number: eaaw6490 article_processing_charge: No author: - first_name: Chao full_name: Qi, Chao last_name: Qi - first_name: Giulio Di full_name: Minin, Giulio Di last_name: Minin - first_name: Irene full_name: Vercellino, Irene id: 3ED6AF16-F248-11E8-B48F-1D18A9856A87 last_name: Vercellino orcid: 0000-0001-5618-3449 - first_name: Anton full_name: Wutz, Anton last_name: Wutz - first_name: Volodymyr M. full_name: Korkhov, Volodymyr M. last_name: Korkhov citation: ama: Qi C, Minin GD, Vercellino I, Wutz A, Korkhov VM. Structural basis of sterol recognition by human hedgehog receptor PTCH1. Science Advances. 2019;5(9). doi:10.1126/sciadv.aaw6490 apa: Qi, C., Minin, G. D., Vercellino, I., Wutz, A., & Korkhov, V. M. (2019). Structural basis of sterol recognition by human hedgehog receptor PTCH1. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.aaw6490 chicago: Qi, Chao, Giulio Di Minin, Irene Vercellino, Anton Wutz, and Volodymyr M. Korkhov. “Structural Basis of Sterol Recognition by Human Hedgehog Receptor PTCH1.” Science Advances. American Association for the Advancement of Science, 2019. https://doi.org/10.1126/sciadv.aaw6490. ieee: C. Qi, G. D. Minin, I. Vercellino, A. Wutz, and V. M. Korkhov, “Structural basis of sterol recognition by human hedgehog receptor PTCH1,” Science Advances, vol. 5, no. 9. American Association for the Advancement of Science, 2019. ista: Qi C, Minin GD, Vercellino I, Wutz A, Korkhov VM. 2019. Structural basis of sterol recognition by human hedgehog receptor PTCH1. Science Advances. 5(9), eaaw6490. mla: Qi, Chao, et al. “Structural Basis of Sterol Recognition by Human Hedgehog Receptor PTCH1.” Science Advances, vol. 5, no. 9, eaaw6490, American Association for the Advancement of Science, 2019, doi:10.1126/sciadv.aaw6490. short: C. Qi, G.D. Minin, I. Vercellino, A. Wutz, V.M. Korkhov, Science Advances 5 (2019). date_created: 2019-09-29T22:00:45Z date_published: 2019-09-18T00:00:00Z date_updated: 2023-08-30T06:55:31Z day: '18' ddc: - '570' department: - _id: LeSa doi: 10.1126/sciadv.aaw6490 external_id: isi: - '000491128800062' file: - access_level: open_access checksum: b2256c9117655bc15f621ba0babf219f content_type: application/pdf creator: kschuh date_created: 2019-10-02T11:13:54Z date_updated: 2020-07-14T12:47:44Z file_id: '6928' file_name: 2019_AAAS_Qi.pdf file_size: 1236101 relation: main_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: Science Advances publication_identifier: eissn: - '23752548' publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: Structural basis of sterol recognition by human hedgehog receptor PTCH1 tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2019' ... --- _id: '6983' abstract: - lang: eng text: Malaria, a disease caused by parasites of the Plasmodium genus, begins when Plasmodium-infected mosquitoes inject malaria sporozoites while searching for blood. Sporozoites migrate from the skin via blood to the liver, infect hepatocytes, and form liver stages which in mice 48 h later escape into blood and cause clinical malaria. Vaccine-induced activated or memory CD8 T cells are capable of locating and eliminating all liver stages in 48 h, thus preventing the blood-stage disease. However, the rules of how CD8 T cells are able to locate all liver stages within a relatively short time period remains poorly understood. We recently reported formation of clusters consisting of variable numbers of activated CD8 T cells around Plasmodium yoelii (Py)-infected hepatocytes. Using a combination of experimental data and mathematical models we now provide additional insights into mechanisms of formation of these clusters. First, we show that a model in which cluster formation is driven exclusively by T-cell-extrinsic factors, such as variability in “attractiveness” of different liver stages, cannot explain distribution of cluster sizes in different experimental conditions. In contrast, the model in which cluster formation is driven by the positive feedback loop (i.e., larger clusters attract more CD8 T cells) can accurately explain the available data. Second, while both Py-specific CD8 T cells and T cells of irrelevant specificity (non-specific CD8 T cells) are attracted to the clusters, we found no evidence that non-specific CD8 T cells play a role in cluster formation. Third and finally, mathematical modeling suggested that formation of clusters occurs rapidly, within few hours after adoptive transfer of CD8 T cells, thus illustrating high efficiency of CD8 T cells in locating their targets in complex peripheral organs, such as the liver. Taken together, our analysis provides novel insights into and attempts to discriminate between alternative mechanisms driving the formation of clusters of antigen-specific CD8 T cells in the liver. article_number: '2153' article_processing_charge: No article_type: original author: - first_name: Réka K full_name: Kelemen, Réka K id: 48D3F8DE-F248-11E8-B48F-1D18A9856A87 last_name: Kelemen orcid: 0000-0002-8489-9281 - first_name: H full_name: Rajakaruna, H last_name: Rajakaruna - first_name: IA full_name: Cockburn, IA last_name: Cockburn - first_name: VV full_name: Ganusov, VV last_name: Ganusov citation: ama: Kelemen RK, Rajakaruna H, Cockburn I, Ganusov V. Clustering of activated CD8 T cells around Malaria-infected hepatocytes is rapid and is driven by antigen-specific cells. Frontiers in Immunology. 2019;10. doi:10.3389/fimmu.2019.02153 apa: Kelemen, R. K., Rajakaruna, H., Cockburn, I., & Ganusov, V. (2019). Clustering of activated CD8 T cells around Malaria-infected hepatocytes is rapid and is driven by antigen-specific cells. Frontiers in Immunology. Frontiers. https://doi.org/10.3389/fimmu.2019.02153 chicago: Kelemen, Réka K, H Rajakaruna, IA Cockburn, and VV Ganusov. “Clustering of Activated CD8 T Cells around Malaria-Infected Hepatocytes Is Rapid and Is Driven by Antigen-Specific Cells.” Frontiers in Immunology. Frontiers, 2019. https://doi.org/10.3389/fimmu.2019.02153. ieee: R. K. Kelemen, H. Rajakaruna, I. Cockburn, and V. Ganusov, “Clustering of activated CD8 T cells around Malaria-infected hepatocytes is rapid and is driven by antigen-specific cells,” Frontiers in Immunology, vol. 10. Frontiers, 2019. ista: Kelemen RK, Rajakaruna H, Cockburn I, Ganusov V. 2019. Clustering of activated CD8 T cells around Malaria-infected hepatocytes is rapid and is driven by antigen-specific cells. Frontiers in Immunology. 10, 2153. mla: Kelemen, Réka K., et al. “Clustering of Activated CD8 T Cells around Malaria-Infected Hepatocytes Is Rapid and Is Driven by Antigen-Specific Cells.” Frontiers in Immunology, vol. 10, 2153, Frontiers, 2019, doi:10.3389/fimmu.2019.02153. short: R.K. Kelemen, H. Rajakaruna, I. Cockburn, V. Ganusov, Frontiers in Immunology 10 (2019). date_created: 2019-11-04T15:50:06Z date_published: 2019-09-20T00:00:00Z date_updated: 2023-08-30T07:18:23Z day: '20' ddc: - '570' department: - _id: BeVi doi: 10.3389/fimmu.2019.02153 external_id: isi: - '000487187000001' pmid: - '31616407' file: - access_level: open_access checksum: 68d1708f7aa412544159b498ef17a6b9 content_type: application/pdf creator: dernst date_created: 2019-11-04T15:54:00Z date_updated: 2020-07-14T12:47:46Z file_id: '6984' file_name: 2019_FrontiersImmonology_Kelemen.pdf file_size: 2083061 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Immunology publication_identifier: issn: - 1664-3224 publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Clustering of activated CD8 T cells around Malaria-infected hepatocytes is rapid and is driven by antigen-specific cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6972' abstract: - lang: eng text: 'We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each of thennodes has its own clock. Our algorithms operate in a very strong fault model: we require self-stabilisation, i.e.,the initial state of the system may be arbitrary, and there can be up to fJournal of the ACM. 2019;66(5). doi:10.1145/3339471 apa: Lenzen, C., & Rybicki, J. (2019). Self-stabilising Byzantine clock synchronisation is almost as easy as consensus. Journal of the ACM. ACM. https://doi.org/10.1145/3339471 chicago: Lenzen, Christoph, and Joel Rybicki. “Self-Stabilising Byzantine Clock Synchronisation Is Almost as Easy as Consensus.” Journal of the ACM. ACM, 2019. https://doi.org/10.1145/3339471. ieee: C. Lenzen and J. Rybicki, “Self-stabilising Byzantine clock synchronisation is almost as easy as consensus,” Journal of the ACM, vol. 66, no. 5. ACM, 2019. ista: Lenzen C, Rybicki J. 2019. Self-stabilising Byzantine clock synchronisation is almost as easy as consensus. Journal of the ACM. 66(5), 32. mla: Lenzen, Christoph, and Joel Rybicki. “Self-Stabilising Byzantine Clock Synchronisation Is Almost as Easy as Consensus.” Journal of the ACM, vol. 66, no. 5, 32, ACM, 2019, doi:10.1145/3339471. short: C. Lenzen, J. Rybicki, Journal of the ACM 66 (2019). date_created: 2019-10-24T17:12:48Z date_published: 2019-09-01T00:00:00Z date_updated: 2023-08-30T07:07:23Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1145/3339471 ec_funded: 1 external_id: arxiv: - '1705.06173' isi: - '000496514100001' file: - access_level: open_access checksum: 7e5d95c478e0e393f4927fcf7e48194e content_type: application/pdf creator: dernst date_created: 2019-10-25T12:58:38Z date_updated: 2020-07-14T12:47:46Z file_id: '6975' file_name: 2019_JACM_Lenzen.pdf file_size: 2183085 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 66' isi: 1 issue: '5' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of the ACM publication_identifier: issn: - 0004-5411 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: Self-stabilising Byzantine clock synchronisation is almost as easy as consensus tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 66 year: '2019' ... --- _id: '6942' abstract: - lang: eng text: "Graph games and Markov decision processes (MDPs) are standard models in reactive synthesis and verification of probabilistic systems with nondeterminism. The class of \U0001D714 -regular winning conditions; e.g., safety, reachability, liveness, parity conditions; provides a robust and expressive specification formalism for properties that arise in analysis of reactive systems. The resolutions of nondeterminism in games and MDPs are represented as strategies, and we consider succinct representation of such strategies. The decision-tree data structure from machine learning retains the flavor of decisions of strategies and allows entropy-based minimization to obtain succinct trees. However, in contrast to traditional machine-learning problems where small errors are allowed, for winning strategies in graph games and MDPs no error is allowed, and the decision tree must represent the entire strategy. In this work we propose decision trees with linear classifiers for representation of strategies in graph games and MDPs. We have implemented strategy representation using this data structure and we present experimental results for problems on graph games and MDPs, which show that this new data structure presents a much more efficient strategy representation as compared to standard decision trees." alternative_title: - LNCS article_processing_charge: No author: - first_name: Pranav full_name: Ashok, Pranav last_name: Ashok - first_name: Tomáš full_name: Brázdil, Tomáš last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jan full_name: Křetínský, Jan last_name: Křetínský - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: 'Ashok P, Brázdil T, Chatterjee K, Křetínský J, Lampert C, Toman V. Strategy representation by decision trees with linear classifiers. In: 16th International Conference on Quantitative Evaluation of Systems. Vol 11785. Springer Nature; 2019:109-128. doi:10.1007/978-3-030-30281-8_7' apa: 'Ashok, P., Brázdil, T., Chatterjee, K., Křetínský, J., Lampert, C., & Toman, V. (2019). Strategy representation by decision trees with linear classifiers. In 16th International Conference on Quantitative Evaluation of Systems (Vol. 11785, pp. 109–128). Glasgow, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-30281-8_7' chicago: Ashok, Pranav, Tomáš Brázdil, Krishnendu Chatterjee, Jan Křetínský, Christoph Lampert, and Viktor Toman. “Strategy Representation by Decision Trees with Linear Classifiers.” In 16th International Conference on Quantitative Evaluation of Systems, 11785:109–28. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-30281-8_7. ieee: P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. Lampert, and V. Toman, “Strategy representation by decision trees with linear classifiers,” in 16th International Conference on Quantitative Evaluation of Systems, Glasgow, United Kingdom, 2019, vol. 11785, pp. 109–128. ista: 'Ashok P, Brázdil T, Chatterjee K, Křetínský J, Lampert C, Toman V. 2019. Strategy representation by decision trees with linear classifiers. 16th International Conference on Quantitative Evaluation of Systems. QEST: Quantitative Evaluation of Systems, LNCS, vol. 11785, 109–128.' mla: Ashok, Pranav, et al. “Strategy Representation by Decision Trees with Linear Classifiers.” 16th International Conference on Quantitative Evaluation of Systems, vol. 11785, Springer Nature, 2019, pp. 109–28, doi:10.1007/978-3-030-30281-8_7. short: P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. Lampert, V. Toman, in:, 16th International Conference on Quantitative Evaluation of Systems, Springer Nature, 2019, pp. 109–128. conference: end_date: 2019-09-12 location: Glasgow, United Kingdom name: 'QEST: Quantitative Evaluation of Systems' start_date: 2019-09-10 date_created: 2019-10-14T06:57:49Z date_published: 2019-09-04T00:00:00Z date_updated: 2023-08-30T06:59:36Z day: '04' department: - _id: KrCh - _id: ChLa doi: 10.1007/978-3-030-30281-8_7 external_id: arxiv: - '1906.08178' isi: - '000679281300007' intvolume: ' 11785' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.08178 month: '09' oa: 1 oa_version: Preprint page: 109-128 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: 16th International Conference on Quantitative Evaluation of Systems publication_identifier: eisbn: - '9783030302818' isbn: - '9783030302801' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Strategy representation by decision trees with linear classifiers type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11785 year: '2019' ... --- _id: '6955' abstract: - lang: eng text: We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale D and the Coulomb-modified effective range r eff. We study shallow bound states of charged particles with D >> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential. article_number: '135016' article_processing_charge: No article_type: original author: - first_name: C.H. full_name: Schmickler, C.H. last_name: Schmickler - first_name: H.-W. full_name: Hammer, H.-W. last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Schmickler CH, Hammer H-W, Volosniev A. Universal physics of bound states of a few charged particles. Physics Letters B. 2019;798. doi:10.1016/j.physletb.2019.135016 apa: Schmickler, C. H., Hammer, H.-W., & Volosniev, A. (2019). Universal physics of bound states of a few charged particles. Physics Letters B. Elsevier. https://doi.org/10.1016/j.physletb.2019.135016 chicago: Schmickler, C.H., H.-W. Hammer, and Artem Volosniev. “Universal Physics of Bound States of a Few Charged Particles.” Physics Letters B. Elsevier, 2019. https://doi.org/10.1016/j.physletb.2019.135016. ieee: C. H. Schmickler, H.-W. Hammer, and A. Volosniev, “Universal physics of bound states of a few charged particles,” Physics Letters B, vol. 798. Elsevier, 2019. ista: Schmickler CH, Hammer H-W, Volosniev A. 2019. Universal physics of bound states of a few charged particles. Physics Letters B. 798, 135016. mla: Schmickler, C. H., et al. “Universal Physics of Bound States of a Few Charged Particles.” Physics Letters B, vol. 798, 135016, Elsevier, 2019, doi:10.1016/j.physletb.2019.135016. short: C.H. Schmickler, H.-W. Hammer, A. Volosniev, Physics Letters B 798 (2019). date_created: 2019-10-18T18:33:32Z date_published: 2019-11-10T00:00:00Z date_updated: 2023-08-30T07:06:42Z day: '10' ddc: - '530' department: - _id: MiLe doi: 10.1016/j.physletb.2019.135016 external_id: arxiv: - '1904.00913' isi: - '000494939000086' file: - access_level: open_access checksum: d27f983b34ea7dafdf356afbf9472fbf content_type: application/pdf creator: dernst date_created: 2019-10-25T12:47:04Z date_updated: 2020-07-14T12:47:46Z file_id: '6974' file_name: 2019_PhysicsLettersB_Schmickler.pdf file_size: 528362 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 798' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Physics Letters B publication_identifier: issn: - 0370-2693 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Universal physics of bound states of a few charged particles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 798 year: '2019' ... --- _id: '7005' abstract: - lang: eng text: Activity-dependent bulk endocytosis generates synaptic vesicles (SVs) during intense neuronal activity via a two-step process. First, bulk endosomes are formed direct from the plasma membrane from which SVs are then generated. SV generation from bulk endosomes requires the efflux of previously accumulated calcium and activation of the protein phosphatase calcineurin. However, it is still unknown how calcineurin mediates SV generation. We addressed this question using a series of acute interventions that decoupled the generation of SVs from bulk endosomes in rat primary neuronal culture. This was achieved by either disruption of protein–protein interactions via delivery of competitive peptides, or inhibition of enzyme activity by known inhibitors. SV generation was monitored using either a morphological horseradish peroxidase assay or an optical assay that monitors the replenishment of the reserve SV pool. We found that SV generation was inhibited by, (i) peptides that disrupt calcineurin interactions, (ii) an inhibitor of dynamin I GTPase activity and (iii) peptides that disrupt the phosphorylation-dependent dynamin I–syndapin I interaction. Peptides that disrupted syndapin I interactions with eps15 homology domain-containing proteins had no effect. This revealed that (i) calcineurin must be localized at bulk endosomes to mediate its effect, (ii) dynamin I GTPase activity is essential for SV fission and (iii) the calcineurin-dependent interaction between dynamin I and syndapin I is essential for SV generation. We therefore propose that a calcineurin-dependent dephosphorylation cascade that requires both dynamin I GTPase and syndapin I lipid-deforming activity is essential for SV generation from bulk endosomes. article_processing_charge: No article_type: original author: - first_name: Giselle T full_name: Cheung, Giselle T id: 471195F6-F248-11E8-B48F-1D18A9856A87 last_name: Cheung orcid: 0000-0001-8457-2572 - first_name: Michael A. full_name: Cousin, Michael A. last_name: Cousin citation: ama: Cheung GT, Cousin MA. Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction. Journal of Neurochemistry. 2019;151(5):570-583. doi:10.1111/jnc.14862 apa: Cheung, G. T., & Cousin, M. A. (2019). Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction. Journal of Neurochemistry. Wiley. https://doi.org/10.1111/jnc.14862 chicago: Cheung, Giselle T, and Michael A. Cousin. “Synaptic Vesicle Generation from Activity‐dependent Bulk Endosomes Requires a Dephosphorylation‐dependent Dynamin–Syndapin Interaction.” Journal of Neurochemistry. Wiley, 2019. https://doi.org/10.1111/jnc.14862. ieee: G. T. Cheung and M. A. Cousin, “Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction,” Journal of Neurochemistry, vol. 151, no. 5. Wiley, pp. 570–583, 2019. ista: Cheung GT, Cousin MA. 2019. Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction. Journal of Neurochemistry. 151(5), 570–583. mla: Cheung, Giselle T., and Michael A. Cousin. “Synaptic Vesicle Generation from Activity‐dependent Bulk Endosomes Requires a Dephosphorylation‐dependent Dynamin–Syndapin Interaction.” Journal of Neurochemistry, vol. 151, no. 5, Wiley, 2019, pp. 570–83, doi:10.1111/jnc.14862. short: G.T. Cheung, M.A. Cousin, Journal of Neurochemistry 151 (2019) 570–583. date_created: 2019-11-12T14:37:08Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-08-30T07:21:50Z day: '01' ddc: - '570' department: - _id: SiHi doi: 10.1111/jnc.14862 external_id: isi: - '000490703100001' pmid: - '31479508' file: - access_level: open_access checksum: ec1fb2aebb874009bc309adaada6e1d7 content_type: application/pdf creator: dernst date_created: 2020-02-05T10:30:02Z date_updated: 2020-07-14T12:47:47Z file_id: '7452' file_name: 2019_JournNeurochemistry_Cheung.pdf file_size: 4334962 relation: main_file file_date_updated: 2020-07-14T12:47:47Z has_accepted_license: '1' intvolume: ' 151' isi: 1 issue: '5' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 570-583 pmid: 1 publication: Journal of Neurochemistry publication_identifier: eissn: - 1471-4159 issn: - 0022-3042 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 151 year: '2019' ... --- _id: '7000' abstract: - lang: eng text: The main contributions of this paper are the proposition and the convergence analysis of a class of inertial projection-type algorithm for solving variational inequality problems in real Hilbert spaces where the underline operator is monotone and uniformly continuous. We carry out a unified analysis of the proposed method under very mild assumptions. In particular, weak convergence of the generated sequence is established and nonasymptotic O(1 / n) rate of convergence is established, where n denotes the iteration counter. We also present some experimental results to illustrate the profits gained by introducing the inertial extrapolation steps. article_number: '161' article_processing_charge: No article_type: original author: - first_name: Yekini full_name: Shehu, Yekini id: 3FC7CB58-F248-11E8-B48F-1D18A9856A87 last_name: Shehu orcid: 0000-0001-9224-7139 - first_name: Olaniyi S. full_name: Iyiola, Olaniyi S. last_name: Iyiola - first_name: Xiao-Huan full_name: Li, Xiao-Huan last_name: Li - first_name: Qiao-Li full_name: Dong, Qiao-Li last_name: Dong citation: ama: Shehu Y, Iyiola OS, Li X-H, Dong Q-L. Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. 2019;38(4). doi:10.1007/s40314-019-0955-9 apa: Shehu, Y., Iyiola, O. S., Li, X.-H., & Dong, Q.-L. (2019). Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. Springer Nature. https://doi.org/10.1007/s40314-019-0955-9 chicago: Shehu, Yekini, Olaniyi S. Iyiola, Xiao-Huan Li, and Qiao-Li Dong. “Convergence Analysis of Projection Method for Variational Inequalities.” Computational and Applied Mathematics. Springer Nature, 2019. https://doi.org/10.1007/s40314-019-0955-9. ieee: Y. Shehu, O. S. Iyiola, X.-H. Li, and Q.-L. Dong, “Convergence analysis of projection method for variational inequalities,” Computational and Applied Mathematics, vol. 38, no. 4. Springer Nature, 2019. ista: Shehu Y, Iyiola OS, Li X-H, Dong Q-L. 2019. Convergence analysis of projection method for variational inequalities. Computational and Applied Mathematics. 38(4), 161. mla: Shehu, Yekini, et al. “Convergence Analysis of Projection Method for Variational Inequalities.” Computational and Applied Mathematics, vol. 38, no. 4, 161, Springer Nature, 2019, doi:10.1007/s40314-019-0955-9. short: Y. Shehu, O.S. Iyiola, X.-H. Li, Q.-L. Dong, Computational and Applied Mathematics 38 (2019). date_created: 2019-11-12T12:41:44Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-08-30T07:20:32Z day: '01' ddc: - '510' - '515' - '518' department: - _id: VlKo doi: 10.1007/s40314-019-0955-9 ec_funded: 1 external_id: arxiv: - '2101.09081' isi: - '000488973100005' has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s40314-019-0955-9 month: '12' oa: 1 oa_version: Published Version project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication: Computational and Applied Mathematics publication_identifier: eissn: - 1807-0302 issn: - 2238-3603 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Convergence analysis of projection method for variational inequalities type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2019' ... --- _id: '7009' abstract: - lang: eng text: Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non- muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration. article_processing_charge: No article_type: review author: - first_name: KM full_name: Yamada, KM last_name: Yamada - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Yamada K, Sixt MK. Mechanisms of 3D cell migration. Nature Reviews Molecular Cell Biology. 2019;20(12):738–752. doi:10.1038/s41580-019-0172-9 apa: Yamada, K., & Sixt, M. K. (2019). Mechanisms of 3D cell migration. Nature Reviews Molecular Cell Biology. Springer Nature. https://doi.org/10.1038/s41580-019-0172-9 chicago: Yamada, KM, and Michael K Sixt. “Mechanisms of 3D Cell Migration.” Nature Reviews Molecular Cell Biology. Springer Nature, 2019. https://doi.org/10.1038/s41580-019-0172-9. ieee: K. Yamada and M. K. Sixt, “Mechanisms of 3D cell migration,” Nature Reviews Molecular Cell Biology, vol. 20, no. 12. Springer Nature, pp. 738–752, 2019. ista: Yamada K, Sixt MK. 2019. Mechanisms of 3D cell migration. Nature Reviews Molecular Cell Biology. 20(12), 738–752. mla: Yamada, KM, and Michael K. Sixt. “Mechanisms of 3D Cell Migration.” Nature Reviews Molecular Cell Biology, vol. 20, no. 12, Springer Nature, 2019, pp. 738–752, doi:10.1038/s41580-019-0172-9. short: K. Yamada, M.K. Sixt, Nature Reviews Molecular Cell Biology 20 (2019) 738–752. date_created: 2019-11-12T14:54:42Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-08-30T07:22:20Z day: '01' department: - _id: MiSi doi: 10.1038/s41580-019-0172-9 external_id: isi: - '000497966900007' pmid: - '31582855' intvolume: ' 20' isi: 1 issue: '12' language: - iso: eng month: '12' oa_version: None page: 738–752 pmid: 1 publication: Nature Reviews Molecular Cell Biology publication_identifier: eissn: - 1471-0080 issn: - 1471-0072 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Mechanisms of 3D cell migration type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2019' ... --- _id: '6988' abstract: - lang: eng text: 'Platelets are central players in thrombosis and hemostasis but are increasingly recognized as key components of the immune system. They shape ensuing immune responses by recruiting leukocytes, and support the development of adaptive immunity. Recent data shed new light on the complex role of platelets in immunity. Here, we summarize experimental and clinical data on the role of platelets in host defense against bacteria. Platelets bind, contain, and kill bacteria directly; however, platelet proinflammatory effector functions and cross-talk with the coagulation system, can also result in damage to the host (e.g., acute lung injury and sepsis). Novel clinical insights support this dichotomy: platelet inhibition/thrombocytopenia can be either harmful or protective, depending on pathophysiological context. Clinical studies are currently addressing this aspect in greater depth.' article_processing_charge: No article_type: review author: - first_name: Leo full_name: Nicolai, Leo last_name: Nicolai - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg citation: ama: 'Nicolai L, Gärtner FR, Massberg S. Platelets in host defense: Experimental and clinical insights. Trends in Immunology. 2019;40(10):922-938. doi:10.1016/j.it.2019.08.004' apa: 'Nicolai, L., Gärtner, F. R., & Massberg, S. (2019). Platelets in host defense: Experimental and clinical insights. Trends in Immunology. Cell Press. https://doi.org/10.1016/j.it.2019.08.004' chicago: 'Nicolai, Leo, Florian R Gärtner, and Steffen Massberg. “Platelets in Host Defense: Experimental and Clinical Insights.” Trends in Immunology. Cell Press, 2019. https://doi.org/10.1016/j.it.2019.08.004.' ieee: 'L. Nicolai, F. R. Gärtner, and S. Massberg, “Platelets in host defense: Experimental and clinical insights,” Trends in Immunology, vol. 40, no. 10. Cell Press, pp. 922–938, 2019.' ista: 'Nicolai L, Gärtner FR, Massberg S. 2019. Platelets in host defense: Experimental and clinical insights. Trends in Immunology. 40(10), 922–938.' mla: 'Nicolai, Leo, et al. “Platelets in Host Defense: Experimental and Clinical Insights.” Trends in Immunology, vol. 40, no. 10, Cell Press, 2019, pp. 922–38, doi:10.1016/j.it.2019.08.004.' short: L. Nicolai, F.R. Gärtner, S. Massberg, Trends in Immunology 40 (2019) 922–938. date_created: 2019-11-04T16:27:36Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-30T07:19:23Z day: '01' department: - _id: MiSi doi: 10.1016/j.it.2019.08.004 ec_funded: 1 external_id: isi: - '000493292100005' pmid: - '31601520' intvolume: ' 40' isi: 1 issue: '10' language: - iso: eng month: '10' oa_version: None page: 922-938 pmid: 1 project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Trends in Immunology publication_identifier: issn: - 1471-4906 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: 'Platelets in host defense: Experimental and clinical insights' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2019' ... --- _id: '7002' abstract: - lang: eng text: Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem. article_number: '37' article_processing_charge: No article_type: original author: - first_name: Ivo full_name: Kondapaneni, Ivo last_name: Kondapaneni - first_name: Petr full_name: Vevoda, Petr last_name: Vevoda - first_name: Pascal full_name: Grittmann, Pascal last_name: Grittmann - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Philipp full_name: Slusallek, Philipp last_name: Slusallek - first_name: Jaroslav full_name: Křivánek, Jaroslav last_name: Křivánek citation: ama: Kondapaneni I, Vevoda P, Grittmann P, Skrivan T, Slusallek P, Křivánek J. Optimal multiple importance sampling. ACM Transactions on Graphics. 2019;38(4). doi:10.1145/3306346.3323009 apa: Kondapaneni, I., Vevoda, P., Grittmann, P., Skrivan, T., Slusallek, P., & Křivánek, J. (2019). Optimal multiple importance sampling. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3306346.3323009 chicago: Kondapaneni, Ivo, Petr Vevoda, Pascal Grittmann, Tomas Skrivan, Philipp Slusallek, and Jaroslav Křivánek. “Optimal Multiple Importance Sampling.” ACM Transactions on Graphics. ACM, 2019. https://doi.org/10.1145/3306346.3323009. ieee: I. Kondapaneni, P. Vevoda, P. Grittmann, T. Skrivan, P. Slusallek, and J. Křivánek, “Optimal multiple importance sampling,” ACM Transactions on Graphics, vol. 38, no. 4. ACM, 2019. ista: Kondapaneni I, Vevoda P, Grittmann P, Skrivan T, Slusallek P, Křivánek J. 2019. Optimal multiple importance sampling. ACM Transactions on Graphics. 38(4), 37. mla: Kondapaneni, Ivo, et al. “Optimal Multiple Importance Sampling.” ACM Transactions on Graphics, vol. 38, no. 4, 37, ACM, 2019, doi:10.1145/3306346.3323009. short: I. Kondapaneni, P. Vevoda, P. Grittmann, T. Skrivan, P. Slusallek, J. Křivánek, ACM Transactions on Graphics 38 (2019). date_created: 2019-11-12T13:05:40Z date_published: 2019-07-01T00:00:00Z date_updated: 2023-08-30T07:21:25Z day: '01' department: - _id: ChWo doi: 10.1145/3306346.3323009 ec_funded: 1 external_id: isi: - '000475740600011' intvolume: ' 38' isi: 1 issue: '4' language: - iso: eng month: '07' oa_version: None project: - _id: 2508E324-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '642841' name: Distributed 3D Object Design publication: ACM Transactions on Graphics publication_identifier: issn: - 0730-0301 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: Optimal multiple importance sampling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 38 year: '2019' ... --- _id: '6978' abstract: - lang: eng text: In pipes and channels, the onset of turbulence is initially dominated by localizedtransients, which lead to sustained turbulence through their collective dynamics. In thepresent work, we study numerically the localized turbulence in pipe flow and elucidate astate space structure that gives rise to transient chaos. Starting from the basin boundaryseparating laminar and turbulent flow, we identify transverse homoclinic orbits, thepresence of which necessitates a homoclinic tangle and chaos. A direct consequence ofthe homoclinic tangle is the fractal nature of the laminar-turbulent boundary, which wasconjectured in various earlier studies. By mapping the transverse intersections between thestable and unstable manifold of a periodic orbit, we identify the gateways that promote anescape from turbulence. acknowledged_ssus: - _id: ScienComp article_processing_charge: No article_type: original author: - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 - first_name: Akshunna full_name: Dogra, Akshunna last_name: Dogra - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Budanur NB, Dogra A, Hof B. Geometry of transient chaos in streamwise-localized pipe flow turbulence. Physical Review Fluids. 2019;4(10):102401. doi:10.1103/PhysRevFluids.4.102401 apa: Budanur, N. B., Dogra, A., & Hof, B. (2019). Geometry of transient chaos in streamwise-localized pipe flow turbulence. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/PhysRevFluids.4.102401 chicago: Budanur, Nazmi B, Akshunna Dogra, and Björn Hof. “Geometry of Transient Chaos in Streamwise-Localized Pipe Flow Turbulence.” Physical Review Fluids. American Physical Society, 2019. https://doi.org/10.1103/PhysRevFluids.4.102401. ieee: N. B. Budanur, A. Dogra, and B. Hof, “Geometry of transient chaos in streamwise-localized pipe flow turbulence,” Physical Review Fluids, vol. 4, no. 10. American Physical Society, p. 102401, 2019. ista: Budanur NB, Dogra A, Hof B. 2019. Geometry of transient chaos in streamwise-localized pipe flow turbulence. Physical Review Fluids. 4(10), 102401. mla: Budanur, Nazmi B., et al. “Geometry of Transient Chaos in Streamwise-Localized Pipe Flow Turbulence.” Physical Review Fluids, vol. 4, no. 10, American Physical Society, 2019, p. 102401, doi:10.1103/PhysRevFluids.4.102401. short: N.B. Budanur, A. Dogra, B. Hof, Physical Review Fluids 4 (2019) 102401. date_created: 2019-11-04T10:04:01Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-30T07:20:03Z day: '01' department: - _id: BjHo doi: 10.1103/PhysRevFluids.4.102401 external_id: arxiv: - '1810.02211' isi: - '000493510400001' intvolume: ' 4' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.02211 month: '10' oa: 1 oa_version: Preprint page: '102401' publication: Physical Review Fluids publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Geometry of transient chaos in streamwise-localized pipe flow turbulence type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 4 year: '2019' ... --- _id: '7026' abstract: - lang: eng text: Effective design of combination therapies requires understanding the changes in cell physiology that result from drug interactions. Here, we show that the genome-wide transcriptional response to combinations of two drugs, measured at a rigorously controlled growth rate, can predict higher-order antagonism with a third drug in Saccharomyces cerevisiae. Using isogrowth profiling, over 90% of the variation in cellular response can be decomposed into three principal components (PCs) that have clear biological interpretations. We demonstrate that the third PC captures emergent transcriptional programs that are dependent on both drugs and can predict antagonism with a third drug targeting the emergent pathway. We further show that emergent gene expression patterns are most pronounced at a drug ratio where the drug interaction is strongest, providing a guideline for future measurements. Our results provide a readily applicable recipe for uncovering emergent responses in other systems and for higher-order drug combinations. A record of this paper’s transparent peer review process is included in the Supplemental Information. acknowledged_ssus: - _id: LifeSc article_processing_charge: No article_type: original author: - first_name: Martin full_name: Lukacisin, Martin id: 298FFE8C-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisin orcid: 0000-0001-6549-4177 - first_name: Tobias full_name: Bollenbach, Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X citation: ama: Lukacisin M, Bollenbach MT. Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. 2019;9(5):423-433.e1-e3. doi:10.1016/j.cels.2019.10.004 apa: Lukacisin, M., & Bollenbach, M. T. (2019). Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. Cell Press. https://doi.org/10.1016/j.cels.2019.10.004 chicago: Lukacisin, Martin, and Mark Tobias Bollenbach. “Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions.” Cell Systems. Cell Press, 2019. https://doi.org/10.1016/j.cels.2019.10.004. ieee: M. Lukacisin and M. T. Bollenbach, “Emergent gene expression responses to drug combinations predict higher-order drug interactions,” Cell Systems, vol. 9, no. 5. Cell Press, pp. 423-433.e1-e3, 2019. ista: Lukacisin M, Bollenbach MT. 2019. Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. 9(5), 423-433.e1-e3. mla: Lukacisin, Martin, and Mark Tobias Bollenbach. “Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions.” Cell Systems, vol. 9, no. 5, Cell Press, 2019, pp. 423-433.e1-e3, doi:10.1016/j.cels.2019.10.004. short: M. Lukacisin, M.T. Bollenbach, Cell Systems 9 (2019) 423-433.e1-e3. date_created: 2019-11-15T10:51:42Z date_published: 2019-11-27T00:00:00Z date_updated: 2023-08-30T07:24:58Z day: '27' ddc: - '570' department: - _id: ToBo doi: 10.1016/j.cels.2019.10.004 external_id: isi: - '000499495400003' file: - access_level: open_access checksum: 7a11d6c2f9523d65b049512d61733178 content_type: application/pdf creator: dernst date_created: 2019-11-15T10:57:42Z date_updated: 2020-07-14T12:47:48Z file_id: '7027' file_name: 2019_CellSystems_Lukacisin.pdf file_size: 4238460 relation: main_file file_date_updated: 2020-07-14T12:47:48Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '5' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 423-433.e1-e3 project: - _id: 25E9AF9E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27201-B22 name: Revealing the mechanisms underlying drug interactions - _id: 25EB3A80-B435-11E9-9278-68D0E5697425 grant_number: RGP0042/2013 name: Revealing the fundamental limits of cell growth publication: Cell Systems publication_identifier: issn: - 2405-4712 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Emergent gene expression responses to drug combinations predict higher-order drug interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2019' ... --- _id: '7034' abstract: - lang: eng text: We find a graph of genus 5 and its drawing on the orientable surface of genus 4 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani–Tutte theorem cannot be extended to the orientable surface of genus 4. As a base step in the construction we use a counterexample to an extension of the unified Hanani–Tutte theorem on the torus. article_processing_charge: No article_type: original author: - first_name: Radoslav full_name: Fulek, Radoslav id: 39F3FFE4-F248-11E8-B48F-1D18A9856A87 last_name: Fulek orcid: 0000-0001-8485-1774 - first_name: Jan full_name: Kynčl, Jan last_name: Kynčl citation: ama: Fulek R, Kynčl J. Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4. Combinatorica. 2019;39(6):1267-1279. doi:10.1007/s00493-019-3905-7 apa: Fulek, R., & Kynčl, J. (2019). Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4. Combinatorica. Springer Nature. https://doi.org/10.1007/s00493-019-3905-7 chicago: Fulek, Radoslav, and Jan Kynčl. “Counterexample to an Extension of the Hanani-Tutte Theorem on the Surface of Genus 4.” Combinatorica. Springer Nature, 2019. https://doi.org/10.1007/s00493-019-3905-7. ieee: R. Fulek and J. Kynčl, “Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4,” Combinatorica, vol. 39, no. 6. Springer Nature, pp. 1267–1279, 2019. ista: Fulek R, Kynčl J. 2019. Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4. Combinatorica. 39(6), 1267–1279. mla: Fulek, Radoslav, and Jan Kynčl. “Counterexample to an Extension of the Hanani-Tutte Theorem on the Surface of Genus 4.” Combinatorica, vol. 39, no. 6, Springer Nature, 2019, pp. 1267–79, doi:10.1007/s00493-019-3905-7. short: R. Fulek, J. Kynčl, Combinatorica 39 (2019) 1267–1279. date_created: 2019-11-18T14:29:50Z date_published: 2019-10-29T00:00:00Z date_updated: 2023-08-30T07:26:25Z day: '29' department: - _id: UlWa doi: 10.1007/s00493-019-3905-7 ec_funded: 1 external_id: arxiv: - '1709.00508' isi: - '000493267200003' intvolume: ' 39' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1709.00508 month: '10' oa: 1 oa_version: Preprint page: 1267-1279 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 261FA626-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02281 name: Eliminating intersections in drawings of graphs publication: Combinatorica publication_identifier: eissn: - 1439-6912 issn: - 0209-9683 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Counterexample to an extension of the Hanani-Tutte theorem on the surface of genus 4 type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2019' ... --- _id: '7032' abstract: - lang: eng text: Optical frequency combs (OFCs) are light sources whose spectra consists of equally spaced frequency lines in the optical domain [1]. They have great potential for improving high-capacity data transfer, all-optical atomic clocks, spectroscopy, and high-precision measurements [2]. article_number: '8873300' article_processing_charge: No author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Gerd full_name: Leuchs, Gerd last_name: Leuchs - first_name: Madhuri full_name: Kuamri, Madhuri last_name: Kuamri - first_name: Harald G. L. full_name: Schwefel, Harald G. L. last_name: Schwefel citation: ama: 'Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kuamri M, Schwefel HGL. Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. IEEE; 2019. doi:10.1109/cleoe-eqec.2019.8873300' apa: 'Rueda Sanchez, A. R., Sedlmeir, F., Leuchs, G., Kuamri, M., & Schwefel, H. G. L. (2019). Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: IEEE. https://doi.org/10.1109/cleoe-eqec.2019.8873300' chicago: Rueda Sanchez, Alfredo R, Florian Sedlmeir, Gerd Leuchs, Madhuri Kuamri, and Harald G. L. Schwefel. “Electro-Optic Frequency Comb Generation in Lithium Niobate Whispering Gallery Mode Resonators.” In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. IEEE, 2019. https://doi.org/10.1109/cleoe-eqec.2019.8873300. ieee: A. R. Rueda Sanchez, F. Sedlmeir, G. Leuchs, M. Kuamri, and H. G. L. Schwefel, “Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich, Germany, 2019. ista: 'Rueda Sanchez AR, Sedlmeir F, Leuchs G, Kuamri M, Schwefel HGL. 2019. Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. CLEO: Conference on Lasers and Electro-Optics Europe, 8873300.' mla: Rueda Sanchez, Alfredo R., et al. “Electro-Optic Frequency Comb Generation in Lithium Niobate Whispering Gallery Mode Resonators.” 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 8873300, IEEE, 2019, doi:10.1109/cleoe-eqec.2019.8873300. short: A.R. Rueda Sanchez, F. Sedlmeir, G. Leuchs, M. Kuamri, H.G.L. Schwefel, in:, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, IEEE, 2019. conference: end_date: 2019-06-27 location: Munich, Germany name: 'CLEO: Conference on Lasers and Electro-Optics Europe' start_date: 2019-06-23 date_created: 2019-11-18T13:58:22Z date_published: 2019-10-17T00:00:00Z date_updated: 2023-08-30T07:26:01Z day: '17' department: - _id: JoFi doi: 10.1109/cleoe-eqec.2019.8873300 external_id: isi: - '000630002701617' isi: 1 language: - iso: eng month: '10' oa_version: None publication: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference publication_identifier: isbn: - '9781728104690' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ... --- _id: '7095' abstract: - lang: eng text: BAX, a member of the BCL2 gene family, controls the committed step of the intrinsic apoptotic program. Mitochondrial fragmentation is a commonly observed feature of apoptosis, which occurs through the process of mitochondrial fission. BAX has consistently been associated with mitochondrial fission, yet how BAX participates in the process of mitochondrial fragmentation during apoptosis remains to be tested. Time-lapse imaging of BAX recruitment and mitochondrial fragmentation demonstrates that rapid mitochondrial fragmentation during apoptosis occurs after the complete recruitment of BAX to the mitochondrial outer membrane (MOM). The requirement of a fully functioning BAX protein for the fission process was demonstrated further in BAX/BAK-deficient HCT116 cells expressing a P168A mutant of BAX. The mutant performed fusion to restore the mitochondrial network. but was not demonstrably recruited to the MOM after apoptosis induction. Under these conditions, mitochondrial fragmentation was blocked. Additionally, we show that loss of the fission protein, dynamin-like protein 1 (DRP1), does not temporally affect the initiation time or rate of BAX recruitment, but does reduce the final level of BAX recruited to the MOM during the late phase of BAX recruitment. These correlative observations suggest a model where late-stage BAX oligomers play a functional part of the mitochondrial fragmentation machinery in apoptotic cells. article_number: '16565' article_processing_charge: No article_type: original author: - first_name: Margaret E full_name: Maes, Margaret E id: 3838F452-F248-11E8-B48F-1D18A9856A87 last_name: Maes orcid: 0000-0001-9642-1085 - first_name: J. A. full_name: Grosser, J. A. last_name: Grosser - first_name: R. L. full_name: Fehrman, R. L. last_name: Fehrman - first_name: C. L. full_name: Schlamp, C. L. last_name: Schlamp - first_name: R. W. full_name: Nickells, R. W. last_name: Nickells citation: ama: Maes ME, Grosser JA, Fehrman RL, Schlamp CL, Nickells RW. Completion of BAX recruitment correlates with mitochondrial fission during apoptosis. Scientific Reports. 2019;9. doi:10.1038/s41598-019-53049-w apa: Maes, M. E., Grosser, J. A., Fehrman, R. L., Schlamp, C. L., & Nickells, R. W. (2019). Completion of BAX recruitment correlates with mitochondrial fission during apoptosis. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-019-53049-w chicago: Maes, Margaret E, J. A. Grosser, R. L. Fehrman, C. L. Schlamp, and R. W. Nickells. “Completion of BAX Recruitment Correlates with Mitochondrial Fission during Apoptosis.” Scientific Reports. Springer Nature, 2019. https://doi.org/10.1038/s41598-019-53049-w. ieee: M. E. Maes, J. A. Grosser, R. L. Fehrman, C. L. Schlamp, and R. W. Nickells, “Completion of BAX recruitment correlates with mitochondrial fission during apoptosis,” Scientific Reports, vol. 9. Springer Nature, 2019. ista: Maes ME, Grosser JA, Fehrman RL, Schlamp CL, Nickells RW. 2019. Completion of BAX recruitment correlates with mitochondrial fission during apoptosis. Scientific Reports. 9, 16565. mla: Maes, Margaret E., et al. “Completion of BAX Recruitment Correlates with Mitochondrial Fission during Apoptosis.” Scientific Reports, vol. 9, 16565, Springer Nature, 2019, doi:10.1038/s41598-019-53049-w. short: M.E. Maes, J.A. Grosser, R.L. Fehrman, C.L. Schlamp, R.W. Nickells, Scientific Reports 9 (2019). date_created: 2019-11-25T07:45:17Z date_published: 2019-11-12T00:00:00Z date_updated: 2023-08-30T07:26:54Z day: '12' ddc: - '570' department: - _id: SaSi doi: 10.1038/s41598-019-53049-w external_id: isi: - '000495857600019' pmid: - '31719602' file: - access_level: open_access checksum: 9ab397ed9c1c454b34bffb8cc863d734 content_type: application/pdf creator: dernst date_created: 2019-11-25T07:49:52Z date_updated: 2020-07-14T12:47:49Z file_id: '7096' file_name: 2019_ScientificReports_Maes.pdf file_size: 6467393 relation: main_file file_date_updated: 2020-07-14T12:47:49Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_identifier: eissn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Completion of BAX recruitment correlates with mitochondrial fission during apoptosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2019' ... --- _id: '7097' abstract: - lang: eng text: Early endosomes, also called sorting endosomes, are known to mature into late endosomesvia the Rab5-mediated endolysosomal trafficking pathway. Thus, early endosome existence isthought to be maintained by the continual fusion of transport vesicles from the plasmamembrane and thetrans-Golgi network (TGN). Here we show instead that endocytosis isdispensable and post-Golgi vesicle transport is crucial for the formation of endosomes andthe subsequent endolysosomal traffic regulated by yeast Rab5 Vps21p. Fittingly, all threeproteins required for endosomal nucleotide exchange on Vps21p arefirst recruited to theTGN before transport to the endosome, namely the GEF Vps9p and the epsin-relatedadaptors Ent3/5p. The TGN recruitment of these components is distinctly controlled, withVps9p appearing to require the Arf1p GTPase, and the Rab11s, Ypt31p/32p. These resultsprovide a different view of endosome formation and identify the TGN as a critical location forregulating progress through the endolysosomal trafficking pathway. article_number: '419' article_processing_charge: No article_type: original author: - first_name: Makoto full_name: Nagano, Makoto last_name: Nagano - first_name: Junko Y. full_name: Toshima, Junko Y. last_name: Toshima - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Jiro full_name: Toshima, Jiro last_name: Toshima citation: ama: Nagano M, Toshima JY, Siekhaus DE, Toshima J. Rab5-mediated endosome formation is regulated at the trans-Golgi network. Communications Biology. 2019;2(1). doi:10.1038/s42003-019-0670-5 apa: Nagano, M., Toshima, J. Y., Siekhaus, D. E., & Toshima, J. (2019). Rab5-mediated endosome formation is regulated at the trans-Golgi network. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-019-0670-5 chicago: Nagano, Makoto, Junko Y. Toshima, Daria E Siekhaus, and Jiro Toshima. “Rab5-Mediated Endosome Formation Is Regulated at the Trans-Golgi Network.” Communications Biology. Springer Nature, 2019. https://doi.org/10.1038/s42003-019-0670-5. ieee: M. Nagano, J. Y. Toshima, D. E. Siekhaus, and J. Toshima, “Rab5-mediated endosome formation is regulated at the trans-Golgi network,” Communications Biology, vol. 2, no. 1. Springer Nature, 2019. ista: Nagano M, Toshima JY, Siekhaus DE, Toshima J. 2019. Rab5-mediated endosome formation is regulated at the trans-Golgi network. Communications Biology. 2(1), 419. mla: Nagano, Makoto, et al. “Rab5-Mediated Endosome Formation Is Regulated at the Trans-Golgi Network.” Communications Biology, vol. 2, no. 1, 419, Springer Nature, 2019, doi:10.1038/s42003-019-0670-5. short: M. Nagano, J.Y. Toshima, D.E. Siekhaus, J. Toshima, Communications Biology 2 (2019). date_created: 2019-11-25T07:55:01Z date_published: 2019-11-15T00:00:00Z date_updated: 2023-08-30T07:27:55Z day: '15' ddc: - '570' department: - _id: DaSi doi: 10.1038/s42003-019-0670-5 external_id: isi: - '000496767800005' file: - access_level: open_access checksum: c63c69a264fc8a0e52f2b0d482f3bdae content_type: application/pdf creator: dernst date_created: 2019-11-25T07:58:05Z date_updated: 2020-07-14T12:47:49Z file_id: '7098' file_name: 2019_CommunicBiology_Nagano.pdf file_size: 2626069 relation: main_file file_date_updated: 2020-07-14T12:47:49Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Communications Biology publication_identifier: issn: - 2399-3642 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Rab5-mediated endosome formation is regulated at the trans-Golgi network tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2 year: '2019' ... --- _id: '7099' acknowledgement: "The authors thank Gabi Schmid for excellent technical support. We also thank\r\nDr. H. Harada, Dr. W. Kaufmann, and Dr. B. Kapelari for testing the specificity\r\nof some of the antibodies used in this study on replicas. Funding was provided\r\nby the Austrian Science Fund (Fonds zur Fo¨ rderung der Wissenschaftlichen\r\nForschung) Sonderforschungsbereich grants F44-17 (to F.jF.), F44-10 and\r\nP25375-B24 (to N.S.), and P26680 (to G.S.) and by the Novartis Research\r\nFoundation and the Swiss National Science Foundation (to A.L). We also thank\r\nProf. M. Capogna for reading a previous version of the manuscript." article_processing_charge: No article_type: original author: - first_name: Yu full_name: Kasugai, Yu last_name: Kasugai - first_name: Elisabeth full_name: Vogel, Elisabeth last_name: Vogel - first_name: Heide full_name: Hörtnagl, Heide last_name: Hörtnagl - first_name: Sabine full_name: Schönherr, Sabine last_name: Schönherr - first_name: Enrica full_name: Paradiso, Enrica last_name: Paradiso - first_name: Markus full_name: Hauschild, Markus last_name: Hauschild - first_name: Georg full_name: Göbel, Georg last_name: Göbel - first_name: Ivan full_name: Milenkovic, Ivan last_name: Milenkovic - first_name: Yvan full_name: Peterschmitt, Yvan last_name: Peterschmitt - first_name: Ramon full_name: Tasan, Ramon last_name: Tasan - first_name: Günther full_name: Sperk, Günther last_name: Sperk - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Werner full_name: Sieghart, Werner last_name: Sieghart - first_name: Nicolas full_name: Singewald, Nicolas last_name: Singewald - first_name: Andreas full_name: Lüthi, Andreas last_name: Lüthi - first_name: Francesco full_name: Ferraguti, Francesco last_name: Ferraguti citation: ama: Kasugai Y, Vogel E, Hörtnagl H, et al. Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning. Neuron. 2019;104(4):781-794.e4. doi:10.1016/j.neuron.2019.08.013 apa: Kasugai, Y., Vogel, E., Hörtnagl, H., Schönherr, S., Paradiso, E., Hauschild, M., … Ferraguti, F. (2019). Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2019.08.013 chicago: Kasugai, Yu, Elisabeth Vogel, Heide Hörtnagl, Sabine Schönherr, Enrica Paradiso, Markus Hauschild, Georg Göbel, et al. “Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning.” Neuron. Elsevier, 2019. https://doi.org/10.1016/j.neuron.2019.08.013. ieee: Y. Kasugai et al., “Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning,” Neuron, vol. 104, no. 4. Elsevier, p. 781–794.e4, 2019. ista: Kasugai Y, Vogel E, Hörtnagl H, Schönherr S, Paradiso E, Hauschild M, Göbel G, Milenkovic I, Peterschmitt Y, Tasan R, Sperk G, Shigemoto R, Sieghart W, Singewald N, Lüthi A, Ferraguti F. 2019. Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning. Neuron. 104(4), 781–794.e4. mla: Kasugai, Yu, et al. “Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning.” Neuron, vol. 104, no. 4, Elsevier, 2019, p. 781–794.e4, doi:10.1016/j.neuron.2019.08.013. short: Y. Kasugai, E. Vogel, H. Hörtnagl, S. Schönherr, E. Paradiso, M. Hauschild, G. Göbel, I. Milenkovic, Y. Peterschmitt, R. Tasan, G. Sperk, R. Shigemoto, W. Sieghart, N. Singewald, A. Lüthi, F. Ferraguti, Neuron 104 (2019) 781–794.e4. date_created: 2019-11-25T08:02:39Z date_published: 2019-11-20T00:00:00Z date_updated: 2023-08-30T07:28:22Z day: '20' ddc: - '571' - '599' department: - _id: RySh doi: 10.1016/j.neuron.2019.08.013 external_id: isi: - '000497963500017' pmid: - '31543297' has_accepted_license: '1' intvolume: ' 104' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.neuron.2019.08.013 month: '11' oa: 1 oa_version: Published Version page: 781-794.e4 pmid: 1 publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Structural and functional remodeling of amygdala GABAergic synapses in associative fear learning type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 104 year: '2019' ... --- _id: '6455' abstract: - lang: eng text: During corticogenesis, distinct subtypes of neurons are sequentially born from ventricular zone progenitors. How these cells are molecularly temporally patterned is poorly understood. We used single-cell RNA sequencing at high temporal resolution to trace the lineage of the molecular identities of successive generations of apical progenitors (APs) and their daughter neurons in mouse embryos. We identified a core set of evolutionarily conserved, temporally patterned genes that drive APs from internally driven to more exteroceptive states. We found that the Polycomb repressor complex 2 (PRC2) epigenetically regulates AP temporal progression. Embryonic age–dependent AP molecular states are transmitted to their progeny as successive ground states, onto which essentially conserved early postmitotic differentiation programs are applied, and are complemented by later-occurring environment-dependent signals. Thus, epigenetically regulated temporal molecular birthmarks present in progenitors act in their postmitotic progeny to seed adult neuronal diversity. article_number: eaav2522 article_processing_charge: No article_type: original author: - first_name: L full_name: Telley, L last_name: Telley - first_name: G full_name: Agirman, G last_name: Agirman - first_name: J full_name: Prados, J last_name: Prados - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: S full_name: Fièvre, S last_name: Fièvre - first_name: P full_name: Oberst, P last_name: Oberst - first_name: G full_name: Bartolini, G last_name: Bartolini - first_name: I full_name: Vitali, I last_name: Vitali - first_name: C full_name: Cadilhac, C last_name: Cadilhac - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: L full_name: Nguyen, L last_name: Nguyen - first_name: A full_name: Dayer, A last_name: Dayer - first_name: D full_name: Jabaudon, D last_name: Jabaudon citation: ama: Telley L, Agirman G, Prados J, et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. 2019;364(6440). doi:10.1126/science.aav2522 apa: Telley, L., Agirman, G., Prados, J., Amberg, N., Fièvre, S., Oberst, P., … Jabaudon, D. (2019). Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. AAAS. https://doi.org/10.1126/science.aav2522 chicago: Telley, L, G Agirman, J Prados, Nicole Amberg, S Fièvre, P Oberst, G Bartolini, et al. “Temporal Patterning of Apical Progenitors and Their Daughter Neurons in the Developing Neocortex.” Science. AAAS, 2019. https://doi.org/10.1126/science.aav2522. ieee: L. Telley et al., “Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex,” Science, vol. 364, no. 6440. AAAS, 2019. ista: Telley L, Agirman G, Prados J, Amberg N, Fièvre S, Oberst P, Bartolini G, Vitali I, Cadilhac C, Hippenmeyer S, Nguyen L, Dayer A, Jabaudon D. 2019. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. 364(6440), eaav2522. mla: Telley, L., et al. “Temporal Patterning of Apical Progenitors and Their Daughter Neurons in the Developing Neocortex.” Science, vol. 364, no. 6440, eaav2522, AAAS, 2019, doi:10.1126/science.aav2522. short: L. Telley, G. Agirman, J. Prados, N. Amberg, S. Fièvre, P. Oberst, G. Bartolini, I. Vitali, C. Cadilhac, S. Hippenmeyer, L. Nguyen, A. Dayer, D. Jabaudon, Science 364 (2019). date_created: 2019-05-14T13:07:47Z date_published: 2019-05-10T00:00:00Z date_updated: 2023-09-05T11:51:09Z day: '10' department: - _id: SiHi doi: 10.1126/science.aav2522 ec_funded: 1 external_id: isi: - '000467631800034' pmid: - '31073041' intvolume: ' 364' isi: 1 issue: '6440' language: - iso: eng main_file_link: - open_access: '1' url: https://orbi.uliege.be/bitstream/2268/239604/1/Telley_Agirman_Science2019.pdf month: '05' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: AAAS quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-generate-a-brain-of-correct-size-and-composition/ scopus_import: '1' status: public title: Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 364 year: '2019' ... --- _id: '6586' abstract: - lang: eng text: The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe. article_processing_charge: No article_type: original author: - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Roger full_name: Hasler, Roger last_name: Hasler - first_name: Aziz full_name: Genç, Aziz last_name: Genç - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Beatrice full_name: Kuster, Beatrice last_name: Kuster - first_name: Maximilian full_name: Schuster, Maximilian last_name: Schuster - first_name: Oleksandr full_name: Dobrozhan, Oleksandr last_name: Dobrozhan - first_name: Doris full_name: Cadavid, Doris last_name: Cadavid - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot - first_name: Maksym V. full_name: Kovalenko, Maksym V. last_name: Kovalenko citation: ama: Ibáñez M, Hasler R, Genç A, et al. Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion. Journal of the American Chemical Society. 2019;141(20):8025-8029. doi:10.1021/jacs.9b01394 apa: Ibáñez, M., Hasler, R., Genç, A., Liu, Y., Kuster, B., Schuster, M., … Kovalenko, M. V. (2019). Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.9b01394 chicago: Ibáñez, Maria, Roger Hasler, Aziz Genç, Yu Liu, Beatrice Kuster, Maximilian Schuster, Oleksandr Dobrozhan, et al. “Ligand-Mediated Band Engineering in Bottom-up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion.” Journal of the American Chemical Society. American Chemical Society, 2019. https://doi.org/10.1021/jacs.9b01394. ieee: M. Ibáñez et al., “Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion,” Journal of the American Chemical Society, vol. 141, no. 20. American Chemical Society, pp. 8025–8029, 2019. ista: Ibáñez M, Hasler R, Genç A, Liu Y, Kuster B, Schuster M, Dobrozhan O, Cadavid D, Arbiol J, Cabot A, Kovalenko MV. 2019. Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion. Journal of the American Chemical Society. 141(20), 8025–8029. mla: Ibáñez, Maria, et al. “Ligand-Mediated Band Engineering in Bottom-up Assembled SnTe Nanocomposites for Thermoelectric Energy Conversion.” Journal of the American Chemical Society, vol. 141, no. 20, American Chemical Society, 2019, pp. 8025–29, doi:10.1021/jacs.9b01394. short: M. Ibáñez, R. Hasler, A. Genç, Y. Liu, B. Kuster, M. Schuster, O. Dobrozhan, D. Cadavid, J. Arbiol, A. Cabot, M.V. Kovalenko, Journal of the American Chemical Society 141 (2019) 8025–8029. date_created: 2019-06-25T11:53:35Z date_published: 2019-04-19T00:00:00Z date_updated: 2023-09-05T12:03:45Z day: '19' ddc: - '540' department: - _id: MaIb doi: 10.1021/jacs.9b01394 ec_funded: 1 external_id: isi: - '000469292300004' pmid: - '31017419 ' file: - access_level: open_access checksum: 34d7ec837869cc6a07996b54f75696b7 content_type: application/pdf creator: cpetz date_created: 2019-06-25T11:59:00Z date_updated: 2020-07-14T12:47:34Z file_id: '6587' file_name: JACS_April2019.pdf file_size: 6234004 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 141' isi: 1 issue: '20' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 8025-8029 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 141 year: '2019' ... --- _id: '6174' abstract: - lang: eng text: We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a “quantum avalanche.” We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent αc=2, and continuously varying exponents in the MBL phase consistent with the KT picture. article_number: '094205' article_processing_charge: No article_type: original author: - first_name: Philipp T. full_name: Dumitrescu, Philipp T. last_name: Dumitrescu - first_name: Anna full_name: Goremykina, Anna last_name: Goremykina - first_name: Siddharth A. full_name: Parameswaran, Siddharth A. last_name: Parameswaran - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Romain full_name: Vasseur, Romain last_name: Vasseur citation: ama: Dumitrescu PT, Goremykina A, Parameswaran SA, Serbyn M, Vasseur R. Kosterlitz-Thouless scaling at many-body localization phase transitions. Physical Review B. 2019;99(9). doi:10.1103/physrevb.99.094205 apa: Dumitrescu, P. T., Goremykina, A., Parameswaran, S. A., Serbyn, M., & Vasseur, R. (2019). Kosterlitz-Thouless scaling at many-body localization phase transitions. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.99.094205 chicago: Dumitrescu, Philipp T., Anna Goremykina, Siddharth A. Parameswaran, Maksym Serbyn, and Romain Vasseur. “Kosterlitz-Thouless Scaling at Many-Body Localization Phase Transitions.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/physrevb.99.094205. ieee: P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran, M. Serbyn, and R. Vasseur, “Kosterlitz-Thouless scaling at many-body localization phase transitions,” Physical Review B, vol. 99, no. 9. American Physical Society, 2019. ista: Dumitrescu PT, Goremykina A, Parameswaran SA, Serbyn M, Vasseur R. 2019. Kosterlitz-Thouless scaling at many-body localization phase transitions. Physical Review B. 99(9), 094205. mla: Dumitrescu, Philipp T., et al. “Kosterlitz-Thouless Scaling at Many-Body Localization Phase Transitions.” Physical Review B, vol. 99, no. 9, 094205, American Physical Society, 2019, doi:10.1103/physrevb.99.094205. short: P.T. Dumitrescu, A. Goremykina, S.A. Parameswaran, M. Serbyn, R. Vasseur, Physical Review B 99 (2019). date_created: 2019-03-25T07:32:08Z date_published: 2019-03-22T00:00:00Z date_updated: 2023-09-05T12:11:13Z day: '22' department: - _id: MaSe doi: 10.1103/physrevb.99.094205 external_id: arxiv: - '1811.03103' isi: - '000462883200001' intvolume: ' 99' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1811.03103 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Kosterlitz-Thouless scaling at many-body localization phase transitions type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 99 year: '2019' ... --- _id: '6366' abstract: - lang: eng text: Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures, and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl. article_processing_charge: No article_type: original author: - first_name: Julia full_name: Bellstaedt, Julia last_name: Bellstaedt - first_name: Jana full_name: Trenner, Jana last_name: Trenner - first_name: Rebecca full_name: Lippmann, Rebecca last_name: Lippmann - first_name: Yvonne full_name: Poeschl, Yvonne last_name: Poeschl - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Marcel full_name: Quint, Marcel last_name: Quint - first_name: Carolin full_name: Delker, Carolin last_name: Delker citation: ama: Bellstaedt J, Trenner J, Lippmann R, et al. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiology. 2019;180(2):757-766. doi:10.1104/pp.18.01377 apa: Bellstaedt, J., Trenner, J., Lippmann, R., Poeschl, Y., Zhang, X., Friml, J., … Delker, C. (2019). A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiology. ASPB. https://doi.org/10.1104/pp.18.01377 chicago: Bellstaedt, Julia, Jana Trenner, Rebecca Lippmann, Yvonne Poeschl, Xixi Zhang, Jiří Friml, Marcel Quint, and Carolin Delker. “A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls.” Plant Physiology. ASPB, 2019. https://doi.org/10.1104/pp.18.01377. ieee: J. Bellstaedt et al., “A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls,” Plant Physiology, vol. 180, no. 2. ASPB, pp. 757–766, 2019. ista: Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delker C. 2019. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiology. 180(2), 757–766. mla: Bellstaedt, Julia, et al. “A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls.” Plant Physiology, vol. 180, no. 2, ASPB, 2019, pp. 757–66, doi:10.1104/pp.18.01377. short: J. Bellstaedt, J. Trenner, R. Lippmann, Y. Poeschl, X. Zhang, J. Friml, M. Quint, C. Delker, Plant Physiology 180 (2019) 757–766. date_created: 2019-04-30T15:24:22Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-05T12:25:19Z day: '01' department: - _id: JiFr doi: 10.1104/pp.18.01377 external_id: isi: - '000470086100019' pmid: - '31000634' intvolume: ' 180' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: www.doi.org/10.1104/pp.18.01377 month: '06' oa: 1 oa_version: Published Version page: 757-766 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: ASPB quality_controlled: '1' scopus_import: '1' status: public title: A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 180 year: '2019' ... --- _id: '6986' abstract: - lang: eng text: 'Li-Nadler proposed a conjecture about traces of Hecke categories, which implies the semistable part of the Betti geometric Langlands conjecture of Ben-Zvi-Nadler in genus 1. We prove a Weyl group analogue of this conjecture. Our theorem holds in the natural generality of reflection groups in Euclidean or hyperbolic space. As a corollary, we give an expression of the centralizer of a finite order element in a reflection group using homotopy theory. ' article_processing_charge: No article_type: original author: - first_name: Penghui full_name: Li, Penghui id: 42A24CCC-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li P. A colimit of traces of reflection groups. Proceedings of the American Mathematical Society. 2019;147(11):4597-4604. doi:10.1090/proc/14586 apa: Li, P. (2019). A colimit of traces of reflection groups. Proceedings of the American Mathematical Society. AMS. https://doi.org/10.1090/proc/14586 chicago: Li, Penghui. “A Colimit of Traces of Reflection Groups.” Proceedings of the American Mathematical Society. AMS, 2019. https://doi.org/10.1090/proc/14586. ieee: P. Li, “A colimit of traces of reflection groups,” Proceedings of the American Mathematical Society, vol. 147, no. 11. AMS, pp. 4597–4604, 2019. ista: Li P. 2019. A colimit of traces of reflection groups. Proceedings of the American Mathematical Society. 147(11), 4597–4604. mla: Li, Penghui. “A Colimit of Traces of Reflection Groups.” Proceedings of the American Mathematical Society, vol. 147, no. 11, AMS, 2019, pp. 4597–604, doi:10.1090/proc/14586. short: P. Li, Proceedings of the American Mathematical Society 147 (2019) 4597–4604. date_created: 2019-11-04T16:10:50Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-09-05T12:22:21Z day: '01' department: - _id: TaHa doi: 10.1090/proc/14586 ec_funded: 1 external_id: arxiv: - '1810.07039' isi: - '000488621700004' intvolume: ' 147' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.07039 month: '11' oa: 1 oa_version: Preprint page: 4597-4604 project: - _id: 25E549F4-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '320593' name: Arithmetic and physics of Higgs moduli spaces publication: Proceedings of the American Mathematical Society publication_identifier: eissn: - 1088-6826 issn: - 0002-9939 publication_status: published publisher: AMS quality_controlled: '1' scopus_import: '1' status: public title: A colimit of traces of reflection groups type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 147 year: '2019' ... --- _id: '6454' abstract: - lang: eng text: 'Adult neural stem cells and multiciliated ependymalcells are glial cells essential for neurological func-tions. Together, they make up the adult neurogenicniche. Using both high-throughput clonal analysisand single-cell resolution of progenitor division pat-terns and fate, we show that these two componentsof the neurogenic niche are lineally related: adult neu-ral stem cells are sister cells to ependymal cells,whereas most ependymal cells arise from the termi-nal symmetric divisions of the lineage. Unexpectedly,we found that the antagonist regulators of DNA repli-cation, GemC1 and Geminin, can tune the proportionof neural stem cells and ependymal cells. Our find-ings reveal the controlled dynamic of the neurogenicniche ontogeny and identify the Geminin familymembers as key regulators of the initial pool of adultneural stem cells.' article_processing_charge: No author: - first_name: G full_name: Ortiz-Álvarez, G last_name: Ortiz-Álvarez - first_name: M full_name: Daclin, M last_name: Daclin - first_name: A full_name: Shihavuddin, A last_name: Shihavuddin - first_name: P full_name: Lansade, P last_name: Lansade - first_name: A full_name: Fortoul, A last_name: Fortoul - first_name: M full_name: Faucourt, M last_name: Faucourt - first_name: S full_name: Clavreul, S last_name: Clavreul - first_name: ME full_name: Lalioti, ME last_name: Lalioti - first_name: S full_name: Taraviras, S last_name: Taraviras - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: J full_name: Livet, J last_name: Livet - first_name: A full_name: Meunier, A last_name: Meunier - first_name: A full_name: Genovesio, A last_name: Genovesio - first_name: N full_name: Spassky, N last_name: Spassky citation: ama: Ortiz-Álvarez G, Daclin M, Shihavuddin A, et al. Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron. 2019;102(1):159-172.e7. doi:10.1016/j.neuron.2019.01.051 apa: Ortiz-Álvarez, G., Daclin, M., Shihavuddin, A., Lansade, P., Fortoul, A., Faucourt, M., … Spassky, N. (2019). Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2019.01.051 chicago: Ortiz-Álvarez, G, M Daclin, A Shihavuddin, P Lansade, A Fortoul, M Faucourt, S Clavreul, et al. “Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members.” Neuron. Elsevier, 2019. https://doi.org/10.1016/j.neuron.2019.01.051. ieee: G. Ortiz-Álvarez et al., “Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members,” Neuron, vol. 102, no. 1. Elsevier, p. 159–172.e7, 2019. ista: Ortiz-Álvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, Clavreul S, Lalioti M, Taraviras S, Hippenmeyer S, Livet J, Meunier A, Genovesio A, Spassky N. 2019. Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members. Neuron. 102(1), 159–172.e7. mla: Ortiz-Álvarez, G., et al. “Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members.” Neuron, vol. 102, no. 1, Elsevier, 2019, p. 159–172.e7, doi:10.1016/j.neuron.2019.01.051. short: G. Ortiz-Álvarez, M. Daclin, A. Shihavuddin, P. Lansade, A. Fortoul, M. Faucourt, S. Clavreul, M. Lalioti, S. Taraviras, S. Hippenmeyer, J. Livet, A. Meunier, A. Genovesio, N. Spassky, Neuron 102 (2019) 159–172.e7. date_created: 2019-05-14T13:06:30Z date_published: 2019-04-03T00:00:00Z date_updated: 2023-09-05T13:02:21Z day: '03' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.neuron.2019.01.051 ec_funded: 1 external_id: isi: - '000463337900018' pmid: - '30824354' file: - access_level: open_access checksum: 1fb6e195c583eb0c5cabf26f69ff6675 content_type: application/pdf creator: dernst date_created: 2019-05-15T09:28:41Z date_updated: 2020-07-14T12:47:30Z file_id: '6457' file_name: 2019_Neuron_Ortiz.pdf file_size: 7288572 relation: main_file file_date_updated: 2020-07-14T12:47:30Z has_accepted_license: '1' intvolume: ' 102' isi: 1 issue: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 159-172.e7 pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Neuron publication_identifier: eissn: - 1097-4199 issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the Geminin family members tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2019' ... --- _id: '6979' article_processing_charge: No article_type: original author: - first_name: Aglaja full_name: Kopf, Aglaja id: 31DAC7B6-F248-11E8-B48F-1D18A9856A87 last_name: Kopf orcid: 0000-0002-2187-6656 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: 'Kopf A, Sixt MK. Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal. Current Biology. 2019;29(20):R1091-R1093. doi:10.1016/j.cub.2019.08.068' apa: 'Kopf, A., & Sixt, M. K. (2019). Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2019.08.068' chicago: 'Kopf, Aglaja, and Michael K Sixt. “Gut Homeostasis: Active Migration of Intestinal Epithelial Cells in Tissue Renewal.” Current Biology. Cell Press, 2019. https://doi.org/10.1016/j.cub.2019.08.068.' ieee: 'A. Kopf and M. K. Sixt, “Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal,” Current Biology, vol. 29, no. 20. Cell Press, pp. R1091–R1093, 2019.' ista: 'Kopf A, Sixt MK. 2019. Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal. Current Biology. 29(20), R1091–R1093.' mla: 'Kopf, Aglaja, and Michael K. Sixt. “Gut Homeostasis: Active Migration of Intestinal Epithelial Cells in Tissue Renewal.” Current Biology, vol. 29, no. 20, Cell Press, 2019, pp. R1091–93, doi:10.1016/j.cub.2019.08.068.' short: A. Kopf, M.K. Sixt, Current Biology 29 (2019) R1091–R1093. date_created: 2019-11-04T15:18:29Z date_published: 2019-10-21T00:00:00Z date_updated: 2023-09-05T12:43:43Z day: '21' department: - _id: MiSi doi: 10.1016/j.cub.2019.08.068 external_id: isi: - '000491286200016' pmid: - '31639357' intvolume: ' 29' isi: 1 issue: '20' language: - iso: eng month: '10' oa_version: None page: R1091-R1093 pmid: 1 publication: Current Biology publication_identifier: eissn: - 1879-0445 issn: - 0960-9822 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: 'Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2019' ... --- _id: '6980' abstract: - lang: eng text: Tissue morphogenesis in multicellular organisms is brought about by spatiotemporal coordination of mechanical and chemical signals. Extensive work on how mechanical forces together with the well‐established morphogen signalling pathways can actively shape living tissues has revealed evolutionary conserved mechanochemical features of embryonic development. More recently, attention has been drawn to the description of tissue material properties and how they can influence certain morphogenetic processes. Interestingly, besides the role of tissue material properties in determining how much tissues deform in response to force application, there is increasing theoretical and experimental evidence, suggesting that tissue material properties can abruptly and drastically change in development. These changes resemble phase transitions, pointing at the intriguing possibility that important morphogenetic processes in development, such as symmetry breaking and self‐organization, might be mediated by tissue phase transitions. In this review, we summarize recent findings on the regulation and role of tissue material properties in the context of the developing embryo. We posit that abrupt changes of tissue rheological properties may have important implications in maintaining the balance between robustness and adaptability during embryonic development. article_number: e102497 article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Petridou N, Heisenberg C-PJ. Tissue rheology in embryonic organization. The EMBO Journal. 2019;38(20). doi:10.15252/embj.2019102497 apa: Petridou, N., & Heisenberg, C.-P. J. (2019). Tissue rheology in embryonic organization. The EMBO Journal. EMBO. https://doi.org/10.15252/embj.2019102497 chicago: Petridou, Nicoletta, and Carl-Philipp J Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal. EMBO, 2019. https://doi.org/10.15252/embj.2019102497. ieee: N. Petridou and C.-P. J. Heisenberg, “Tissue rheology in embryonic organization,” The EMBO Journal, vol. 38, no. 20. EMBO, 2019. ista: Petridou N, Heisenberg C-PJ. 2019. Tissue rheology in embryonic organization. The EMBO Journal. 38(20), e102497. mla: Petridou, Nicoletta, and Carl-Philipp J. Heisenberg. “Tissue Rheology in Embryonic Organization.” The EMBO Journal, vol. 38, no. 20, e102497, EMBO, 2019, doi:10.15252/embj.2019102497. short: N. Petridou, C.-P.J. Heisenberg, The EMBO Journal 38 (2019). date_created: 2019-11-04T15:24:29Z date_published: 2019-10-15T00:00:00Z date_updated: 2023-09-05T13:04:13Z day: '15' ddc: - '570' department: - _id: CaHe doi: 10.15252/embj.2019102497 ec_funded: 1 external_id: isi: - '000485561900001' pmid: - '31512749' file: - access_level: open_access checksum: 76f7f4e79ab6d850c30017a69726fd85 content_type: application/pdf creator: dernst date_created: 2019-11-04T15:30:08Z date_updated: 2020-07-14T12:47:46Z file_id: '6981' file_name: 2019_Embo_Petridou.pdf file_size: 847356 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 38' isi: 1 issue: '20' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2693FD8C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00736 name: Tissue material properties in embryonic development publication: The EMBO Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: EMBO quality_controlled: '1' scopus_import: '1' status: public title: Tissue rheology in embryonic organization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 38 year: '2019' ... --- _id: '6554' abstract: - lang: eng text: Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it. article_processing_charge: No article_type: original author: - first_name: Yongqin full_name: Xian, Yongqin last_name: Xian - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0002-4561-241X - first_name: Bernt full_name: Schiele, Bernt last_name: Schiele - first_name: Zeynep full_name: Akata, Zeynep last_name: Akata citation: ama: Xian Y, Lampert C, Schiele B, Akata Z. Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019;41(9):2251-2265. doi:10.1109/tpami.2018.2857768 apa: Xian, Y., Lampert, C., Schiele, B., & Akata, Z. (2019). Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/tpami.2018.2857768 chicago: Xian, Yongqin, Christoph Lampert, Bernt Schiele, and Zeynep Akata. “Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Institute of Electrical and Electronics Engineers (IEEE), 2019. https://doi.org/10.1109/tpami.2018.2857768. ieee: Y. Xian, C. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 9. Institute of Electrical and Electronics Engineers (IEEE), pp. 2251–2265, 2019. ista: Xian Y, Lampert C, Schiele B, Akata Z. 2019. Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence. 41(9), 2251–2265. mla: Xian, Yongqin, et al. “Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 9, Institute of Electrical and Electronics Engineers (IEEE), 2019, pp. 2251–65, doi:10.1109/tpami.2018.2857768. short: Y. Xian, C. Lampert, B. Schiele, Z. Akata, IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019) 2251–2265. date_created: 2019-06-11T14:05:59Z date_published: 2019-09-01T00:00:00Z date_updated: 2023-09-05T13:18:09Z day: '01' department: - _id: ChLa doi: 10.1109/tpami.2018.2857768 external_id: arxiv: - '1707.00600' isi: - '000480343900015' intvolume: ' 41' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1707.00600 month: '09' oa: 1 oa_version: Preprint page: 2251 - 2265 publication: IEEE Transactions on Pattern Analysis and Machine Intelligence publication_identifier: eissn: - 1939-3539 issn: - 0162-8828 publication_status: published publisher: Institute of Electrical and Electronics Engineers (IEEE) quality_controlled: '1' scopus_import: '1' status: public title: Zero-shot learning - A comprehensive evaluation of the good, the bad and the ugly type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 41 year: '2019' ... --- _id: '6259' abstract: - lang: eng text: The plant hormone auxin has crucial roles in almost all aspects of plant growth and development. Concentrations of auxin vary across different tissues, mediating distinct developmental outcomes and contributing to the functional diversity of auxin. However, the mechanisms that underlie these activities are poorly understood. Here we identify an auxin signalling mechanism, which acts in parallel to the canonical auxin pathway based on the transport inhibitor response1 (TIR1) and other auxin receptor F-box (AFB) family proteins (TIR1/AFB receptors)1,2, that translates levels of cellular auxin to mediate differential growth during apical-hook development. This signalling mechanism operates at the concave side of the apical hook, and involves auxin-mediated C-terminal cleavage of transmembrane kinase 1 (TMK1). The cytosolic and nucleus-translocated C terminus of TMK1 specifically interacts with and phosphorylates two non-canonical transcriptional repressors of the auxin or indole-3-acetic acid (Aux/IAA) family (IAA32 and IAA34), thereby regulating ARF transcription factors. In contrast to the degradation of Aux/IAA transcriptional repressors in the canonical pathway, the newly identified mechanism stabilizes the non-canonical IAA32 and IAA34 transcriptional repressors to regulate gene expression and ultimately inhibit growth. The auxin–TMK1 signalling pathway originates at the cell surface, is triggered by high levels of auxin and shares a partially overlapping set of transcription factors with the TIR1/AFB signalling pathway. This allows distinct interpretations of different concentrations of cellular auxin, and thus enables this versatile signalling molecule to mediate complex developmental outcomes. article_processing_charge: No article_type: original author: - first_name: Min full_name: Cao, Min last_name: Cao - first_name: Rong full_name: Chen, Rong last_name: Chen - first_name: Pan full_name: Li, Pan last_name: Li - first_name: Yongqiang full_name: Yu, Yongqiang last_name: Yu - first_name: Rui full_name: Zheng, Rui last_name: Zheng - first_name: Danfeng full_name: Ge, Danfeng last_name: Ge - first_name: Wei full_name: Zheng, Wei last_name: Zheng - first_name: Xuhui full_name: Wang, Xuhui last_name: Wang - first_name: Yangtao full_name: Gu, Yangtao last_name: Gu - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Heng full_name: Zhang, Heng last_name: Zhang - first_name: Renyi full_name: Liu, Renyi last_name: Liu - first_name: Jun full_name: He, Jun last_name: He - first_name: Tongda full_name: Xu, Tongda last_name: Xu citation: ama: Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. 2019;568:240-243. doi:10.1038/s41586-019-1069-7 apa: Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., … Xu, T. (2019). TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1069-7 chicago: Cao, Min, Rong Chen, Pan Li, Yongqiang Yu, Rui Zheng, Danfeng Ge, Wei Zheng, et al. “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1069-7. ieee: M. Cao et al., “TMK1-mediated auxin signalling regulates differential growth of the apical hook,” Nature, vol. 568. Springer Nature, pp. 240–243, 2019. ista: Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z, Friml J, Zhang H, Liu R, He J, Xu T. 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. 568, 240–243. mla: Cao, Min, et al. “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature, vol. 568, Springer Nature, 2019, pp. 240–43, doi:10.1038/s41586-019-1069-7. short: M. Cao, R. Chen, P. Li, Y. Yu, R. Zheng, D. Ge, W. Zheng, X. Wang, Y. Gu, Z. Gelová, J. Friml, H. Zhang, R. Liu, J. He, T. Xu, Nature 568 (2019) 240–243. date_created: 2019-04-09T08:37:05Z date_published: 2019-04-11T00:00:00Z date_updated: 2023-09-05T14:58:41Z day: '11' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41586-019-1069-7 ec_funded: 1 external_id: isi: - '000464412700050' pmid: - '30944466' file: - access_level: open_access checksum: 6b84ab602a34382cf0340a37a1378c75 content_type: application/pdf creator: dernst date_created: 2020-11-13T07:37:41Z date_updated: 2020-11-13T07:37:41Z file_id: '8751' file_name: 2019_Nature _Cao_accepted.pdf file_size: 4321328 relation: main_file success: 1 file_date_updated: 2020-11-13T07:37:41Z has_accepted_license: '1' intvolume: ' 568' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 240-243 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/newly-discovered-mechanism-of-plant-hormone-auxin-acts-the-opposite-way/ scopus_import: '1' status: public title: TMK1-mediated auxin signalling regulates differential growth of the apical hook type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 568 year: '2019' ... --- _id: '6987' abstract: - lang: eng text: Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern. alternative_title: - RESULTS article_processing_charge: No author: - first_name: Alex full_name: McDougall, Alex last_name: McDougall - first_name: Janet full_name: Chenevert, Janet last_name: Chenevert - first_name: Benoit G full_name: Godard, Benoit G id: 33280250-F248-11E8-B48F-1D18A9856A87 last_name: Godard - first_name: Remi full_name: Dumollard, Remi last_name: Dumollard citation: ama: 'McDougall A, Chenevert J, Godard BG, Dumollard R. Emergence of embryo shape during cleavage divisions. In: Tworzydlo W, Bilinski SM, eds. Evo-Devo: Non-Model Species in Cell and Developmental Biology. Vol 68. Springer Nature; 2019:127-154. doi:10.1007/978-3-030-23459-1_6' apa: 'McDougall, A., Chenevert, J., Godard, B. G., & Dumollard, R. (2019). Emergence of embryo shape during cleavage divisions. In W. Tworzydlo & S. M. Bilinski (Eds.), Evo-Devo: Non-model species in cell and developmental biology (Vol. 68, pp. 127–154). Springer Nature. https://doi.org/10.1007/978-3-030-23459-1_6' chicago: 'McDougall, Alex, Janet Chenevert, Benoit G Godard, and Remi Dumollard. “Emergence of Embryo Shape during Cleavage Divisions.” In Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, 68:127–54. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-23459-1_6.' ieee: 'A. McDougall, J. Chenevert, B. G. Godard, and R. Dumollard, “Emergence of embryo shape during cleavage divisions,” in Evo-Devo: Non-model species in cell and developmental biology, vol. 68, W. Tworzydlo and S. M. Bilinski, Eds. Springer Nature, 2019, pp. 127–154.' ista: 'McDougall A, Chenevert J, Godard BG, Dumollard R. 2019.Emergence of embryo shape during cleavage divisions. In: Evo-Devo: Non-model species in cell and developmental biology. RESULTS, vol. 68, 127–154.' mla: 'McDougall, Alex, et al. “Emergence of Embryo Shape during Cleavage Divisions.” Evo-Devo: Non-Model Species in Cell and Developmental Biology, edited by Waclaw Tworzydlo and Szczepan M. Bilinski, vol. 68, Springer Nature, 2019, pp. 127–54, doi:10.1007/978-3-030-23459-1_6.' short: 'A. McDougall, J. Chenevert, B.G. Godard, R. Dumollard, in:, W. Tworzydlo, S.M. Bilinski (Eds.), Evo-Devo: Non-Model Species in Cell and Developmental Biology, Springer Nature, 2019, pp. 127–154.' date_created: 2019-11-04T16:20:19Z date_published: 2019-10-10T00:00:00Z date_updated: 2023-09-05T15:01:12Z day: '10' ddc: - '570' department: - _id: CaHe doi: 10.1007/978-3-030-23459-1_6 editor: - first_name: Waclaw full_name: Tworzydlo, Waclaw last_name: Tworzydlo - first_name: Szczepan M. full_name: Bilinski, Szczepan M. last_name: Bilinski external_id: pmid: - '31598855' file: - access_level: open_access checksum: 7f43e1e3706d15061475c5c57efc2786 content_type: application/pdf creator: dernst date_created: 2020-05-14T10:09:30Z date_updated: 2020-07-14T12:47:46Z file_id: '7829' file_name: 2019_RESULTS_McDougall.pdf file_size: 19317348 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 68' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 127-154 pmid: 1 publication: 'Evo-Devo: Non-model species in cell and developmental biology' publication_identifier: eissn: - 1861-0412 isbn: - '9783030234584' - '9783030234591' issn: - 0080-1844 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Emergence of embryo shape during cleavage divisions type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 68 year: '2019' ... --- _id: '6762' abstract: - lang: eng text: "We present and study novel optimal control problems motivated by the search for photovoltaic materials with high power-conversion efficiency. The material must perform the first step: convert light (photons) into electronic excitations. We formulate various desirable properties of the excitations as mathematical control goals at the Kohn-Sham-DFT level\r\nof theory, with the control being given by the nuclear charge distribution. We prove that nuclear distributions exist which give rise to optimal HOMO-LUMO excitations, and present illustrative numerical simulations for 1D finite nanocrystals. We observe pronounced goal-dependent features such as large electron-hole separation, and a hierarchy of length scales: internal HOMO and LUMO wavelengths < atomic spacings < (irregular) fluctuations of the doping profiles < system size." article_processing_charge: No author: - first_name: Gero full_name: Friesecke, Gero last_name: Friesecke - first_name: Michael full_name: Kniely, Michael id: 2CA2C08C-F248-11E8-B48F-1D18A9856A87 last_name: Kniely orcid: 0000-0001-5645-4333 citation: ama: Friesecke G, Kniely M. New optimal control problems in density functional theory motivated by photovoltaics. Multiscale Modeling and Simulation. 2019;17(3):926-947. doi:10.1137/18M1207272 apa: Friesecke, G., & Kniely, M. (2019). New optimal control problems in density functional theory motivated by photovoltaics. Multiscale Modeling and Simulation. SIAM. https://doi.org/10.1137/18M1207272 chicago: Friesecke, Gero, and Michael Kniely. “New Optimal Control Problems in Density Functional Theory Motivated by Photovoltaics.” Multiscale Modeling and Simulation. SIAM, 2019. https://doi.org/10.1137/18M1207272. ieee: G. Friesecke and M. Kniely, “New optimal control problems in density functional theory motivated by photovoltaics,” Multiscale Modeling and Simulation, vol. 17, no. 3. SIAM, pp. 926–947, 2019. ista: Friesecke G, Kniely M. 2019. New optimal control problems in density functional theory motivated by photovoltaics. Multiscale Modeling and Simulation. 17(3), 926–947. mla: Friesecke, Gero, and Michael Kniely. “New Optimal Control Problems in Density Functional Theory Motivated by Photovoltaics.” Multiscale Modeling and Simulation, vol. 17, no. 3, SIAM, 2019, pp. 926–47, doi:10.1137/18M1207272. short: G. Friesecke, M. Kniely, Multiscale Modeling and Simulation 17 (2019) 926–947. date_created: 2019-08-04T21:59:21Z date_published: 2019-07-16T00:00:00Z date_updated: 2023-09-05T15:05:45Z day: '16' department: - _id: JuFi doi: 10.1137/18M1207272 external_id: arxiv: - '1808.04200' isi: - '000487931800002' intvolume: ' 17' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1808.04200 month: '07' oa: 1 oa_version: Preprint page: 926-947 publication: Multiscale Modeling and Simulation publication_identifier: eissn: - '15403467' issn: - '15403459' publication_status: published publisher: SIAM quality_controlled: '1' scopus_import: '1' status: public title: New optimal control problems in density functional theory motivated by photovoltaics type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2019' ... --- _id: '10874' abstract: - lang: eng text: In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper half-space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM. acknowledgement: "The authors would like to thank the Lorentz Center in Leiden for hosting the Women in Numbers Europe 2 workshop and providing a productive and enjoyable environment for our initial work on this project. We are grateful to the organizers of WIN-E2, Irene Bouw, Rachel Newton and Ekin Ozman, for making this conference and this collaboration possible. We\r\nthank Irene Bouw and Christophe Ritzenhaler for helpful discussions. Ionica acknowledges support from the Thomas Jefferson Fund of the Embassy of France in the United States and the FACE Foundation. Most of Kılıçer’s work was carried out during her stay in Universiteit Leiden and Carl von Ossietzky Universität Oldenburg. Massierer was supported by the Australian Research Council (DP150101689). Vincent is supported by the National Science Foundation under Grant No. DMS-1802323 and by the Thomas Jefferson Fund of the Embassy of France in the United States and the FACE Foundation. " article_number: '9' article_processing_charge: No article_type: original author: - first_name: Sorina full_name: Ionica, Sorina last_name: Ionica - first_name: Pınar full_name: Kılıçer, Pınar last_name: Kılıçer - first_name: Kristin full_name: Lauter, Kristin last_name: Lauter - first_name: Elisa full_name: Lorenzo García, Elisa last_name: Lorenzo García - first_name: Maria-Adelina full_name: Manzateanu, Maria-Adelina id: be8d652e-a908-11ec-82a4-e2867729459c last_name: Manzateanu - first_name: Maike full_name: Massierer, Maike last_name: Massierer - first_name: Christelle full_name: Vincent, Christelle last_name: Vincent citation: ama: Ionica S, Kılıçer P, Lauter K, et al. Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory. 2019;5. doi:10.1007/s40993-018-0146-6 apa: Ionica, S., Kılıçer, P., Lauter, K., Lorenzo García, E., Manzateanu, M.-A., Massierer, M., & Vincent, C. (2019). Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory. Springer Nature. https://doi.org/10.1007/s40993-018-0146-6 chicago: Ionica, Sorina, Pınar Kılıçer, Kristin Lauter, Elisa Lorenzo García, Maria-Adelina Manzateanu, Maike Massierer, and Christelle Vincent. “Modular Invariants for Genus 3 Hyperelliptic Curves.” Research in Number Theory. Springer Nature, 2019. https://doi.org/10.1007/s40993-018-0146-6. ieee: S. Ionica et al., “Modular invariants for genus 3 hyperelliptic curves,” Research in Number Theory, vol. 5. Springer Nature, 2019. ista: Ionica S, Kılıçer P, Lauter K, Lorenzo García E, Manzateanu M-A, Massierer M, Vincent C. 2019. Modular invariants for genus 3 hyperelliptic curves. Research in Number Theory. 5, 9. mla: Ionica, Sorina, et al. “Modular Invariants for Genus 3 Hyperelliptic Curves.” Research in Number Theory, vol. 5, 9, Springer Nature, 2019, doi:10.1007/s40993-018-0146-6. short: S. Ionica, P. Kılıçer, K. Lauter, E. Lorenzo García, M.-A. Manzateanu, M. Massierer, C. Vincent, Research in Number Theory 5 (2019). date_created: 2022-03-18T12:09:48Z date_published: 2019-01-02T00:00:00Z date_updated: 2023-09-05T15:39:31Z day: '02' department: - _id: TiBr doi: 10.1007/s40993-018-0146-6 external_id: arxiv: - '1807.08986' intvolume: ' 5' keyword: - Algebra and Number Theory language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1807.08986 month: '01' oa: 1 oa_version: Preprint publication: Research in Number Theory publication_identifier: eissn: - 2363-9555 issn: - 2522-0160 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Modular invariants for genus 3 hyperelliptic curves type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '7100' abstract: - lang: eng text: We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting froman interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N−1+2βW(Nβx), for any β>0, or to be given by VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics. acknowledgement: OA fund by IST Austria article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Maximilian full_name: Jeblick, Maximilian last_name: Jeblick - first_name: Nikolai K full_name: Leopold, Nikolai K id: 4BC40BEC-F248-11E8-B48F-1D18A9856A87 last_name: Leopold orcid: 0000-0002-0495-6822 - first_name: Peter full_name: Pickl, Peter last_name: Pickl citation: ama: Jeblick M, Leopold NK, Pickl P. Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Communications in Mathematical Physics. 2019;372(1):1-69. doi:10.1007/s00220-019-03599-x apa: Jeblick, M., Leopold, N. K., & Pickl, P. (2019). Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-019-03599-x chicago: Jeblick, Maximilian, Nikolai K Leopold, and Peter Pickl. “Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions.” Communications in Mathematical Physics. Springer Nature, 2019. https://doi.org/10.1007/s00220-019-03599-x. ieee: M. Jeblick, N. K. Leopold, and P. Pickl, “Derivation of the time dependent Gross–Pitaevskii equation in two dimensions,” Communications in Mathematical Physics, vol. 372, no. 1. Springer Nature, pp. 1–69, 2019. ista: Jeblick M, Leopold NK, Pickl P. 2019. Derivation of the time dependent Gross–Pitaevskii equation in two dimensions. Communications in Mathematical Physics. 372(1), 1–69. mla: Jeblick, Maximilian, et al. “Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions.” Communications in Mathematical Physics, vol. 372, no. 1, Springer Nature, 2019, pp. 1–69, doi:10.1007/s00220-019-03599-x. short: M. Jeblick, N.K. Leopold, P. Pickl, Communications in Mathematical Physics 372 (2019) 1–69. date_created: 2019-11-25T08:08:02Z date_published: 2019-11-08T00:00:00Z date_updated: 2023-09-06T10:47:43Z day: '08' ddc: - '510' department: - _id: RoSe doi: 10.1007/s00220-019-03599-x ec_funded: 1 external_id: isi: - '000495193700002' file: - access_level: open_access checksum: cd283b475dd739e04655315abd46f528 content_type: application/pdf creator: dernst date_created: 2019-11-25T08:11:11Z date_updated: 2020-07-14T12:47:49Z file_id: '7101' file_name: 2019_CommMathPhys_Jeblick.pdf file_size: 884469 relation: main_file file_date_updated: 2020-07-14T12:47:49Z has_accepted_license: '1' intvolume: ' 372' isi: 1 issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1-69 project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: Communications in Mathematical Physics publication_identifier: eissn: - 1432-0916 issn: - 0010-3616 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Derivation of the time dependent Gross–Pitaevskii equation in two dimensions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 372 year: '2019' ... --- _id: '7106' abstract: - lang: eng text: PIN-FORMED (PIN) transporters mediate directional, intercellular movement of the phytohormone auxin in land plants. To elucidate the evolutionary origins of this developmentally crucial mechanism, we analysed the single PIN homologue of a simple green alga Klebsormidium flaccidum. KfPIN functions as a plasma membrane-localized auxin exporter in land plants and heterologous models. While its role in algae remains unclear, PIN-driven auxin export is probably an ancient and conserved trait within streptophytes. article_processing_charge: No article_type: original author: - first_name: Roman full_name: Skokan, Roman last_name: Skokan - first_name: Eva full_name: Medvecká, Eva last_name: Medvecká - first_name: Tom full_name: Viaene, Tom last_name: Viaene - first_name: Stanislav full_name: Vosolsobě, Stanislav last_name: Vosolsobě - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Karel full_name: Müller, Karel last_name: Müller - first_name: Petr full_name: Skůpa, Petr last_name: Skůpa - first_name: Michal full_name: Karady, Michal last_name: Karady - first_name: Yuzhou full_name: Zhang, Yuzhou last_name: Zhang - first_name: Dorina P. full_name: Janacek, Dorina P. last_name: Janacek - first_name: Ulrich Z. full_name: Hammes, Ulrich Z. last_name: Hammes - first_name: Karin full_name: Ljung, Karin last_name: Ljung - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Skokan R, Medvecká E, Viaene T, et al. PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants. 2019;5(11):1114-1119. doi:10.1038/s41477-019-0542-5 apa: Skokan, R., Medvecká, E., Viaene, T., Vosolsobě, S., Zwiewka, M., Müller, K., … Friml, J. (2019). PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-019-0542-5 chicago: Skokan, Roman, Eva Medvecká, Tom Viaene, Stanislav Vosolsobě, Marta Zwiewka, Karel Müller, Petr Skůpa, et al. “PIN-Driven Auxin Transport Emerged Early in Streptophyte Evolution.” Nature Plants. Springer Nature, 2019. https://doi.org/10.1038/s41477-019-0542-5. ieee: R. Skokan et al., “PIN-driven auxin transport emerged early in streptophyte evolution,” Nature Plants, vol. 5, no. 11. Springer Nature, pp. 1114–1119, 2019. ista: Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang Y, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J. 2019. PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants. 5(11), 1114–1119. mla: Skokan, Roman, et al. “PIN-Driven Auxin Transport Emerged Early in Streptophyte Evolution.” Nature Plants, vol. 5, no. 11, Springer Nature, 2019, pp. 1114–19, doi:10.1038/s41477-019-0542-5. short: R. Skokan, E. Medvecká, T. Viaene, S. Vosolsobě, M. Zwiewka, K. Müller, P. Skůpa, M. Karady, Y. Zhang, D.P. Janacek, U.Z. Hammes, K. Ljung, T. Nodzyński, J. Petrášek, J. Friml, Nature Plants 5 (2019) 1114–1119. date_created: 2019-11-25T09:08:04Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-09-06T11:09:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41477-019-0542-5 ec_funded: 1 external_id: isi: - '000496526100010' pmid: - '31712756' file: - access_level: open_access checksum: 94e0426856aad9a9bd0135d5436efbf1 content_type: application/pdf creator: dernst date_created: 2020-10-14T08:54:49Z date_updated: 2020-10-14T08:54:49Z file_id: '8660' file_name: 2019_NaturePlants_Skokan_accepted.pdf file_size: 1980851 relation: main_file success: 1 file_date_updated: 2020-10-14T08:54:49Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 1114-1119 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature Plants publication_identifier: issn: - 2055-0278 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: PIN-driven auxin transport emerged early in streptophyte evolution type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '7105' abstract: - lang: eng text: Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence. article_processing_charge: No article_type: original author: - first_name: Lawrence full_name: Yolland, Lawrence last_name: Yolland - first_name: Mubarik full_name: Burki, Mubarik last_name: Burki - first_name: Stefania full_name: Marcotti, Stefania last_name: Marcotti - first_name: Andrei full_name: Luchici, Andrei last_name: Luchici - first_name: Fiona N. full_name: Kenny, Fiona N. last_name: Kenny - first_name: John Robert full_name: Davis, John Robert last_name: Davis - first_name: Eduardo full_name: Serna-Morales, Eduardo last_name: Serna-Morales - first_name: Jan full_name: Müller, Jan id: AD07FDB4-0F61-11EA-8158-C4CC64CEAA8D last_name: Müller - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Andrew full_name: Davidson, Andrew last_name: Davidson - first_name: Will full_name: Wood, Will last_name: Wood - first_name: Linus J. full_name: Schumacher, Linus J. last_name: Schumacher - first_name: Robert G. full_name: Endres, Robert G. last_name: Endres - first_name: Mark full_name: Miodownik, Mark last_name: Miodownik - first_name: Brian M. full_name: Stramer, Brian M. last_name: Stramer citation: ama: Yolland L, Burki M, Marcotti S, et al. Persistent and polarized global actin flow is essential for directionality during cell migration. Nature Cell Biology. 2019;21(11):1370-1381. doi:10.1038/s41556-019-0411-5 apa: Yolland, L., Burki, M., Marcotti, S., Luchici, A., Kenny, F. N., Davis, J. R., … Stramer, B. M. (2019). Persistent and polarized global actin flow is essential for directionality during cell migration. Nature Cell Biology. Springer Nature. https://doi.org/10.1038/s41556-019-0411-5 chicago: Yolland, Lawrence, Mubarik Burki, Stefania Marcotti, Andrei Luchici, Fiona N. Kenny, John Robert Davis, Eduardo Serna-Morales, et al. “Persistent and Polarized Global Actin Flow Is Essential for Directionality during Cell Migration.” Nature Cell Biology. Springer Nature, 2019. https://doi.org/10.1038/s41556-019-0411-5. ieee: L. Yolland et al., “Persistent and polarized global actin flow is essential for directionality during cell migration,” Nature Cell Biology, vol. 21, no. 11. Springer Nature, pp. 1370–1381, 2019. ista: Yolland L, Burki M, Marcotti S, Luchici A, Kenny FN, Davis JR, Serna-Morales E, Müller J, Sixt MK, Davidson A, Wood W, Schumacher LJ, Endres RG, Miodownik M, Stramer BM. 2019. Persistent and polarized global actin flow is essential for directionality during cell migration. Nature Cell Biology. 21(11), 1370–1381. mla: Yolland, Lawrence, et al. “Persistent and Polarized Global Actin Flow Is Essential for Directionality during Cell Migration.” Nature Cell Biology, vol. 21, no. 11, Springer Nature, 2019, pp. 1370–81, doi:10.1038/s41556-019-0411-5. short: L. Yolland, M. Burki, S. Marcotti, A. Luchici, F.N. Kenny, J.R. Davis, E. Serna-Morales, J. Müller, M.K. Sixt, A. Davidson, W. Wood, L.J. Schumacher, R.G. Endres, M. Miodownik, B.M. Stramer, Nature Cell Biology 21 (2019) 1370–1381. date_created: 2019-11-25T08:55:00Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-09-06T11:08:52Z day: '01' department: - _id: MiSi doi: 10.1038/s41556-019-0411-5 external_id: isi: - '000495888300009' pmid: - '31685997' intvolume: ' 21' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025891 month: '11' oa: 1 oa_version: Submitted Version page: 1370-1381 pmid: 1 publication: Nature Cell Biology publication_identifier: eissn: - 1476-4679 issn: - 1465-7392 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Persistent and polarized global actin flow is essential for directionality during cell migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 21 year: '2019' ... --- _id: '7109' abstract: - lang: eng text: We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-time systems. A temporal tester is a transducer that inputs a signal holding the Boolean value of atomic propositions and outputs the truth value of a formula along time. Here we consider testers over continuous-time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build testers for these specific modalities and show how to compose testers for simple formulae into complex ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed automata. This construction is much simpler than previously known and remains asymptotically optimal. It supports both past and future operators and can easily be extended. article_number: '19' article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Dejan full_name: Ničković, Dejan last_name: Ničković - first_name: Amir full_name: Pnueli, Amir last_name: Pnueli citation: ama: Ferrere T, Maler O, Ničković D, Pnueli A. From real-time logic to timed automata. Journal of the ACM. 2019;66(3). doi:10.1145/3286976 apa: Ferrere, T., Maler, O., Ničković, D., & Pnueli, A. (2019). From real-time logic to timed automata. Journal of the ACM. ACM. https://doi.org/10.1145/3286976 chicago: Ferrere, Thomas, Oded Maler, Dejan Ničković, and Amir Pnueli. “From Real-Time Logic to Timed Automata.” Journal of the ACM. ACM, 2019. https://doi.org/10.1145/3286976. ieee: T. Ferrere, O. Maler, D. Ničković, and A. Pnueli, “From real-time logic to timed automata,” Journal of the ACM, vol. 66, no. 3. ACM, 2019. ista: Ferrere T, Maler O, Ničković D, Pnueli A. 2019. From real-time logic to timed automata. Journal of the ACM. 66(3), 19. mla: Ferrere, Thomas, et al. “From Real-Time Logic to Timed Automata.” Journal of the ACM, vol. 66, no. 3, 19, ACM, 2019, doi:10.1145/3286976. short: T. Ferrere, O. Maler, D. Ničković, A. Pnueli, Journal of the ACM 66 (2019). date_created: 2019-11-26T10:22:32Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-09-06T11:11:56Z day: '01' department: - _id: ToHe doi: 10.1145/3286976 external_id: isi: - '000495406300005' intvolume: ' 66' isi: 1 issue: '3' language: - iso: eng month: '05' oa_version: None project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Journal of the ACM publication_identifier: issn: - 0004-5411 publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: From real-time logic to timed automata type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 66 year: '2019' ... --- _id: '7108' abstract: - lang: eng text: We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes. Another simple corollary of our result is that it is NP-hard to decide whether a given poset is CL-shellable. article_number: '21' article_processing_charge: No article_type: original author: - first_name: Xavier full_name: Goaoc, Xavier last_name: Goaoc - first_name: Pavel full_name: Patak, Pavel id: B593B804-1035-11EA-B4F1-947645A5BB83 last_name: Patak - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 - first_name: Martin full_name: Tancer, Martin last_name: Tancer - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: Goaoc X, Patak P, Patakova Z, Tancer M, Wagner U. Shellability is NP-complete. Journal of the ACM. 2019;66(3). doi:10.1145/3314024 apa: Goaoc, X., Patak, P., Patakova, Z., Tancer, M., & Wagner, U. (2019). Shellability is NP-complete. Journal of the ACM. ACM. https://doi.org/10.1145/3314024 chicago: Goaoc, Xavier, Pavel Patak, Zuzana Patakova, Martin Tancer, and Uli Wagner. “Shellability Is NP-Complete.” Journal of the ACM. ACM, 2019. https://doi.org/10.1145/3314024. ieee: X. Goaoc, P. Patak, Z. Patakova, M. Tancer, and U. Wagner, “Shellability is NP-complete,” Journal of the ACM, vol. 66, no. 3. ACM, 2019. ista: Goaoc X, Patak P, Patakova Z, Tancer M, Wagner U. 2019. Shellability is NP-complete. Journal of the ACM. 66(3), 21. mla: Goaoc, Xavier, et al. “Shellability Is NP-Complete.” Journal of the ACM, vol. 66, no. 3, 21, ACM, 2019, doi:10.1145/3314024. short: X. Goaoc, P. Patak, Z. Patakova, M. Tancer, U. Wagner, Journal of the ACM 66 (2019). date_created: 2019-11-26T10:13:59Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-06T11:10:58Z day: '01' department: - _id: UlWa doi: 10.1145/3314024 external_id: arxiv: - '1711.08436' isi: - '000495406300007' intvolume: ' 66' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/pdf/1711.08436.pdf month: '06' oa: 1 oa_version: Preprint publication: Journal of the ACM publication_identifier: issn: - 0004-5411 publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '184' relation: earlier_version status: public scopus_import: '1' status: public title: Shellability is NP-complete type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 66 year: '2019' ... --- _id: '7147' abstract: - lang: eng text: "The expression of a gene is characterised by its transcription factors and the function processing them. If the transcription factors are not affected by gene products, the regulating function is often represented as a combinational logic circuit, where the outputs (product) are determined by current input values (transcription factors) only, and are hence independent on their relative arrival times. However, the simultaneous arrival of transcription factors (TFs) in genetic circuits is a strong assumption, given that the processes of transcription and translation of a gene into a protein introduce intrinsic time delays and that there is no global synchronisation among the arrival times of different molecular species at molecular targets.\r\n\r\nIn this paper, we construct an experimentally implementable genetic circuit with two inputs and a single output, such that, in presence of small delays in input arrival, the circuit exhibits qualitatively distinct observable phenotypes. In particular, these phenotypes are long lived transients: they all converge to a single value, but so slowly, that they seem stable for an extended time period, longer than typical experiment duration. We used rule-based language to prototype our circuit, and we implemented a search for finding the parameter combinations raising the phenotypes of interest.\r\n\r\nThe behaviour of our prototype circuit has wide implications. First, it suggests that GRNs can exploit event timing to create phenotypes. Second, it opens the possibility that GRNs are using event timing to react to stimuli and memorise events, without explicit feedback in regulation. From the modelling perspective, our prototype circuit demonstrates the critical importance of analysing the transient dynamics at the promoter binding sites of the DNA, before applying rapid equilibrium assumptions." alternative_title: - LNCS article_processing_charge: No author: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler - first_name: Tatjana full_name: Petrov, Tatjana id: 3D5811FC-F248-11E8-B48F-1D18A9856A87 last_name: Petrov orcid: 0000-0002-9041-0905 - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin citation: ama: 'Guet CC, Henzinger TA, Igler C, Petrov T, Sezgin A. Transient memory in gene regulation. In: 17th International Conference on Computational Methods in Systems Biology. Vol 11773. Springer Nature; 2019:155-187. doi:10.1007/978-3-030-31304-3_9' apa: 'Guet, C. C., Henzinger, T. A., Igler, C., Petrov, T., & Sezgin, A. (2019). Transient memory in gene regulation. In 17th International Conference on Computational Methods in Systems Biology (Vol. 11773, pp. 155–187). Trieste, Italy: Springer Nature. https://doi.org/10.1007/978-3-030-31304-3_9' chicago: Guet, Calin C, Thomas A Henzinger, Claudia Igler, Tatjana Petrov, and Ali Sezgin. “Transient Memory in Gene Regulation.” In 17th International Conference on Computational Methods in Systems Biology, 11773:155–87. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-31304-3_9. ieee: C. C. Guet, T. A. Henzinger, C. Igler, T. Petrov, and A. Sezgin, “Transient memory in gene regulation,” in 17th International Conference on Computational Methods in Systems Biology, Trieste, Italy, 2019, vol. 11773, pp. 155–187. ista: 'Guet CC, Henzinger TA, Igler C, Petrov T, Sezgin A. 2019. Transient memory in gene regulation. 17th International Conference on Computational Methods in Systems Biology. CMSB: Computational Methods in Systems Biology, LNCS, vol. 11773, 155–187.' mla: Guet, Calin C., et al. “Transient Memory in Gene Regulation.” 17th International Conference on Computational Methods in Systems Biology, vol. 11773, Springer Nature, 2019, pp. 155–87, doi:10.1007/978-3-030-31304-3_9. short: C.C. Guet, T.A. Henzinger, C. Igler, T. Petrov, A. Sezgin, in:, 17th International Conference on Computational Methods in Systems Biology, Springer Nature, 2019, pp. 155–187. conference: end_date: 2019-09-20 location: Trieste, Italy name: 'CMSB: Computational Methods in Systems Biology' start_date: 2019-09-18 date_created: 2019-12-04T16:07:50Z date_published: 2019-09-17T00:00:00Z date_updated: 2023-09-06T11:18:08Z day: '17' department: - _id: CaGu - _id: ToHe doi: 10.1007/978-3-030-31304-3_9 external_id: isi: - '000557875100009' intvolume: ' 11773' isi: 1 language: - iso: eng month: '09' oa_version: None page: 155-187 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 251EE76E-B435-11E9-9278-68D0E5697425 grant_number: '24573' name: Design principles underlying genetic switch architecture publication: 17th International Conference on Computational Methods in Systems Biology publication_identifier: eissn: - 1611-3349 isbn: - '9783030313036' - '9783030313043' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Transient memory in gene regulation type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11773 year: '2019' ... --- _id: '7136' abstract: - lang: eng text: "It is well established that the notion of min-entropy fails to satisfy the \\emph{chain rule} of the form H(X,Y)=H(X|Y)+H(Y), known for Shannon Entropy. Such a property would help to analyze how min-entropy is split among smaller blocks. Problems of this kind arise for example when constructing extractors and dispersers.\r\nWe show that any sequence of variables exhibits a very strong strong block-source structure (conditional distributions of blocks are nearly flat) when we \\emph{spoil few correlated bits}. This implies, conditioned on the spoiled bits, that \\emph{splitting-recombination properties} hold. In particular, we have many nice properties that min-entropy doesn't obey in general, for example strong chain rules, \"information can't hurt\" inequalities, equivalences of average and worst-case conditional entropy definitions and others. Quantitatively, for any sequence X1,…,Xt of random variables over an alphabet X we prove that, when conditioned on m=t⋅O(loglog|X|+loglog(1/ϵ)+logt) bits of auxiliary information, all conditional distributions of the form Xi|X2019 IEEE International Symposium on Information Theory. IEEE; 2019. doi:10.1109/isit.2019.8849240' apa: 'Skórski, M. (2019). Strong chain rules for min-entropy under few bits spoiled. In 2019 IEEE International Symposium on Information Theory. Paris, France: IEEE. https://doi.org/10.1109/isit.2019.8849240' chicago: Skórski, Maciej. “Strong Chain Rules for Min-Entropy under Few Bits Spoiled.” In 2019 IEEE International Symposium on Information Theory. IEEE, 2019. https://doi.org/10.1109/isit.2019.8849240. ieee: M. Skórski, “Strong chain rules for min-entropy under few bits spoiled,” in 2019 IEEE International Symposium on Information Theory, Paris, France, 2019. ista: 'Skórski M. 2019. Strong chain rules for min-entropy under few bits spoiled. 2019 IEEE International Symposium on Information Theory. ISIT: International Symposium on Information Theory, 8849240.' mla: Skórski, Maciej. “Strong Chain Rules for Min-Entropy under Few Bits Spoiled.” 2019 IEEE International Symposium on Information Theory, 8849240, IEEE, 2019, doi:10.1109/isit.2019.8849240. short: M. Skórski, in:, 2019 IEEE International Symposium on Information Theory, IEEE, 2019. conference: end_date: 2019-07-12 location: Paris, France name: 'ISIT: International Symposium on Information Theory' start_date: 2019-07-07 date_created: 2019-11-28T10:19:21Z date_published: 2019-07-01T00:00:00Z date_updated: 2023-09-06T11:15:41Z day: '01' department: - _id: KrPi doi: 10.1109/isit.2019.8849240 external_id: arxiv: - '1702.08476' isi: - '000489100301043' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.08476 month: '07' oa: 1 oa_version: Preprint publication: 2019 IEEE International Symposium on Information Theory publication_identifier: isbn: - '9781538692912' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Strong chain rules for min-entropy under few bits spoiled type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7122' abstract: - lang: eng text: Data-rich applications in machine-learning and control have motivated an intense research on large-scale optimization. Novel algorithms have been proposed and shown to have optimal convergence rates in terms of iteration counts. However, their practical performance is severely degraded by the cost of exchanging high-dimensional gradient vectors between computing nodes. Several gradient compression heuristics have recently been proposed to reduce communications, but few theoretical results exist that quantify how they impact algorithm convergence. This paper establishes and strengthens the convergence guarantees for gradient descent under a family of gradient compression techniques. For convex optimization problems, we derive admissible step sizes and quantify both the number of iterations and the number of bits that need to be exchanged to reach a target accuracy. Finally, we validate the performance of different gradient compression techniques in simulations. The numerical results highlight the properties of different gradient compression algorithms and confirm that fast convergence with limited information exchange is possible. article_number: '8619625' article_processing_charge: No author: - first_name: Sarit full_name: Khirirat, Sarit last_name: Khirirat - first_name: Mikael full_name: Johansson, Mikael last_name: Johansson - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Khirirat S, Johansson M, Alistarh D-A. Gradient compression for communication-limited convex optimization. In: 2018 IEEE Conference on Decision and Control. IEEE; 2019. doi:10.1109/cdc.2018.8619625' apa: 'Khirirat, S., Johansson, M., & Alistarh, D.-A. (2019). Gradient compression for communication-limited convex optimization. In 2018 IEEE Conference on Decision and Control. Miami Beach, FL, United States: IEEE. https://doi.org/10.1109/cdc.2018.8619625' chicago: Khirirat, Sarit, Mikael Johansson, and Dan-Adrian Alistarh. “Gradient Compression for Communication-Limited Convex Optimization.” In 2018 IEEE Conference on Decision and Control. IEEE, 2019. https://doi.org/10.1109/cdc.2018.8619625. ieee: S. Khirirat, M. Johansson, and D.-A. Alistarh, “Gradient compression for communication-limited convex optimization,” in 2018 IEEE Conference on Decision and Control, Miami Beach, FL, United States, 2019. ista: 'Khirirat S, Johansson M, Alistarh D-A. 2019. Gradient compression for communication-limited convex optimization. 2018 IEEE Conference on Decision and Control. CDC: Conference on Decision and Control, 8619625.' mla: Khirirat, Sarit, et al. “Gradient Compression for Communication-Limited Convex Optimization.” 2018 IEEE Conference on Decision and Control, 8619625, IEEE, 2019, doi:10.1109/cdc.2018.8619625. short: S. Khirirat, M. Johansson, D.-A. Alistarh, in:, 2018 IEEE Conference on Decision and Control, IEEE, 2019. conference: end_date: 2018-12-19 location: Miami Beach, FL, United States name: 'CDC: Conference on Decision and Control' start_date: 2018-12-17 date_created: 2019-11-26T15:07:49Z date_published: 2019-01-21T00:00:00Z date_updated: 2023-09-06T11:14:55Z day: '21' department: - _id: DaAl doi: 10.1109/cdc.2018.8619625 external_id: isi: - '000458114800023' isi: 1 language: - iso: eng month: '01' oa_version: None publication: 2018 IEEE Conference on Decision and Control publication_identifier: isbn: - '9781538613955' issn: - 0743-1546 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Gradient compression for communication-limited convex optimization type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7146' abstract: - lang: eng text: Prevailing models of sex-chromosome evolution were largely inspired by the stable and highly differentiated XY pairs of model organisms, such as those of mammals and flies. Recent work has uncovered an incredible diversity of sex-determining systems, bringing some of the assumptions of these traditional models into question. One particular question that has arisen is what drives some sex chromosomes to be maintained over millions of years and differentiate fully, while others are replaced by new sex-determining chromosomes before differentiation has occurred. Here, I review recent data on the variability of sex-determining genes and sex chromosomes in different non-model vertebrates and invertebrates, and discuss some theoretical models that have been put forward to account for this diversity. article_processing_charge: No article_type: original author: - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Vicoso B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution. 2019;3(12):1632-1641. doi:10.1038/s41559-019-1050-8 apa: Vicoso, B. (2019). Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution. Springer Nature. https://doi.org/10.1038/s41559-019-1050-8 chicago: Vicoso, Beatriz. “Molecular and Evolutionary Dynamics of Animal Sex-Chromosome Turnover.” Nature Ecology & Evolution. Springer Nature, 2019. https://doi.org/10.1038/s41559-019-1050-8. ieee: B. Vicoso, “Molecular and evolutionary dynamics of animal sex-chromosome turnover,” Nature Ecology & Evolution, vol. 3, no. 12. Springer Nature, pp. 1632–1641, 2019. ista: Vicoso B. 2019. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution. 3(12), 1632–1641. mla: Vicoso, Beatriz. “Molecular and Evolutionary Dynamics of Animal Sex-Chromosome Turnover.” Nature Ecology & Evolution, vol. 3, no. 12, Springer Nature, 2019, pp. 1632–41, doi:10.1038/s41559-019-1050-8. short: B. Vicoso, Nature Ecology & Evolution 3 (2019) 1632–1641. date_created: 2019-12-04T16:05:25Z date_published: 2019-11-25T00:00:00Z date_updated: 2023-09-06T11:18:59Z day: '25' department: - _id: BeVi doi: 10.1038/s41559-019-1050-8 ec_funded: 1 external_id: isi: - '000500728800009' intvolume: ' 3' isi: 1 issue: '12' language: - iso: eng month: '11' oa_version: None page: 1632-1641 project: - _id: 250BDE62-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715257' name: Prevalence and Influence of Sexual Antagonism on Genome Evolution publication: Nature Ecology & Evolution publication_identifier: issn: - 2397-334X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Molecular and evolutionary dynamics of animal sex-chromosome turnover type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 3 year: '2019' ... --- _id: '7143' abstract: - lang: eng text: Roots grow downwards parallel to the gravity vector, to anchor a plant in soil and acquire water and nutrients, using a gravitropic mechanism dependent on the asymmetric distribution of the phytohormone auxin. Recently, Chang et al. demonstrate that asymmetric distribution of another phytohormone, cytokinin, directs root growth towards higher water content. article_processing_charge: No article_type: original author: - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Sinclair SA, Friml J. Defying gravity: a plant’s quest for moisture. Cell Research. 2019;29:965-966. doi:10.1038/s41422-019-0254-4' apa: 'Sinclair, S. A., & Friml, J. (2019). Defying gravity: a plant’s quest for moisture. Cell Research. Springer Nature. https://doi.org/10.1038/s41422-019-0254-4' chicago: 'Sinclair, Scott A, and Jiří Friml. “Defying Gravity: A Plant’s Quest for Moisture.” Cell Research. Springer Nature, 2019. https://doi.org/10.1038/s41422-019-0254-4.' ieee: 'S. A. Sinclair and J. Friml, “Defying gravity: a plant’s quest for moisture,” Cell Research, vol. 29. Springer Nature, pp. 965–966, 2019.' ista: 'Sinclair SA, Friml J. 2019. Defying gravity: a plant’s quest for moisture. Cell Research. 29, 965–966.' mla: 'Sinclair, Scott A., and Jiří Friml. “Defying Gravity: A Plant’s Quest for Moisture.” Cell Research, vol. 29, Springer Nature, 2019, pp. 965–66, doi:10.1038/s41422-019-0254-4.' short: S.A. Sinclair, J. Friml, Cell Research 29 (2019) 965–966. date_created: 2019-12-02T12:30:48Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T11:20:58Z day: '01' department: - _id: JiFr doi: 10.1038/s41422-019-0254-4 external_id: isi: - '000500749600001' pmid: - '31745287' intvolume: ' 29' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41422-019-0254-4 month: '12' oa: 1 oa_version: Published Version page: 965-966 pmid: 1 publication: Cell Research publication_identifier: eissn: - 1748-7838 issn: - 1001-0602 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Defying gravity: a plant''s quest for moisture' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2019' ... --- _id: '7156' abstract: - lang: eng text: We propose an efficient microwave-photonic modulator as a resource for stationary entangled microwave-optical fields and develop the theory for deterministic entanglement generation and quantum state transfer in multi-resonant electro-optic systems. The device is based on a single crystal whispering gallery mode resonator integrated into a 3D-microwave cavity. The specific design relies on a new combination of thin-film technology and conventional machining that is optimized for the lowest dissipation rates in the microwave, optical, and mechanical domains. We extract important device properties from finite-element simulations and predict continuous variable entanglement generation rates on the order of a Mebit/s for optical pump powers of only a few tens of microwatts. We compare the quantum state transfer fidelities of coherent, squeezed, and non-Gaussian cat states for both teleportation and direct conversion protocols under realistic conditions. Combining the unique capabilities of circuit quantum electrodynamics with the resilience of fiber optic communication could facilitate long-distance solid-state qubit networks, new methods for quantum signal synthesis, quantum key distribution, and quantum enhanced detection, as well as more power-efficient classical sensing and modulation. article_number: '108' article_processing_charge: No article_type: original author: - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 2019;5. doi:10.1038/s41534-019-0220-5 apa: Rueda Sanchez, A. R., Hease, W. J., Barzanjeh, S., & Fink, J. M. (2019). Electro-optic entanglement source for microwave to telecom quantum state transfer. Npj Quantum Information. Springer Nature. https://doi.org/10.1038/s41534-019-0220-5 chicago: Rueda Sanchez, Alfredo R, William J Hease, Shabir Barzanjeh, and Johannes M Fink. “Electro-Optic Entanglement Source for Microwave to Telecom Quantum State Transfer.” Npj Quantum Information. Springer Nature, 2019. https://doi.org/10.1038/s41534-019-0220-5. ieee: A. R. Rueda Sanchez, W. J. Hease, S. Barzanjeh, and J. M. Fink, “Electro-optic entanglement source for microwave to telecom quantum state transfer,” npj Quantum Information, vol. 5. Springer Nature, 2019. ista: Rueda Sanchez AR, Hease WJ, Barzanjeh S, Fink JM. 2019. Electro-optic entanglement source for microwave to telecom quantum state transfer. npj Quantum Information. 5, 108. mla: Rueda Sanchez, Alfredo R., et al. “Electro-Optic Entanglement Source for Microwave to Telecom Quantum State Transfer.” Npj Quantum Information, vol. 5, 108, Springer Nature, 2019, doi:10.1038/s41534-019-0220-5. short: A.R. Rueda Sanchez, W.J. Hease, S. Barzanjeh, J.M. Fink, Npj Quantum Information 5 (2019). date_created: 2019-12-09T08:18:56Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T11:22:39Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41534-019-0220-5 ec_funded: 1 external_id: arxiv: - '1909.01470' isi: - '000502996200003' file: - access_level: open_access checksum: 13e0ea1d4f9b5f5710780d9473364f58 content_type: application/pdf creator: dernst date_created: 2019-12-09T08:25:06Z date_updated: 2020-07-14T12:47:50Z file_id: '7157' file_name: 2019_NPJ_Rueda.pdf file_size: 1580132 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' intvolume: ' 5' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits publication: npj Quantum Information publication_identifier: issn: - 2056-6387 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Electro-optic entanglement source for microwave to telecom quantum state transfer tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '7165' abstract: - lang: eng text: Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. article_number: dev176297 article_processing_charge: No article_type: original author: - first_name: Pilar full_name: Guerrero, Pilar last_name: Guerrero - first_name: Ruben full_name: Perez-Carrasco, Ruben last_name: Perez-Carrasco - first_name: Marcin P full_name: Zagórski, Marcin P id: 343DA0DC-F248-11E8-B48F-1D18A9856A87 last_name: Zagórski orcid: 0000-0001-7896-7762 - first_name: David full_name: Page, David last_name: Page - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: James full_name: Briscoe, James last_name: Briscoe - first_name: Karen M. full_name: Page, Karen M. last_name: Page citation: ama: Guerrero P, Perez-Carrasco R, Zagórski MP, et al. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. 2019;146(23). doi:10.1242/dev.176297 apa: Guerrero, P., Perez-Carrasco, R., Zagórski, M. P., Page, D., Kicheva, A., Briscoe, J., & Page, K. M. (2019). Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. The Company of Biologists. https://doi.org/10.1242/dev.176297 chicago: Guerrero, Pilar, Ruben Perez-Carrasco, Marcin P Zagórski, David Page, Anna Kicheva, James Briscoe, and Karen M. Page. “Neuronal Differentiation Influences Progenitor Arrangement in the Vertebrate Neuroepithelium.” Development. The Company of Biologists, 2019. https://doi.org/10.1242/dev.176297. ieee: P. Guerrero et al., “Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium,” Development, vol. 146, no. 23. The Company of Biologists, 2019. ista: Guerrero P, Perez-Carrasco R, Zagórski MP, Page D, Kicheva A, Briscoe J, Page KM. 2019. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development. 146(23), dev176297. mla: Guerrero, Pilar, et al. “Neuronal Differentiation Influences Progenitor Arrangement in the Vertebrate Neuroepithelium.” Development, vol. 146, no. 23, dev176297, The Company of Biologists, 2019, doi:10.1242/dev.176297. short: P. Guerrero, R. Perez-Carrasco, M.P. Zagórski, D. Page, A. Kicheva, J. Briscoe, K.M. Page, Development 146 (2019). date_created: 2019-12-10T14:39:50Z date_published: 2019-12-04T00:00:00Z date_updated: 2023-09-06T11:26:36Z day: '04' ddc: - '570' department: - _id: AnKi doi: 10.1242/dev.176297 ec_funded: 1 external_id: isi: - '000507575700004' pmid: - '31784457' file: - access_level: open_access checksum: b6533c37dc8fbd803ffeca216e0a8b8a content_type: application/pdf creator: dernst date_created: 2019-12-13T07:34:06Z date_updated: 2020-07-14T12:47:50Z file_id: '7177' file_name: 2019_Development_Guerrero.pdf file_size: 7797881 relation: main_file file_date_updated: 2020-07-14T12:47:50Z has_accepted_license: '1' intvolume: ' 146' isi: 1 issue: '23' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: B6FC0238-B512-11E9-945C-1524E6697425 call_identifier: H2020 grant_number: '680037' name: Coordination of Patterning And Growth In the Spinal Cord publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 146 year: '2019' ... --- _id: '7159' abstract: - lang: eng text: 'Cyber-physical systems (CPS) and the Internet-of-Things (IoT) result in a tremendous amount of generated, measured and recorded time-series data. Extracting temporal segments that encode patterns with useful information out of these huge amounts of data is an extremely difficult problem. We propose shape expressions as a declarative formalism for specifying, querying and extracting sophisticated temporal patterns from possibly noisy data. Shape expressions are regular expressions with arbitrary (linear, exponential, sinusoidal, etc.) shapes with parameters as atomic predicates and additional constraints on these parameters. We equip shape expressions with a novel noisy semantics that combines regular expression matching semantics with statistical regression. We characterize essential properties of the formalism and propose an efficient approximate shape expression matching procedure. We demonstrate the wide applicability of this technique on two case studies. ' alternative_title: - LNCS article_processing_charge: No author: - first_name: Dejan full_name: Ničković, Dejan last_name: Ničković - first_name: Xin full_name: Qin, Xin last_name: Qin - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Cristinel full_name: Mateis, Cristinel last_name: Mateis - first_name: Jyotirmoy full_name: Deshmukh, Jyotirmoy last_name: Deshmukh citation: ama: 'Ničković D, Qin X, Ferrere T, Mateis C, Deshmukh J. Shape expressions for specifying and extracting signal features. In: 19th International Conference on Runtime Verification. Vol 11757. Springer Nature; 2019:292-309. doi:10.1007/978-3-030-32079-9_17' apa: 'Ničković, D., Qin, X., Ferrere, T., Mateis, C., & Deshmukh, J. (2019). Shape expressions for specifying and extracting signal features. In 19th International Conference on Runtime Verification (Vol. 11757, pp. 292–309). Porto, Portugal: Springer Nature. https://doi.org/10.1007/978-3-030-32079-9_17' chicago: Ničković, Dejan, Xin Qin, Thomas Ferrere, Cristinel Mateis, and Jyotirmoy Deshmukh. “Shape Expressions for Specifying and Extracting Signal Features.” In 19th International Conference on Runtime Verification, 11757:292–309. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-32079-9_17. ieee: D. Ničković, X. Qin, T. Ferrere, C. Mateis, and J. Deshmukh, “Shape expressions for specifying and extracting signal features,” in 19th International Conference on Runtime Verification, Porto, Portugal, 2019, vol. 11757, pp. 292–309. ista: 'Ničković D, Qin X, Ferrere T, Mateis C, Deshmukh J. 2019. Shape expressions for specifying and extracting signal features. 19th International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 11757, 292–309.' mla: Ničković, Dejan, et al. “Shape Expressions for Specifying and Extracting Signal Features.” 19th International Conference on Runtime Verification, vol. 11757, Springer Nature, 2019, pp. 292–309, doi:10.1007/978-3-030-32079-9_17. short: D. Ničković, X. Qin, T. Ferrere, C. Mateis, J. Deshmukh, in:, 19th International Conference on Runtime Verification, Springer Nature, 2019, pp. 292–309. conference: end_date: 2019-10-11 location: Porto, Portugal name: 'RV: Runtime Verification' start_date: 2019-10-08 date_created: 2019-12-09T08:47:55Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-09-06T11:24:10Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-030-32079-9_17 external_id: isi: - '000570006300017' intvolume: ' 11757' isi: 1 language: - iso: eng month: '10' oa_version: None page: 292-309 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering publication: 19th International Conference on Runtime Verification publication_identifier: isbn: - '9783030320782' - '9783030320799' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Shape expressions for specifying and extracting signal features type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11757 year: '2019' ... --- _id: '7183' abstract: - lang: eng text: 'A probabilistic vector addition system with states (pVASS) is a finite state Markov process augmented with non-negative integer counters that can be incremented or decremented during each state transition, blocking any behaviour that would cause a counter to decrease below zero. The pVASS can be used as abstractions of probabilistic programs with many decidable properties. The use of pVASS as abstractions requires the presence of nondeterminism in the model. In this paper, we develop techniques for checking fast termination of pVASS with nondeterminism. That is, for every initial configuration of size n, we consider the worst expected number of transitions needed to reach a configuration with some counter negative (the expected termination time). We show that the problem whether the asymptotic expected termination time is linear is decidable in polynomial time for a certain natural class of pVASS with nondeterminism. Furthermore, we show the following dichotomy: if the asymptotic expected termination time is not linear, then it is at least quadratic, i.e., in Ω(n2).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Tomás full_name: Brázdil, Tomás last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Antonín full_name: Kucera, Antonín last_name: Kucera - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Dominik full_name: Velan, Dominik last_name: Velan citation: ama: 'Brázdil T, Chatterjee K, Kucera A, Novotný P, Velan D. Deciding fast termination for probabilistic VASS with nondeterminism. In: International Symposium on Automated Technology for Verification and Analysis. Vol 11781. Springer Nature; 2019:462-478. doi:10.1007/978-3-030-31784-3_27' apa: 'Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P., & Velan, D. (2019). Deciding fast termination for probabilistic VASS with nondeterminism. In International Symposium on Automated Technology for Verification and Analysis (Vol. 11781, pp. 462–478). Taipei, Taiwan: Springer Nature. https://doi.org/10.1007/978-3-030-31784-3_27' chicago: Brázdil, Tomás, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, and Dominik Velan. “Deciding Fast Termination for Probabilistic VASS with Nondeterminism.” In International Symposium on Automated Technology for Verification and Analysis, 11781:462–78. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-31784-3_27. ieee: T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, and D. Velan, “Deciding fast termination for probabilistic VASS with nondeterminism,” in International Symposium on Automated Technology for Verification and Analysis, Taipei, Taiwan, 2019, vol. 11781, pp. 462–478. ista: 'Brázdil T, Chatterjee K, Kucera A, Novotný P, Velan D. 2019. Deciding fast termination for probabilistic VASS with nondeterminism. International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated TEchnology for Verification and Analysis, LNCS, vol. 11781, 462–478.' mla: Brázdil, Tomás, et al. “Deciding Fast Termination for Probabilistic VASS with Nondeterminism.” International Symposium on Automated Technology for Verification and Analysis, vol. 11781, Springer Nature, 2019, pp. 462–78, doi:10.1007/978-3-030-31784-3_27. short: T. Brázdil, K. Chatterjee, A. Kucera, P. Novotný, D. Velan, in:, International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2019, pp. 462–478. conference: end_date: 2019-10-31 location: Taipei, Taiwan name: 'ATVA: Automated TEchnology for Verification and Analysis' start_date: 2019-10-28 date_created: 2019-12-15T23:00:44Z date_published: 2019-10-21T00:00:00Z date_updated: 2023-09-06T12:40:58Z day: '21' department: - _id: KrCh doi: 10.1007/978-3-030-31784-3_27 external_id: arxiv: - '1907.11010' isi: - '000723515700027' intvolume: ' 11781' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.11010 month: '10' oa: 1 oa_version: Preprint page: 462-478 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: International Symposium on Automated Technology for Verification and Analysis publication_identifier: eissn: - '16113349' isbn: - '9783030317836' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Deciding fast termination for probabilistic VASS with nondeterminism type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11781 year: '2019' ... --- _id: '7182' abstract: - lang: eng text: During infection pathogens secrete small molecules, termed effectors, to manipulate and control the interaction with their specific hosts. Both the pathogen and the plant are under high selective pressure to rapidly adapt and co-evolve in what is usually referred to as molecular arms race. Components of the host’s immune system form a network that processes information about molecules with a foreign origin and damage-associated signals, integrating them with developmental and abiotic cues to adapt the plant’s responses. Both in the case of nucleotide-binding leucine-rich repeat receptors and leucine-rich repeat receptor kinases interaction networks have been extensively characterized. However, little is known on whether pathogenic effectors form complexes to overcome plant immunity and promote disease. Ustilago maydis, a biotrophic fungal pathogen that infects maize plants, produces effectors that target hubs in the immune network of the host cell. Here we assess the capability of U. maydis effector candidates to interact with each other, which may play a crucial role during the infection process. Using a systematic yeast-two-hybrid approach and based on a preliminary pooled screen, we selected 63 putative effectors for one-on-one matings with a library of nearly 300 effector candidates. We found that 126 of these effector candidates interacted either with themselves or other predicted effectors. Although the functional relevance of the observed interactions remains elusive, we propose that the observed abundance in complex formation between effectors adds an additional level of complexity to effector research and should be taken into consideration when studying effector evolution and function. Based on this fundamental finding, we suggest various scenarios which could evolutionarily drive the formation and stabilization of an effector interactome. article_number: '1437' article_processing_charge: No article_type: original author: - first_name: André full_name: Alcântara, André last_name: Alcântara - first_name: Jason full_name: Bosch, Jason last_name: Bosch - first_name: Fahimeh full_name: Nazari, Fahimeh last_name: Nazari - first_name: Gesa full_name: Hoffmann, Gesa last_name: Hoffmann - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Simon full_name: Uhse, Simon last_name: Uhse - first_name: Martin A. full_name: Darino, Martin A. last_name: Darino - first_name: Toluwase full_name: Olukayode, Toluwase last_name: Olukayode - first_name: Daniel full_name: Reumann, Daniel last_name: Reumann - first_name: Laura full_name: Baggaley, Laura last_name: Baggaley - first_name: Armin full_name: Djamei, Armin last_name: Djamei citation: ama: Alcântara A, Bosch J, Nazari F, et al. Systematic Y2H screening reveals extensive effector-complex formation. Frontiers in Plant Science. 2019;10(11). doi:10.3389/fpls.2019.01437 apa: Alcântara, A., Bosch, J., Nazari, F., Hoffmann, G., Gallei, M. C., Uhse, S., … Djamei, A. (2019). Systematic Y2H screening reveals extensive effector-complex formation. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2019.01437 chicago: Alcântara, André, Jason Bosch, Fahimeh Nazari, Gesa Hoffmann, Michelle C Gallei, Simon Uhse, Martin A. Darino, et al. “Systematic Y2H Screening Reveals Extensive Effector-Complex Formation.” Frontiers in Plant Science. Frontiers, 2019. https://doi.org/10.3389/fpls.2019.01437. ieee: A. Alcântara et al., “Systematic Y2H screening reveals extensive effector-complex formation,” Frontiers in Plant Science, vol. 10, no. 11. Frontiers, 2019. ista: Alcântara A, Bosch J, Nazari F, Hoffmann G, Gallei MC, Uhse S, Darino MA, Olukayode T, Reumann D, Baggaley L, Djamei A. 2019. Systematic Y2H screening reveals extensive effector-complex formation. Frontiers in Plant Science. 10(11), 1437. mla: Alcântara, André, et al. “Systematic Y2H Screening Reveals Extensive Effector-Complex Formation.” Frontiers in Plant Science, vol. 10, no. 11, 1437, Frontiers, 2019, doi:10.3389/fpls.2019.01437. short: A. Alcântara, J. Bosch, F. Nazari, G. Hoffmann, M.C. Gallei, S. Uhse, M.A. Darino, T. Olukayode, D. Reumann, L. Baggaley, A. Djamei, Frontiers in Plant Science 10 (2019). date_created: 2019-12-15T23:00:43Z date_published: 2019-11-14T00:00:00Z date_updated: 2023-09-06T14:33:46Z day: '14' ddc: - '580' department: - _id: JiFr doi: 10.3389/fpls.2019.01437 external_id: isi: - '000499821700001' pmid: - '31803201' file: - access_level: open_access checksum: 995aa838aec2064d93550de82b40bbd1 content_type: application/pdf creator: dernst date_created: 2019-12-16T07:58:43Z date_updated: 2020-07-14T12:47:52Z file_id: '7185' file_name: 2019_FrontiersPlant_Alcantara.pdf file_size: 1532505 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Plant Science publication_identifier: eissn: - 1664462X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Systematic Y2H screening reveals extensive effector-complex formation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10 year: '2019' ... --- _id: '7180' abstract: - lang: eng text: Arabidopsis PIN2 protein directs transport of the phytohormone auxin from the root tip into the root elongation zone. Variation in hormone transport, which depends on a delicate interplay between PIN2 sorting to and from polar plasma membrane domains, determines root growth. By employing a constitutively degraded version of PIN2, we identify brassinolides as antagonists of PIN2 endocytosis. This response does not require de novo protein synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no prerequisite for root bending but rather dampens asymmetric auxin flow and signaling. Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential for determining the rate of gravity-induced root curvature via attenuation of differential cell elongation. article_number: '5516' article_processing_charge: No article_type: original author: - first_name: Katarzyna full_name: Retzer, Katarzyna last_name: Retzer - first_name: Maria full_name: Akhmanova, Maria id: 3425EC26-F248-11E8-B48F-1D18A9856A87 last_name: Akhmanova orcid: 0000-0003-1522-3162 - first_name: Nataliia full_name: Konstantinova, Nataliia last_name: Konstantinova - first_name: Kateřina full_name: Malínská, Kateřina last_name: Malínská - first_name: Johannes full_name: Leitner, Johannes last_name: Leitner - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig citation: ama: Retzer K, Akhmanova M, Konstantinova N, et al. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature Communications. 2019;10. doi:10.1038/s41467-019-13543-1 apa: Retzer, K., Akhmanova, M., Konstantinova, N., Malínská, K., Leitner, J., Petrášek, J., & Luschnig, C. (2019). Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-13543-1 chicago: Retzer, Katarzyna, Maria Akhmanova, Nataliia Konstantinova, Kateřina Malínská, Johannes Leitner, Jan Petrášek, and Christian Luschnig. “Brassinosteroid Signaling Delimits Root Gravitropism via Sorting of the Arabidopsis PIN2 Auxin Transporter.” Nature Communications. Springer Nature, 2019. https://doi.org/10.1038/s41467-019-13543-1. ieee: K. Retzer et al., “Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter,” Nature Communications, vol. 10. Springer Nature, 2019. ista: Retzer K, Akhmanova M, Konstantinova N, Malínská K, Leitner J, Petrášek J, Luschnig C. 2019. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature Communications. 10, 5516. mla: Retzer, Katarzyna, et al. “Brassinosteroid Signaling Delimits Root Gravitropism via Sorting of the Arabidopsis PIN2 Auxin Transporter.” Nature Communications, vol. 10, 5516, Springer Nature, 2019, doi:10.1038/s41467-019-13543-1. short: K. Retzer, M. Akhmanova, N. Konstantinova, K. Malínská, J. Leitner, J. Petrášek, C. Luschnig, Nature Communications 10 (2019). date_created: 2019-12-15T23:00:43Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T14:08:21Z day: '01' ddc: - '570' department: - _id: DaSi doi: 10.1038/s41467-019-13543-1 external_id: isi: - '000500508100001' pmid: - '31797871' file: - access_level: open_access checksum: 77e8720a8e0f3091b98159f85be40893 content_type: application/pdf creator: dernst date_created: 2019-12-16T07:37:50Z date_updated: 2020-07-14T12:47:52Z file_id: '7184' file_name: 2019_NatureComm_Retzer.pdf file_size: 5156533 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 264CBBAC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02379 name: Modeling epithelial tissue mechanics during cell invasion publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10 year: '2019' ... --- _id: '7181' abstract: - lang: eng text: Multiple sequence alignments (MSAs) are used for structural1,2 and evolutionary predictions1,2, but the complexity of aligning large datasets requires the use of approximate solutions3, including the progressive algorithm4. Progressive MSA methods start by aligning the most similar sequences and subsequently incorporate the remaining sequences, from leaf-to-root, based on a guide-tree. Their accuracy declines substantially as the number of sequences is scaled up5. We introduce a regressive algorithm that enables MSA of up to 1.4 million sequences on a standard workstation and substantially improves accuracy on datasets larger than 10,000 sequences. Our regressive algorithm works the other way around to the progressive algorithm and begins by aligning the most dissimilar sequences. It uses an efficient divide-and-conquer strategy to run third-party alignment methods in linear time, regardless of their original complexity. Our approach will enable analyses of extremely large genomic datasets such as the recently announced Earth BioGenome Project, which comprises 1.5 million eukaryotic genomes6. article_processing_charge: No article_type: original author: - first_name: Edgar full_name: Garriga, Edgar last_name: Garriga - first_name: Paolo full_name: Di Tommaso, Paolo last_name: Di Tommaso - first_name: Cedrik full_name: Magis, Cedrik last_name: Magis - first_name: Ionas full_name: Erb, Ionas last_name: Erb - first_name: Leila full_name: Mansouri, Leila last_name: Mansouri - first_name: Athanasios full_name: Baltzis, Athanasios last_name: Baltzis - first_name: Hafid full_name: Laayouni, Hafid last_name: Laayouni - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Evan full_name: Floden, Evan last_name: Floden - first_name: Cedric full_name: Notredame, Cedric last_name: Notredame citation: ama: Garriga E, Di Tommaso P, Magis C, et al. Large multiple sequence alignments with a root-to-leaf regressive method. Nature Biotechnology. 2019;37(12):1466-1470. doi:10.1038/s41587-019-0333-6 apa: Garriga, E., Di Tommaso, P., Magis, C., Erb, I., Mansouri, L., Baltzis, A., … Notredame, C. (2019). Large multiple sequence alignments with a root-to-leaf regressive method. Nature Biotechnology. Springer Nature. https://doi.org/10.1038/s41587-019-0333-6 chicago: Garriga, Edgar, Paolo Di Tommaso, Cedrik Magis, Ionas Erb, Leila Mansouri, Athanasios Baltzis, Hafid Laayouni, Fyodor Kondrashov, Evan Floden, and Cedric Notredame. “Large Multiple Sequence Alignments with a Root-to-Leaf Regressive Method.” Nature Biotechnology. Springer Nature, 2019. https://doi.org/10.1038/s41587-019-0333-6. ieee: E. Garriga et al., “Large multiple sequence alignments with a root-to-leaf regressive method,” Nature Biotechnology, vol. 37, no. 12. Springer Nature, pp. 1466–1470, 2019. ista: Garriga E, Di Tommaso P, Magis C, Erb I, Mansouri L, Baltzis A, Laayouni H, Kondrashov F, Floden E, Notredame C. 2019. Large multiple sequence alignments with a root-to-leaf regressive method. Nature Biotechnology. 37(12), 1466–1470. mla: Garriga, Edgar, et al. “Large Multiple Sequence Alignments with a Root-to-Leaf Regressive Method.” Nature Biotechnology, vol. 37, no. 12, Springer Nature, 2019, pp. 1466–70, doi:10.1038/s41587-019-0333-6. short: E. Garriga, P. Di Tommaso, C. Magis, I. Erb, L. Mansouri, A. Baltzis, H. Laayouni, F. Kondrashov, E. Floden, C. Notredame, Nature Biotechnology 37 (2019) 1466–1470. date_created: 2019-12-15T23:00:43Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T14:32:52Z day: '01' department: - _id: FyKo doi: 10.1038/s41587-019-0333-6 ec_funded: 1 external_id: isi: - '000500748900021' pmid: - '31792410' intvolume: ' 37' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894943/ month: '12' oa: 1 oa_version: Submitted Version page: 1466-1470 pmid: 1 project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales publication: Nature Biotechnology publication_identifier: eissn: - '15461696' issn: - '10870156' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13059' relation: research_data status: public scopus_import: '1' status: public title: Large multiple sequence alignments with a root-to-leaf regressive method type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 37 year: '2019' ... --- _id: '7202' abstract: - lang: eng text: The cerebral cortex contains multiple areas with distinctive cytoarchitectonical patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations. Mathematical modelling indicates that these outcomes are compatible with a stochastic model of cortical neurogenesis in which progenitor cells undergo a series of probabilistic decisions that lead to the specification of very heterogeneous progenies. Our findings support a mechanism for cortical neurogenesis whose flexibility would make it capable to generate the diverse cytoarchitectures that characterize distinct neocortical areas. article_number: e51381 article_processing_charge: No article_type: original author: - first_name: Alfredo full_name: Llorca, Alfredo last_name: Llorca - first_name: Gabriele full_name: Ciceri, Gabriele last_name: Ciceri - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Fong Kuan full_name: Wong, Fong Kuan last_name: Wong - first_name: Giovanni full_name: Diana, Giovanni last_name: Diana - first_name: Eleni full_name: Serafeimidou-Pouliou, Eleni last_name: Serafeimidou-Pouliou - first_name: Marian full_name: Fernández-Otero, Marian last_name: Fernández-Otero - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Sebastian J. full_name: Arnold, Sebastian J. last_name: Arnold - first_name: Martin full_name: Meyer, Martin last_name: Meyer - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Miguel full_name: Maravall, Miguel last_name: Maravall - first_name: Oscar full_name: Marín, Oscar last_name: Marín citation: ama: Llorca A, Ciceri G, Beattie RJ, et al. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife. 2019;8. doi:10.7554/eLife.51381 apa: Llorca, A., Ciceri, G., Beattie, R. J., Wong, F. K., Diana, G., Serafeimidou-Pouliou, E., … Marín, O. (2019). A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.51381 chicago: Llorca, Alfredo, Gabriele Ciceri, Robert J Beattie, Fong Kuan Wong, Giovanni Diana, Eleni Serafeimidou-Pouliou, Marian Fernández-Otero, et al. “A Stochastic Framework of Neurogenesis Underlies the Assembly of Neocortical Cytoarchitecture.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.51381. ieee: A. Llorca et al., “A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Llorca A, Ciceri G, Beattie RJ, Wong FK, Diana G, Serafeimidou-Pouliou E, Fernández-Otero M, Streicher C, Arnold SJ, Meyer M, Hippenmeyer S, Maravall M, Marín O. 2019. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife. 8, e51381. mla: Llorca, Alfredo, et al. “A Stochastic Framework of Neurogenesis Underlies the Assembly of Neocortical Cytoarchitecture.” ELife, vol. 8, e51381, eLife Sciences Publications, 2019, doi:10.7554/eLife.51381. short: A. Llorca, G. Ciceri, R.J. Beattie, F.K. Wong, G. Diana, E. Serafeimidou-Pouliou, M. Fernández-Otero, C. Streicher, S.J. Arnold, M. Meyer, S. Hippenmeyer, M. Maravall, O. Marín, ELife 8 (2019). date_created: 2019-12-22T23:00:42Z date_published: 2019-11-18T00:00:00Z date_updated: 2023-09-06T14:38:39Z day: '18' ddc: - '570' department: - _id: SiHi doi: 10.7554/eLife.51381 ec_funded: 1 external_id: isi: - '000508156800001' pmid: - '31736464' file: - access_level: open_access checksum: b460ecc33e1a68265e7adea775021f3a content_type: application/pdf creator: dernst date_created: 2020-02-18T15:19:26Z date_updated: 2020-07-14T12:47:53Z file_id: '7503' file_name: 2019_eLife_Llorca.pdf file_size: 2960543 relation: main_file file_date_updated: 2020-07-14T12:47:53Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2019' ... --- _id: '7179' abstract: - lang: eng text: Glutamate is the major excitatory neurotransmitter in the CNS binding to a variety of glutamate receptors. Metabotropic glutamate receptors (mGluR1 to mGluR8) can act excitatory or inhibitory, depending on associated signal cascades. Expression and localization of inhibitory acting mGluRs at inner hair cells (IHCs) in the cochlea are largely unknown. Here, we analyzed expression of mGluR2, mGluR3, mGluR4, mGluR6, mGluR7, and mGluR8 and investigated their localization with respect to the presynaptic ribbon of IHC synapses. We detected transcripts for mGluR2, mGluR3, and mGluR4 as well as for mGluR7a, mGluR7b, mGluR8a, and mGluR8b splice variants. Using receptor-specific antibodies in cochlear wholemounts, we found expression of mGluR2, mGluR4, and mGluR8b close to presynaptic ribbons. Super resolution and confocal microscopy in combination with 3-dimensional reconstructions indicated a postsynaptic localization of mGluR2 that overlaps with postsynaptic density protein 95 on dendrites of afferent type I spiral ganglion neurons. In contrast, mGluR4 and mGluR8b were expressed at the presynapse close to IHC ribbons. In summary, we localized in detail 3 mGluR types at IHC ribbon synapses, providing a fundament for new therapeutical strategies that could protect the cochlea against noxious stimuli and excitotoxicity. article_processing_charge: No article_type: original author: - first_name: Lisa full_name: Klotz, Lisa last_name: Klotz - first_name: Olaf full_name: Wendler, Olaf last_name: Wendler - first_name: Renato full_name: Frischknecht, Renato last_name: Frischknecht - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Holger full_name: Schulze, Holger last_name: Schulze - first_name: Ralf full_name: Enz, Ralf last_name: Enz citation: ama: Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. FASEB Journal. 2019;33(12):13734-13746. doi:10.1096/fj.201901543R apa: Klotz, L., Wendler, O., Frischknecht, R., Shigemoto, R., Schulze, H., & Enz, R. (2019). Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. FASEB Journal. FASEB. https://doi.org/10.1096/fj.201901543R chicago: Klotz, Lisa, Olaf Wendler, Renato Frischknecht, Ryuichi Shigemoto, Holger Schulze, and Ralf Enz. “Localization of Group II and III Metabotropic Glutamate Receptors at Pre- and Postsynaptic Sites of Inner Hair Cell Ribbon Synapses.” FASEB Journal. FASEB, 2019. https://doi.org/10.1096/fj.201901543R. ieee: L. Klotz, O. Wendler, R. Frischknecht, R. Shigemoto, H. Schulze, and R. Enz, “Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses,” FASEB Journal, vol. 33, no. 12. FASEB, pp. 13734–13746, 2019. ista: Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R. 2019. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. FASEB Journal. 33(12), 13734–13746. mla: Klotz, Lisa, et al. “Localization of Group II and III Metabotropic Glutamate Receptors at Pre- and Postsynaptic Sites of Inner Hair Cell Ribbon Synapses.” FASEB Journal, vol. 33, no. 12, FASEB, 2019, pp. 13734–46, doi:10.1096/fj.201901543R. short: L. Klotz, O. Wendler, R. Frischknecht, R. Shigemoto, H. Schulze, R. Enz, FASEB Journal 33 (2019) 13734–13746. date_created: 2019-12-15T23:00:42Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T14:34:36Z day: '01' ddc: - '571' - '599' department: - _id: RySh doi: 10.1096/fj.201901543R external_id: isi: - '000507466100054' pmid: - '31585509' file: - access_level: open_access checksum: 79e3b72481dc32489911121cf3b7d8d0 content_type: application/pdf creator: shigemot date_created: 2020-12-06T17:30:09Z date_updated: 2020-12-06T17:30:09Z file_id: '8922' file_name: Klotz et al 2019 EMBO Reports.pdf file_size: 4766789 relation: main_file success: 1 file_date_updated: 2020-12-06T17:30:09Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version page: 13734-13746 pmid: 1 publication: FASEB Journal publication_identifier: eissn: - '15306860' publication_status: published publisher: FASEB quality_controlled: '1' scopus_import: '1' status: public title: Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 33 year: '2019' ... --- _id: '7201' abstract: - lang: eng text: Applying machine learning techniques to the quickly growing data in science and industry requires highly-scalable algorithms. Large datasets are most commonly processed "data parallel" distributed across many nodes. Each node's contribution to the overall gradient is summed using a global allreduce. This allreduce is the single communication and thus scalability bottleneck for most machine learning workloads. We observe that frequently, many gradient values are (close to) zero, leading to sparse of sparsifyable communications. To exploit this insight, we analyze, design, and implement a set of communication-efficient protocols for sparse input data, in conjunction with efficient machine learning algorithms which can leverage these primitives. Our communication protocols generalize standard collective operations, by allowing processes to contribute arbitrary sparse input data vectors. Our generic communication library, SparCML1, extends MPI to support additional features, such as non-blocking (asynchronous) operations and low-precision data representations. As such, SparCML and its techniques will form the basis of future highly-scalable machine learning frameworks. article_number: a11 article_processing_charge: No author: - first_name: Cedric full_name: Renggli, Cedric last_name: Renggli - first_name: Saleh full_name: Ashkboos, Saleh id: 0D0A9058-257B-11EA-A937-9341C3D8BC8A last_name: Ashkboos - first_name: Mehdi full_name: Aghagolzadeh, Mehdi last_name: Aghagolzadeh - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Torsten full_name: Hoefler, Torsten last_name: Hoefler citation: ama: 'Renggli C, Ashkboos S, Aghagolzadeh M, Alistarh D-A, Hoefler T. SparCML: High-performance sparse communication for machine learning. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC. ACM; 2019. doi:10.1145/3295500.3356222' apa: 'Renggli, C., Ashkboos, S., Aghagolzadeh, M., Alistarh, D.-A., & Hoefler, T. (2019). SparCML: High-performance sparse communication for machine learning. In International Conference for High Performance Computing, Networking, Storage and Analysis, SC. Denver, CO, Unites States: ACM. https://doi.org/10.1145/3295500.3356222' chicago: 'Renggli, Cedric, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan-Adrian Alistarh, and Torsten Hoefler. “SparCML: High-Performance Sparse Communication for Machine Learning.” In International Conference for High Performance Computing, Networking, Storage and Analysis, SC. ACM, 2019. https://doi.org/10.1145/3295500.3356222.' ieee: 'C. Renggli, S. Ashkboos, M. Aghagolzadeh, D.-A. Alistarh, and T. Hoefler, “SparCML: High-performance sparse communication for machine learning,” in International Conference for High Performance Computing, Networking, Storage and Analysis, SC, Denver, CO, Unites States, 2019.' ista: 'Renggli C, Ashkboos S, Aghagolzadeh M, Alistarh D-A, Hoefler T. 2019. SparCML: High-performance sparse communication for machine learning. International Conference for High Performance Computing, Networking, Storage and Analysis, SC. SC: Conference for High Performance Computing, Networking, Storage and Analysis, a11.' mla: 'Renggli, Cedric, et al. “SparCML: High-Performance Sparse Communication for Machine Learning.” International Conference for High Performance Computing, Networking, Storage and Analysis, SC, a11, ACM, 2019, doi:10.1145/3295500.3356222.' short: C. Renggli, S. Ashkboos, M. Aghagolzadeh, D.-A. Alistarh, T. Hoefler, in:, International Conference for High Performance Computing, Networking, Storage and Analysis, SC, ACM, 2019. conference: end_date: 2019-11-19 location: Denver, CO, Unites States name: 'SC: Conference for High Performance Computing, Networking, Storage and Analysis' start_date: 2019-11-17 date_created: 2019-12-22T23:00:42Z date_published: 2019-11-17T00:00:00Z date_updated: 2023-09-06T14:37:55Z day: '17' department: - _id: DaAl doi: 10.1145/3295500.3356222 ec_funded: 1 external_id: arxiv: - '1802.08021' isi: - '000545976800011' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1802.08021 month: '11' oa: 1 oa_version: Preprint project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: International Conference for High Performance Computing, Networking, Storage and Analysis, SC publication_identifier: eissn: - '21674337' isbn: - '9781450362290' issn: - '21674329' publication_status: published publisher: ACM quality_controlled: '1' scopus_import: '1' status: public title: 'SparCML: High-performance sparse communication for machine learning' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '13067' abstract: - lang: eng text: Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis divergent selection forms strong barriers to gene flow, while the role of postzygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Postzygotic barriers might include genetic incompatibilities (e.g. Dobzhansky-Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1011 embryos (mean 130±123) and abortion rates varied between 0 and100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterised female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant postzygotic barriers contributing to ecotype divergence and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females. article_processing_charge: No author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Zuzanna full_name: Zagrodzka, Zuzanna last_name: Zagrodzka - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: 'Johannesson K, Zagrodzka Z, Faria R, Westram AM, Butlin R. Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes? 2019. doi:10.5061/DRYAD.TB2RBNZWK' apa: 'Johannesson, K., Zagrodzka, Z., Faria, R., Westram, A. M., & Butlin, R. (2019). Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes? Dryad. https://doi.org/10.5061/DRYAD.TB2RBNZWK' chicago: 'Johannesson, Kerstin, Zuzanna Zagrodzka, Rui Faria, Anja M Westram, and Roger Butlin. “Data from: Is Embryo Abortion a Postzygotic Barrier to Gene Flow between Littorina Ecotypes?” Dryad, 2019. https://doi.org/10.5061/DRYAD.TB2RBNZWK.' ieee: 'K. Johannesson, Z. Zagrodzka, R. Faria, A. M. Westram, and R. Butlin, “Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes?” Dryad, 2019.' ista: 'Johannesson K, Zagrodzka Z, Faria R, Westram AM, Butlin R. 2019. Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes?, Dryad, 10.5061/DRYAD.TB2RBNZWK.' mla: 'Johannesson, Kerstin, et al. Data from: Is Embryo Abortion a Postzygotic Barrier to Gene Flow between Littorina Ecotypes? Dryad, 2019, doi:10.5061/DRYAD.TB2RBNZWK.' short: K. Johannesson, Z. Zagrodzka, R. Faria, A.M. Westram, R. Butlin, (2019). date_created: 2023-05-23T16:36:27Z date_published: 2019-12-02T00:00:00Z date_updated: 2023-09-06T14:48:57Z day: '02' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.TB2RBNZWK license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.tb2rbnzwk month: '12' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '7205' relation: used_in_publication status: public status: public title: 'Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes?' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '7214' abstract: - lang: eng text: "Background: Many cancer genomes are extensively rearranged with highly aberrant chromosomal karyotypes. Structural and copy number variations in cancer genomes can be determined via abnormal mapping of sequenced reads to the reference genome. Recently it became possible to reconcile both of these types of large-scale variations into a karyotype graph representation of the rearranged cancer genomes. Such a representation, however, does not directly describe the linear and/or circular structure of the underlying rearranged cancer chromosomes, thus limiting possible analysis of cancer genomes somatic evolutionary process as well as functional genomic changes brought by the large-scale genome rearrangements.\r\n\r\nResults: Here we address the aforementioned limitation by introducing a novel methodological framework for recovering rearranged cancer chromosomes from karyotype graphs. For a cancer karyotype graph we formulate an Eulerian Decomposition Problem (EDP) of finding a collection of linear and/or circular rearranged cancer chromosomes that are determined by the graph. We derive and prove computational complexities for several variations of the EDP. We then demonstrate that Eulerian decomposition of the cancer karyotype graphs is not always unique and present the Consistent Contig Covering Problem (CCCP) of recovering unambiguous cancer contigs from the cancer karyotype graph, and describe a novel algorithm CCR capable of solving CCCP in polynomial time. We apply CCR on a prostate cancer dataset and demonstrate that it is capable of consistently recovering large cancer contigs even when underlying cancer genomes are highly rearranged.\r\n\r\nConclusions: CCR can recover rearranged cancer contigs from karyotype graphs thereby addressing existing limitation in inferring chromosomal structures of rearranged cancer genomes and advancing our understanding of both patient/cancer-specific as well as the overall genetic instability in cancer." article_number: '641' article_processing_charge: No article_type: original author: - first_name: Sergey full_name: Aganezov, Sergey last_name: Aganezov - first_name: Ilya full_name: Zban, Ilya last_name: Zban - first_name: Vitalii full_name: Aksenov, Vitalii id: 2980135A-F248-11E8-B48F-1D18A9856A87 last_name: Aksenov - first_name: Nikita full_name: Alexeev, Nikita last_name: Alexeev - first_name: Michael C. full_name: Schatz, Michael C. last_name: Schatz citation: ama: Aganezov S, Zban I, Aksenov V, Alexeev N, Schatz MC. Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. 2019;20. doi:10.1186/s12859-019-3208-4 apa: Aganezov, S., Zban, I., Aksenov, V., Alexeev, N., & Schatz, M. C. (2019). Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. BMC. https://doi.org/10.1186/s12859-019-3208-4 chicago: Aganezov, Sergey, Ilya Zban, Vitalii Aksenov, Nikita Alexeev, and Michael C. Schatz. “Recovering Rearranged Cancer Chromosomes from Karyotype Graphs.” BMC Bioinformatics. BMC, 2019. https://doi.org/10.1186/s12859-019-3208-4. ieee: S. Aganezov, I. Zban, V. Aksenov, N. Alexeev, and M. C. Schatz, “Recovering rearranged cancer chromosomes from karyotype graphs,” BMC Bioinformatics, vol. 20. BMC, 2019. ista: Aganezov S, Zban I, Aksenov V, Alexeev N, Schatz MC. 2019. Recovering rearranged cancer chromosomes from karyotype graphs. BMC Bioinformatics. 20, 641. mla: Aganezov, Sergey, et al. “Recovering Rearranged Cancer Chromosomes from Karyotype Graphs.” BMC Bioinformatics, vol. 20, 641, BMC, 2019, doi:10.1186/s12859-019-3208-4. short: S. Aganezov, I. Zban, V. Aksenov, N. Alexeev, M.C. Schatz, BMC Bioinformatics 20 (2019). date_created: 2019-12-29T23:00:46Z date_published: 2019-12-17T00:00:00Z date_updated: 2023-09-06T14:51:06Z day: '17' ddc: - '570' department: - _id: DaAl doi: 10.1186/s12859-019-3208-4 external_id: isi: - '000511618800007' file: - access_level: open_access checksum: 7a30357efdcf8f66587ed495c0927724 content_type: application/pdf creator: dernst date_created: 2020-01-02T16:10:58Z date_updated: 2020-07-14T12:47:54Z file_id: '7221' file_name: 2019_BMCBioinfo_Aganezov.pdf file_size: 1917374 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 20' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: BMC Bioinformatics publication_identifier: eissn: - '14712105' publication_status: published publisher: BMC quality_controlled: '1' scopus_import: '1' status: public title: Recovering rearranged cancer chromosomes from karyotype graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 20 year: '2019' ... --- _id: '7225' abstract: - lang: eng text: "This is a literature teaching resource review for biologically inspired microfluidics courses\r\nor exploring the diverse applications of microfluidics. The structure is around key papers and model\r\norganisms. While courses gradually change over time, a focus remains on understanding how\r\nmicrofluidics has developed as well as what it can and cannot do for researchers. As a primary\r\nstarting point, we cover micro-fluid mechanics principles and microfabrication of devices. A variety\r\nof applications are discussed using model prokaryotic and eukaryotic organisms from the set\r\nof bacteria (Escherichia coli), trypanosomes (Trypanosoma brucei), yeast (Saccharomyces cerevisiae),\r\nslime molds (Physarum polycephalum), worms (Caenorhabditis elegans), flies (Drosophila melangoster),\r\nplants (Arabidopsis thaliana), and mouse immune cells (Mus musculus). Other engineering and\r\nbiochemical methods discussed include biomimetics, organ on a chip, inkjet, droplet microfluidics,\r\nbiotic games, and diagnostics. While we have not yet reached the end-all lab on a chip,\r\nmicrofluidics can still be used effectively for specific applications." article_number: '109' article_processing_charge: Yes article_type: review author: - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 citation: ama: Merrin J. Frontiers in microfluidics, a teaching resource review. Bioengineering. 2019;6(4). doi:10.3390/bioengineering6040109 apa: Merrin, J. (2019). Frontiers in microfluidics, a teaching resource review. Bioengineering. MDPI. https://doi.org/10.3390/bioengineering6040109 chicago: Merrin, Jack. “Frontiers in Microfluidics, a Teaching Resource Review.” Bioengineering. MDPI, 2019. https://doi.org/10.3390/bioengineering6040109. ieee: J. Merrin, “Frontiers in microfluidics, a teaching resource review,” Bioengineering, vol. 6, no. 4. MDPI, 2019. ista: Merrin J. 2019. Frontiers in microfluidics, a teaching resource review. Bioengineering. 6(4), 109. mla: Merrin, Jack. “Frontiers in Microfluidics, a Teaching Resource Review.” Bioengineering, vol. 6, no. 4, 109, MDPI, 2019, doi:10.3390/bioengineering6040109. short: J. Merrin, Bioengineering 6 (2019). date_created: 2020-01-05T23:00:45Z date_published: 2019-12-03T00:00:00Z date_updated: 2023-09-06T14:52:49Z day: '03' ddc: - '620' department: - _id: NanoFab doi: 10.3390/bioengineering6040109 external_id: isi: - '000505590000024' pmid: - '31816954' file: - access_level: open_access checksum: 80f1499e2a4caccdf3aa54b137fd99a0 content_type: application/pdf creator: dernst date_created: 2020-01-07T14:49:59Z date_updated: 2020-07-14T12:47:54Z file_id: '7243' file_name: 2019_Bioengineering_Merrin.pdf file_size: 2660780 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '4' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: Bioengineering publication_identifier: eissn: - '23065354' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Frontiers in microfluidics, a teaching resource review tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2019' ... --- _id: '7228' abstract: - lang: eng text: "Traditional concurrent programming involves manipulating shared mutable state. Alternatives to this programming style are communicating sequential processes (CSP) and actor models, which share data via explicit communication. These models have been known for almost half a century, and have recently had started to gain significant traction among modern programming languages. The common abstraction for communication between several processes is the channel. Although channels are similar to producer-consumer data structures, they have different semantics and support additional operations, such as the select expression. Despite their growing popularity, most known implementations of channels use lock-based data structures and can be rather inefficient.\r\n\r\nIn this paper, we present the first efficient lock-free algorithm for implementing a communication channel for CSP programming. We provide implementations and experimental results in the Kotlin and Go programming languages. Our new algorithm outperforms existing implementations on many workloads, while providing non-blocking progress guarantee. Our design can serve as an example of how to construct general communication data structures for CSP and actor models. " alternative_title: - LNCS article_processing_charge: No author: - first_name: Nikita full_name: Koval, Nikita id: 2F4DB10C-F248-11E8-B48F-1D18A9856A87 last_name: Koval - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Roman full_name: Elizarov, Roman last_name: Elizarov citation: ama: 'Koval N, Alistarh D-A, Elizarov R. Scalable FIFO channels for programming via communicating sequential processes. In: 25th Anniversary of Euro-Par. Vol 11725. Springer Nature; 2019:317-333. doi:10.1007/978-3-030-29400-7_23' apa: 'Koval, N., Alistarh, D.-A., & Elizarov, R. (2019). Scalable FIFO channels for programming via communicating sequential processes. In 25th Anniversary of Euro-Par (Vol. 11725, pp. 317–333). Göttingen, Germany: Springer Nature. https://doi.org/10.1007/978-3-030-29400-7_23' chicago: Koval, Nikita, Dan-Adrian Alistarh, and Roman Elizarov. “Scalable FIFO Channels for Programming via Communicating Sequential Processes.” In 25th Anniversary of Euro-Par, 11725:317–33. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29400-7_23. ieee: N. Koval, D.-A. Alistarh, and R. Elizarov, “Scalable FIFO channels for programming via communicating sequential processes,” in 25th Anniversary of Euro-Par, Göttingen, Germany, 2019, vol. 11725, pp. 317–333. ista: 'Koval N, Alistarh D-A, Elizarov R. 2019. Scalable FIFO channels for programming via communicating sequential processes. 25th Anniversary of Euro-Par. Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11725, 317–333.' mla: Koval, Nikita, et al. “Scalable FIFO Channels for Programming via Communicating Sequential Processes.” 25th Anniversary of Euro-Par, vol. 11725, Springer Nature, 2019, pp. 317–33, doi:10.1007/978-3-030-29400-7_23. short: N. Koval, D.-A. Alistarh, R. Elizarov, in:, 25th Anniversary of Euro-Par, Springer Nature, 2019, pp. 317–333. conference: end_date: 2019-08-30 location: Göttingen, Germany name: 'Euro-Par: European Conference on Parallel Processing' start_date: 2019-08-26 date_created: 2020-01-05T23:00:46Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:53:59Z day: '13' department: - _id: DaAl doi: 10.1007/978-3-030-29400-7_23 external_id: isi: - '000851061400023' intvolume: ' 11725' isi: 1 language: - iso: eng month: '08' oa_version: None page: 317-333 publication: 25th Anniversary of Euro-Par publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9399-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Scalable FIFO channels for programming via communicating sequential processes type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11725 year: '2019' ... --- _id: '7216' abstract: - lang: eng text: 'We present LiveTraVeL (Live Transit Vehicle Labeling), a real-time system to label a stream of noisy observations of transit vehicle trajectories with the transit routes they are serving (e.g., northbound bus #5). In order to scale efficiently to large transit networks, our system first retrieves a small set of candidate routes from a geometrically indexed data structure, then applies a fine-grained scoring step to choose the best match. Given that real-time data remains unavailable for the majority of the world’s transit agencies, these inferences can help feed a real-time map of a transit system’s trips, infer transit trip delays in real time, or measure and correct noisy transit tracking data. This system can run on vehicle observations from a variety of sources that don’t attach route information to vehicle observations, such as public imagery streams or user-contributed transit vehicle sightings.We abstract away the specifics of the sensing system and demonstrate the effectiveness of our system on a "semisynthetic" dataset of all New York City buses, where we simulate sensed trajectories by starting with fully labeled vehicle trajectories reported via the GTFS-Realtime protocol, removing the transit route IDs, and perturbing locations with synthetic noise. Using just the geometric shapes of the trajectories, we demonstrate that our system converges on the correct route ID within a few minutes, even after a vehicle switches from serving one trip to the next.' article_number: '8917514' article_processing_charge: No author: - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang orcid: 0000-0002-8882-5116 - first_name: James full_name: Cook, James last_name: Cook - first_name: Alex full_name: Fabrikant, Alex last_name: Fabrikant - first_name: Marco full_name: Gruteser, Marco last_name: Gruteser citation: ama: 'Osang GF, Cook J, Fabrikant A, Gruteser M. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In: 2019 IEEE Intelligent Transportation Systems Conference. IEEE; 2019. doi:10.1109/ITSC.2019.8917514' apa: 'Osang, G. F., Cook, J., Fabrikant, A., & Gruteser, M. (2019). LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE. https://doi.org/10.1109/ITSC.2019.8917514' chicago: 'Osang, Georg F, James Cook, Alex Fabrikant, and Marco Gruteser. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” In 2019 IEEE Intelligent Transportation Systems Conference. IEEE, 2019. https://doi.org/10.1109/ITSC.2019.8917514.' ieee: 'G. F. Osang, J. Cook, A. Fabrikant, and M. Gruteser, “LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale,” in 2019 IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 2019.' ista: 'Osang GF, Cook J, Fabrikant A, Gruteser M. 2019. LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. 2019 IEEE Intelligent Transportation Systems Conference. ITSC: Intelligent Transportation Systems Conference, 8917514.' mla: 'Osang, Georg F., et al. “LiveTraVeL: Real-Time Matching of Transit Vehicle Trajectories to Transit Routes at Scale.” 2019 IEEE Intelligent Transportation Systems Conference, 8917514, IEEE, 2019, doi:10.1109/ITSC.2019.8917514.' short: G.F. Osang, J. Cook, A. Fabrikant, M. Gruteser, in:, 2019 IEEE Intelligent Transportation Systems Conference, IEEE, 2019. conference: end_date: 2019-10-30 location: Auckland, New Zealand name: 'ITSC: Intelligent Transportation Systems Conference' start_date: 2019-10-27 date_created: 2019-12-29T23:00:47Z date_published: 2019-11-28T00:00:00Z date_updated: 2023-09-06T14:50:28Z day: '28' department: - _id: HeEd doi: 10.1109/ITSC.2019.8917514 external_id: isi: - '000521238102050' isi: 1 language: - iso: eng month: '11' oa_version: None publication: 2019 IEEE Intelligent Transportation Systems Conference publication_identifier: isbn: - '9781538670248' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '7231' abstract: - lang: eng text: Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature. alternative_title: - LNCS article_processing_charge: No author: - first_name: Hui full_name: Kong, Hui id: 3BDE25AA-F248-11E8-B48F-1D18A9856A87 last_name: Kong orcid: 0000-0002-3066-6941 - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Yu full_name: Jiang, Yu last_name: Jiang - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Kong H, Bartocci E, Jiang Y, Henzinger TA. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In: 17th International Conference on Formal Modeling and Analysis of Timed Systems. Vol 11750. Springer Nature; 2019:123-141. doi:10.1007/978-3-030-29662-9_8' apa: 'Kong, H., Bartocci, E., Jiang, Y., & Henzinger, T. A. (2019). Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. In 17th International Conference on Formal Modeling and Analysis of Timed Systems (Vol. 11750, pp. 123–141). Amsterdam, The Netherlands: Springer Nature. https://doi.org/10.1007/978-3-030-29662-9_8' chicago: Kong, Hui, Ezio Bartocci, Yu Jiang, and Thomas A Henzinger. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” In 17th International Conference on Formal Modeling and Analysis of Timed Systems, 11750:123–41. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-29662-9_8. ieee: H. Kong, E. Bartocci, Y. Jiang, and T. A. Henzinger, “Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty,” in 17th International Conference on Formal Modeling and Analysis of Timed Systems, Amsterdam, The Netherlands, 2019, vol. 11750, pp. 123–141. ista: 'Kong H, Bartocci E, Jiang Y, Henzinger TA. 2019. Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty. 17th International Conference on Formal Modeling and Analysis of Timed Systems. FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS, vol. 11750, 123–141.' mla: Kong, Hui, et al. “Piecewise Robust Barrier Tubes for Nonlinear Hybrid Systems with Uncertainty.” 17th International Conference on Formal Modeling and Analysis of Timed Systems, vol. 11750, Springer Nature, 2019, pp. 123–41, doi:10.1007/978-3-030-29662-9_8. short: H. Kong, E. Bartocci, Y. Jiang, T.A. Henzinger, in:, 17th International Conference on Formal Modeling and Analysis of Timed Systems, Springer Nature, 2019, pp. 123–141. conference: end_date: 2019-08-29 location: Amsterdam, The Netherlands name: 'FORMATS: Formal Modeling and Analysis of Timed Systems' start_date: 2019-08-27 date_created: 2020-01-05T23:00:47Z date_published: 2019-08-13T00:00:00Z date_updated: 2023-09-06T14:55:15Z day: '13' department: - _id: ToHe doi: 10.1007/978-3-030-29662-9_8 external_id: arxiv: - '1907.11514' isi: - '000611677700008' intvolume: ' 11750' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.11514 month: '08' oa: 1 oa_version: Preprint page: 123-141 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 17th International Conference on Formal Modeling and Analysis of Timed Systems publication_identifier: eissn: - 1611-3349 isbn: - 978-3-0302-9661-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11750 year: '2019' ... --- _id: '7340' abstract: - lang: eng text: Coupling of endoplasmic reticulum stress to dimerisation‑dependent activation of the UPR transducer IRE1 is incompletely understood. Whilst the luminal co-chaperone ERdj4 promotes a complex between the Hsp70 BiP and IRE1's stress-sensing luminal domain (IRE1LD) that favours the latter's monomeric inactive state and loss of ERdj4 de-represses IRE1, evidence linking these cellular and in vitro observations is presently lacking. We report that enforced loading of endogenous BiP onto endogenous IRE1α repressed UPR signalling in CHO cells and deletions in the IRE1α locus that de-repressed the UPR in cells, encode flexible regions of IRE1LD that mediated BiP‑induced monomerisation in vitro. Changes in the hydrogen exchange mass spectrometry profile of IRE1LD induced by ERdj4 and BiP confirmed monomerisation and were consistent with active destabilisation of the IRE1LD dimer. Together, these observations support a competition model whereby waning ER stress passively partitions ERdj4 and BiP to IRE1LD to initiate active repression of UPR signalling. acknowledgement: We thank the CIMR flow cytometry core facility team (Reiner Schulte, Chiara Cossetti and Gabriela Grondys-Kotarba) for assistance with FACS, the Huntington lab for access to the Octet machine, Steffen Preissler for advice on data interpretation, Roman Kityk and Nicole Luebbehusen for help and advice with HX-MS experiments. article_number: e50793 article_processing_charge: No article_type: original author: - first_name: Niko Paresh full_name: Amin-Wetzel, Niko Paresh id: E95D3014-9D8C-11E9-9C80-D2F8E5697425 last_name: Amin-Wetzel - first_name: Lisa full_name: Neidhardt, Lisa last_name: Neidhardt - first_name: Yahui full_name: Yan, Yahui last_name: Yan - first_name: Matthias P. full_name: Mayer, Matthias P. last_name: Mayer - first_name: David full_name: Ron, David last_name: Ron citation: ama: Amin-Wetzel NP, Neidhardt L, Yan Y, Mayer MP, Ron D. Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. eLife. 2019;8. doi:10.7554/eLife.50793 apa: Amin-Wetzel, N. P., Neidhardt, L., Yan, Y., Mayer, M. P., & Ron, D. (2019). Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.50793 chicago: Amin-Wetzel, Niko Paresh, Lisa Neidhardt, Yahui Yan, Matthias P. Mayer, and David Ron. “Unstructured Regions in IRE1α Specify BiP-Mediated Destabilisation of the Luminal Domain Dimer and Repression of the UPR.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.50793. ieee: N. P. Amin-Wetzel, L. Neidhardt, Y. Yan, M. P. Mayer, and D. Ron, “Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Amin-Wetzel NP, Neidhardt L, Yan Y, Mayer MP, Ron D. 2019. Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR. eLife. 8, e50793. mla: Amin-Wetzel, Niko Paresh, et al. “Unstructured Regions in IRE1α Specify BiP-Mediated Destabilisation of the Luminal Domain Dimer and Repression of the UPR.” ELife, vol. 8, e50793, eLife Sciences Publications, 2019, doi:10.7554/eLife.50793. short: N.P. Amin-Wetzel, L. Neidhardt, Y. Yan, M.P. Mayer, D. Ron, ELife 8 (2019). date_created: 2020-01-19T23:00:39Z date_published: 2019-12-24T00:00:00Z date_updated: 2023-09-06T14:58:02Z day: '24' ddc: - '570' department: - _id: MaDe doi: 10.7554/eLife.50793 external_id: isi: - '000512303700001' pmid: - '31873072' file: - access_level: open_access checksum: 29fcbcd8c1fc7f11a596ed7f14ea1c82 content_type: application/pdf creator: dernst date_created: 2020-11-19T11:37:41Z date_updated: 2020-11-19T11:37:41Z file_id: '8777' file_name: 2019_eLife_AminWetzel.pdf file_size: 4817384 relation: main_file success: 1 file_date_updated: 2020-11-19T11:37:41Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Unstructured regions in IRE1α specify BiP-mediated destabilisation of the luminal domain dimer and repression of the UPR tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2019' ...