--- _id: '624' abstract: - lang: eng text: Bacteria adapt to adverse environmental conditions by altering gene expression patterns. Recently, a novel stress adaptation mechanism has been described that allows Escherichia coli to alter gene expression at the post-transcriptional level. The key player in this regulatory pathway is the endoribonuclease MazF, the toxin component of the toxin-antitoxin module mazEF that is triggered by various stressful conditions. In general, MazF degrades the majority of transcripts by cleaving at ACA sites, which results in the retardation of bacterial growth. Furthermore, MazF can process a small subset of mRNAs and render them leaderless by removing their ribosome binding site. MazF concomitantly modifies ribosomes, making them selective for the translation of leaderless mRNAs. In this study, we employed fluorescent reporter-systems to investigate mazEF expression during stressful conditions, and to infer consequences of the mRNA processing mediated by MazF on gene expression at the single-cell level. Our results suggest that mazEF transcription is maintained at low levels in single cells encountering adverse conditions, such as antibiotic stress or amino acid starvation. Moreover, using the grcA mRNA as a model for MazF-mediated mRNA processing, we found that MazF activation promotes heterogeneity in the grcA reporter expression, resulting in a subpopulation of cells with increased levels of GrcA reporter protein. acknowledgement: 'Austrian Science Fund (FWF): M1697, P22249; Swiss National Science Foundation (SNF): 145706; European Commission;FWF Special Research Program: RNA-REG F43' article_number: '3830' author: - first_name: Nela full_name: Nikolic, Nela id: 42D9CABC-F248-11E8-B48F-1D18A9856A87 last_name: Nikolic orcid: 0000-0001-9068-6090 - first_name: Zrinka full_name: Didara, Zrinka last_name: Didara - first_name: Isabella full_name: Moll, Isabella last_name: Moll citation: ama: Nikolic N, Didara Z, Moll I. MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations. PeerJ. 2017;2017(9). doi:10.7717/peerj.3830 apa: Nikolic, N., Didara, Z., & Moll, I. (2017). MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations. PeerJ. PeerJ. https://doi.org/10.7717/peerj.3830 chicago: Nikolic, Nela, Zrinka Didara, and Isabella Moll. “MazF Activation Promotes Translational Heterogeneity of the GrcA MRNA in Escherichia Coli Populations.” PeerJ. PeerJ, 2017. https://doi.org/10.7717/peerj.3830. ieee: N. Nikolic, Z. Didara, and I. Moll, “MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations,” PeerJ, vol. 2017, no. 9. PeerJ, 2017. ista: Nikolic N, Didara Z, Moll I. 2017. MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations. PeerJ. 2017(9), 3830. mla: Nikolic, Nela, et al. “MazF Activation Promotes Translational Heterogeneity of the GrcA MRNA in Escherichia Coli Populations.” PeerJ, vol. 2017, no. 9, 3830, PeerJ, 2017, doi:10.7717/peerj.3830. short: N. Nikolic, Z. Didara, I. Moll, PeerJ 2017 (2017). date_created: 2018-12-11T11:47:33Z date_published: 2017-09-21T00:00:00Z date_updated: 2021-01-12T08:06:48Z day: '21' ddc: - '579' department: - _id: CaGu doi: 10.7717/peerj.3830 file: - access_level: open_access checksum: 3d79ae6b6eabc90b0eaaed82ff3493b0 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:51Z date_updated: 2020-07-14T12:47:24Z file_id: '4908' file_name: IST-2017-909-v1+1_peerj-3830.pdf file_size: 682064 relation: main_file file_date_updated: 2020-07-14T12:47:24Z has_accepted_license: '1' intvolume: ' 2017' issue: '9' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version publication: PeerJ publication_identifier: issn: - '21678359' publication_status: published publisher: PeerJ publist_id: '7172' pubrep_id: '909' quality_controlled: '1' scopus_import: 1 status: public title: MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2017 year: '2017' ... --- _id: '628' abstract: - lang: eng text: We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. The motivation is that several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., Quick-Sort), or completely ineffective (e.g., Coupon-Collector). Since the main focus of expected-runtime analysis is to obtain efficient bounds, we consider bounds that are either logarithmic, linear or almost-linear (O(log n), O(n), O(n · log n), respectively, where n represents the input size). Our main contribution is an efficient (simple linear-time algorithm) sound approach for deriving such expected-runtime bounds for the analysis of recurrence relations induced by randomized algorithms. The experimental results show that our approach can efficiently derive asymptotically optimal expected-runtime bounds for recurrences of classical randomized algorithms, including Randomized-Search, Quick-Sort, Quick-Select, Coupon-Collector, where the worst-case bounds are either inefficient (such as linear as compared to logarithmic expected-runtime complexity, or quadratic as compared to linear or almost-linear expected-runtime complexity), or ineffective. alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Aniket full_name: Murhekar, Aniket last_name: Murhekar citation: ama: 'Chatterjee K, Fu H, Murhekar A. Automated recurrence analysis for almost linear expected runtime bounds. In: Majumdar R, Kunčak V, eds. Vol 10426. Springer; 2017:118-139. doi:10.1007/978-3-319-63387-9_6' apa: 'Chatterjee, K., Fu, H., & Murhekar, A. (2017). Automated recurrence analysis for almost linear expected runtime bounds. In R. Majumdar & V. Kunčak (Eds.) (Vol. 10426, pp. 118–139). Presented at the CAV: Computer Aided Verification, Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-319-63387-9_6' chicago: Chatterjee, Krishnendu, Hongfei Fu, and Aniket Murhekar. “Automated Recurrence Analysis for Almost Linear Expected Runtime Bounds.” edited by Rupak Majumdar and Viktor Kunčak, 10426:118–39. Springer, 2017. https://doi.org/10.1007/978-3-319-63387-9_6. ieee: 'K. Chatterjee, H. Fu, and A. Murhekar, “Automated recurrence analysis for almost linear expected runtime bounds,” presented at the CAV: Computer Aided Verification, Heidelberg, Germany, 2017, vol. 10426, pp. 118–139.' ista: 'Chatterjee K, Fu H, Murhekar A. 2017. Automated recurrence analysis for almost linear expected runtime bounds. CAV: Computer Aided Verification, LNCS, vol. 10426, 118–139.' mla: Chatterjee, Krishnendu, et al. Automated Recurrence Analysis for Almost Linear Expected Runtime Bounds. Edited by Rupak Majumdar and Viktor Kunčak, vol. 10426, Springer, 2017, pp. 118–39, doi:10.1007/978-3-319-63387-9_6. short: K. Chatterjee, H. Fu, A. Murhekar, in:, R. Majumdar, V. Kunčak (Eds.), Springer, 2017, pp. 118–139. conference: end_date: 2017-07-28 location: Heidelberg, Germany name: 'CAV: Computer Aided Verification' start_date: 2017-07-24 date_created: 2018-12-11T11:47:35Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:06:55Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-319-63387-9_6 ec_funded: 1 editor: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Viktor full_name: Kunčak, Viktor last_name: Kunčak intvolume: ' 10426' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.00314 month: '01' oa: 1 oa_version: Submitted Version page: 118 - 139 project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication_identifier: isbn: - 978-331963386-2 publication_status: published publisher: Springer publist_id: '7166' quality_controlled: '1' scopus_import: 1 status: public title: Automated recurrence analysis for almost linear expected runtime bounds type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 10426 year: '2017' ... --- _id: '629' abstract: - lang: eng text: Even simple cells like bacteria have precisely regulated cellular anatomies, which allow them to grow, divide and to respond to internal or external cues with high fidelity. How spatial and temporal intracellular organization in prokaryotic cells is achieved and maintained on the basis of locally interacting proteins still remains largely a mystery. Bulk biochemical assays with purified components and in vivo experiments help us to approach key cellular processes from two opposite ends, in terms of minimal and maximal complexity. However, to understand how cellular phenomena emerge, that are more than the sum of their parts, we have to assemble cellular subsystems step by step from the bottom up. Here, we review recent in vitro reconstitution experiments with proteins of the bacterial cell division machinery and illustrate how they help to shed light on fundamental cellular mechanisms that constitute spatiotemporal order and regulate cell division. author: - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Katja full_name: Zieske, Katja last_name: Zieske - first_name: Petra full_name: Schwille, Petra last_name: Schwille citation: ama: 'Loose M, Zieske K, Schwille P. Reconstitution of protein dynamics involved in bacterial cell division. In: Prokaryotic Cytoskeletons. Vol 84. Sub-Cellular Biochemistry. Springer; 2017:419-444. doi:10.1007/978-3-319-53047-5_15' apa: Loose, M., Zieske, K., & Schwille, P. (2017). Reconstitution of protein dynamics involved in bacterial cell division. In Prokaryotic Cytoskeletons (Vol. 84, pp. 419–444). Springer. https://doi.org/10.1007/978-3-319-53047-5_15 chicago: Loose, Martin, Katja Zieske, and Petra Schwille. “Reconstitution of Protein Dynamics Involved in Bacterial Cell Division.” In Prokaryotic Cytoskeletons, 84:419–44. Sub-Cellular Biochemistry. Springer, 2017. https://doi.org/10.1007/978-3-319-53047-5_15. ieee: M. Loose, K. Zieske, and P. Schwille, “Reconstitution of protein dynamics involved in bacterial cell division,” in Prokaryotic Cytoskeletons, vol. 84, Springer, 2017, pp. 419–444. ista: 'Loose M, Zieske K, Schwille P. 2017.Reconstitution of protein dynamics involved in bacterial cell division. In: Prokaryotic Cytoskeletons. vol. 84, 419–444.' mla: Loose, Martin, et al. “Reconstitution of Protein Dynamics Involved in Bacterial Cell Division.” Prokaryotic Cytoskeletons, vol. 84, Springer, 2017, pp. 419–44, doi:10.1007/978-3-319-53047-5_15. short: M. Loose, K. Zieske, P. Schwille, in:, Prokaryotic Cytoskeletons, Springer, 2017, pp. 419–444. date_created: 2018-12-11T11:47:35Z date_published: 2017-05-13T00:00:00Z date_updated: 2021-01-12T08:06:57Z day: '13' department: - _id: MaLo doi: 10.1007/978-3-319-53047-5_15 external_id: pmid: - '28500535' intvolume: ' 84' language: - iso: eng month: '05' oa_version: None page: 419 - 444 pmid: 1 publication: Prokaryotic Cytoskeletons publication_identifier: eisbn: - 978-3-319-53047-5 publication_status: published publisher: Springer publist_id: '7165' quality_controlled: '1' scopus_import: 1 series_title: Sub-Cellular Biochemistry status: public title: Reconstitution of protein dynamics involved in bacterial cell division type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 84 year: '2017' ... --- _id: '630' abstract: - lang: eng text: 'Background: Standards have become available to share semantically encoded vital parameters from medical devices, as required for example by personal healthcare records. Standardised sharing of biosignal data largely remains open. Objectives: The goal of this work is to explore available biosignal file format and data exchange standards and profiles, and to conceptualise end-To-end solutions. Methods: The authors reviewed and discussed available biosignal file format standards with other members of international standards development organisations (SDOs). Results: A raw concept for standards based acquisition, storage, archiving and sharing of biosignals was developed. The GDF format may serve for storing biosignals. Signals can then be shared using FHIR resources and may be stored on FHIR servers or in DICOM archives, with DICOM waveforms as one possible format. Conclusion: Currently a group of international SDOs (e.g. HL7, IHE, DICOM, IEEE) is engaged in intensive discussions. This discussion extends existing work that already was adopted by large implementer communities. The concept presented here only reports the current status of the discussion in Austria. The discussion will continue internationally, with results to be expected over the coming years.' alternative_title: - Studies in Health Technology and Informatics author: - first_name: Stefan full_name: Sauermann, Stefan last_name: Sauermann - first_name: Veronika full_name: David, Veronika last_name: David - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: Reinhard full_name: Egelkraut, Reinhard last_name: Egelkraut - first_name: Matthias full_name: Frohner, Matthias last_name: Frohner - first_name: Birgit full_name: Pohn, Birgit last_name: Pohn - first_name: Philipp full_name: Urbauer, Philipp last_name: Urbauer - first_name: Alexander full_name: Mense, Alexander last_name: Mense citation: ama: 'Sauermann S, David V, Schlögl A, et al. Biosignals standards and FHIR: The way to go. In: Vol 236. IOS Press; 2017:356-362. doi:10.3233/978-1-61499-759-7-356' apa: 'Sauermann, S., David, V., Schlögl, A., Egelkraut, R., Frohner, M., Pohn, B., … Mense, A. (2017). Biosignals standards and FHIR: The way to go (Vol. 236, pp. 356–362). Presented at the eHealth: Health Informatics Meets eHealth, Vienna, Austria: IOS Press. https://doi.org/10.3233/978-1-61499-759-7-356' chicago: 'Sauermann, Stefan, Veronika David, Alois Schlögl, Reinhard Egelkraut, Matthias Frohner, Birgit Pohn, Philipp Urbauer, and Alexander Mense. “Biosignals Standards and FHIR: The Way to Go,” 236:356–62. IOS Press, 2017. https://doi.org/10.3233/978-1-61499-759-7-356.' ieee: 'S. Sauermann et al., “Biosignals standards and FHIR: The way to go,” presented at the eHealth: Health Informatics Meets eHealth, Vienna, Austria, 2017, vol. 236, pp. 356–362.' ista: 'Sauermann S, David V, Schlögl A, Egelkraut R, Frohner M, Pohn B, Urbauer P, Mense A. 2017. Biosignals standards and FHIR: The way to go. eHealth: Health Informatics Meets eHealth, Studies in Health Technology and Informatics, vol. 236, 356–362.' mla: 'Sauermann, Stefan, et al. Biosignals Standards and FHIR: The Way to Go. Vol. 236, IOS Press, 2017, pp. 356–62, doi:10.3233/978-1-61499-759-7-356.' short: S. Sauermann, V. David, A. Schlögl, R. Egelkraut, M. Frohner, B. Pohn, P. Urbauer, A. Mense, in:, IOS Press, 2017, pp. 356–362. conference: end_date: 2017-05-24 location: Vienna, Austria name: 'eHealth: Health Informatics Meets eHealth' start_date: 2017-05-23 date_created: 2018-12-11T11:47:36Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:06:59Z day: '01' ddc: - '005' department: - _id: ScienComp - _id: PeJo doi: 10.3233/978-1-61499-759-7-356 file: - access_level: open_access checksum: 1254dcc5b04a996d97fad9a726b42727 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:56Z date_updated: 2020-07-14T12:47:27Z file_id: '4913' file_name: IST-2017-906-v1+1_SHTI236-0356.pdf file_size: 443635 relation: main_file file_date_updated: 2020-07-14T12:47:27Z has_accepted_license: '1' intvolume: ' 236' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '01' oa: 1 oa_version: Published Version page: 356 - 362 publication_identifier: isbn: - 978-161499758-0 publication_status: published publisher: IOS Press publist_id: '7164' pubrep_id: '906' quality_controlled: '1' scopus_import: 1 status: public title: 'Biosignals standards and FHIR: The way to go' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 236 year: '2017' ... --- _id: '632' abstract: - lang: eng text: 'We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4. ' author: - first_name: Mathieu full_name: Lewin, Mathieu last_name: Lewin - first_name: Phan full_name: Nam, Phan id: 404092F4-F248-11E8-B48F-1D18A9856A87 last_name: Nam - first_name: Nicolas full_name: Rougerie, Nicolas last_name: Rougerie citation: ama: Lewin M, Nam P, Rougerie N. A note on 2D focusing many boson systems. Proceedings of the American Mathematical Society. 2017;145(6):2441-2454. doi:10.1090/proc/13468 apa: Lewin, M., Nam, P., & Rougerie, N. (2017). A note on 2D focusing many boson systems. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/13468 chicago: Lewin, Mathieu, Phan Nam, and Nicolas Rougerie. “A Note on 2D Focusing Many Boson Systems.” Proceedings of the American Mathematical Society. American Mathematical Society, 2017. https://doi.org/10.1090/proc/13468. ieee: M. Lewin, P. Nam, and N. Rougerie, “A note on 2D focusing many boson systems,” Proceedings of the American Mathematical Society, vol. 145, no. 6. American Mathematical Society, pp. 2441–2454, 2017. ista: Lewin M, Nam P, Rougerie N. 2017. A note on 2D focusing many boson systems. Proceedings of the American Mathematical Society. 145(6), 2441–2454. mla: Lewin, Mathieu, et al. “A Note on 2D Focusing Many Boson Systems.” Proceedings of the American Mathematical Society, vol. 145, no. 6, American Mathematical Society, 2017, pp. 2441–54, doi:10.1090/proc/13468. short: M. Lewin, P. Nam, N. Rougerie, Proceedings of the American Mathematical Society 145 (2017) 2441–2454. date_created: 2018-12-11T11:47:36Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:07:03Z day: '01' department: - _id: RoSe doi: 10.1090/proc/13468 ec_funded: 1 intvolume: ' 145' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1509.09045 month: '01' oa: 1 oa_version: Submitted Version page: 2441 - 2454 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Proceedings of the American Mathematical Society publication_status: published publisher: American Mathematical Society publist_id: '7160' quality_controlled: '1' scopus_import: 1 status: public title: A note on 2D focusing many boson systems type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 145 year: '2017' ... --- _id: '634' abstract: - lang: eng text: As autism spectrum disorder (ASD) is largely regarded as a neurodevelopmental condition, long-time consensus was that its hallmark features are irreversible. However, several studies from recent years using defined mouse models of ASD have provided clear evidence that in mice neurobiological and behavioural alterations can be ameliorated or even reversed by genetic restoration or pharmacological treatment either before or after symptom onset. Here, we review findings on genetic and pharmacological reversibility of phenotypes in mouse models of ASD. Our review should give a comprehensive overview on both aspects and encourage future studies to better understand the underlying molecular mechanisms that might be translatable from animals to humans. alternative_title: - ADVSANAT author: - first_name: Jan full_name: Schroeder, Jan last_name: Schroeder - first_name: Elena full_name: Deliu, Elena id: 37A40D7E-F248-11E8-B48F-1D18A9856A87 last_name: Deliu orcid: 0000-0002-7370-5293 - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 - first_name: Michael full_name: Schmeisser, Michael last_name: Schmeisser citation: ama: 'Schroeder J, Deliu E, Novarino G, Schmeisser M. Genetic and pharmacological reversibility of phenotypes in mouse models of autism spectrum disorder. In: Schmeisser M, Boekers T, eds. Translational Anatomy and Cell Biology of Autism Spectrum Disorder. Vol 224. Advances in Anatomy Embryology and Cell Biology. Springer; 2017:189-211. doi:10.1007/978-3-319-52498-6_10' apa: Schroeder, J., Deliu, E., Novarino, G., & Schmeisser, M. (2017). Genetic and pharmacological reversibility of phenotypes in mouse models of autism spectrum disorder. In M. Schmeisser & T. Boekers (Eds.), Translational Anatomy and Cell Biology of Autism Spectrum Disorder (Vol. 224, pp. 189–211). Springer. https://doi.org/10.1007/978-3-319-52498-6_10 chicago: Schroeder, Jan, Elena Deliu, Gaia Novarino, and Michael Schmeisser. “Genetic and Pharmacological Reversibility of Phenotypes in Mouse Models of Autism Spectrum Disorder.” In Translational Anatomy and Cell Biology of Autism Spectrum Disorder, edited by Michael Schmeisser and Tobias Boekers, 224:189–211. Advances in Anatomy Embryology and Cell Biology. Springer, 2017. https://doi.org/10.1007/978-3-319-52498-6_10. ieee: J. Schroeder, E. Deliu, G. Novarino, and M. Schmeisser, “Genetic and pharmacological reversibility of phenotypes in mouse models of autism spectrum disorder,” in Translational Anatomy and Cell Biology of Autism Spectrum Disorder, vol. 224, M. Schmeisser and T. Boekers, Eds. Springer, 2017, pp. 189–211. ista: 'Schroeder J, Deliu E, Novarino G, Schmeisser M. 2017.Genetic and pharmacological reversibility of phenotypes in mouse models of autism spectrum disorder. In: Translational Anatomy and Cell Biology of Autism Spectrum Disorder. ADVSANAT, vol. 224, 189–211.' mla: Schroeder, Jan, et al. “Genetic and Pharmacological Reversibility of Phenotypes in Mouse Models of Autism Spectrum Disorder.” Translational Anatomy and Cell Biology of Autism Spectrum Disorder, edited by Michael Schmeisser and Tobias Boekers, vol. 224, Springer, 2017, pp. 189–211, doi:10.1007/978-3-319-52498-6_10. short: J. Schroeder, E. Deliu, G. Novarino, M. Schmeisser, in:, M. Schmeisser, T. Boekers (Eds.), Translational Anatomy and Cell Biology of Autism Spectrum Disorder, Springer, 2017, pp. 189–211. date_created: 2018-12-11T11:47:37Z date_published: 2017-05-28T00:00:00Z date_updated: 2021-01-12T08:07:08Z day: '28' department: - _id: GaNo doi: 10.1007/978-3-319-52498-6_10 editor: - first_name: Michael full_name: Schmeisser, Michael last_name: Schmeisser - first_name: Tobias full_name: Boekers, Tobias last_name: Boekers intvolume: ' 224' language: - iso: eng month: '05' oa_version: None page: 189 - 211 project: - _id: 25473368-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F03523 name: Transmembrane Transporters in Health and Disease publication: Translational Anatomy and Cell Biology of Autism Spectrum Disorder publication_identifier: eisbn: - 978-3-319-52498-6 publication_status: published publisher: Springer publist_id: '7156' quality_controlled: '1' scopus_import: 1 series_title: Advances in Anatomy Embryology and Cell Biology status: public title: Genetic and pharmacological reversibility of phenotypes in mouse models of autism spectrum disorder type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 224 year: '2017' ... --- _id: '633' abstract: - lang: eng text: A Rapidly-exploring Random Tree (RRT) is an algorithm which can search a non-convex region of space by incrementally building a space-filling tree. The tree is constructed from random points drawn from system’s state space and is biased to grow towards large unexplored areas in the system. RRT can provide better coverage of a system’s possible behaviors compared with random simulations, but is more lightweight than full reachability analysis. In this paper, we explore some of the design decisions encountered while implementing a hybrid extension of the RRT algorithm, which have not been elaborated on before. In particular, we focus on handling non-determinism, which arises due to discrete transitions. We introduce the notion of important points to account for this phenomena. We showcase our ideas using heater and navigation benchmarks. alternative_title: - LNCS author: - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Aviral full_name: Kumar, Aviral last_name: Kumar citation: ama: 'Bak S, Bogomolov S, Henzinger TA, Kumar A. Challenges and tool implementation of hybrid rapidly exploring random trees. In: Abate A, Bodo S, eds. Vol 10381. Springer; 2017:83-89. doi:10.1007/978-3-319-63501-9_6' apa: 'Bak, S., Bogomolov, S., Henzinger, T. A., & Kumar, A. (2017). Challenges and tool implementation of hybrid rapidly exploring random trees. In A. Abate & S. Bodo (Eds.) (Vol. 10381, pp. 83–89). Presented at the NSV: Numerical Software Verification, Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-319-63501-9_6' chicago: Bak, Stanley, Sergiy Bogomolov, Thomas A Henzinger, and Aviral Kumar. “Challenges and Tool Implementation of Hybrid Rapidly Exploring Random Trees.” edited by Alessandro Abate and Sylvie Bodo, 10381:83–89. Springer, 2017. https://doi.org/10.1007/978-3-319-63501-9_6. ieee: 'S. Bak, S. Bogomolov, T. A. Henzinger, and A. Kumar, “Challenges and tool implementation of hybrid rapidly exploring random trees,” presented at the NSV: Numerical Software Verification, Heidelberg, Germany, 2017, vol. 10381, pp. 83–89.' ista: 'Bak S, Bogomolov S, Henzinger TA, Kumar A. 2017. Challenges and tool implementation of hybrid rapidly exploring random trees. NSV: Numerical Software Verification, LNCS, vol. 10381, 83–89.' mla: Bak, Stanley, et al. Challenges and Tool Implementation of Hybrid Rapidly Exploring Random Trees. Edited by Alessandro Abate and Sylvie Bodo, vol. 10381, Springer, 2017, pp. 83–89, doi:10.1007/978-3-319-63501-9_6. short: S. Bak, S. Bogomolov, T.A. Henzinger, A. Kumar, in:, A. Abate, S. Bodo (Eds.), Springer, 2017, pp. 83–89. conference: end_date: 2017-07-23 location: Heidelberg, Germany name: 'NSV: Numerical Software Verification' start_date: 2017-07-22 date_created: 2018-12-11T11:47:37Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:07:06Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-319-63501-9_6 editor: - first_name: Alessandro full_name: Abate, Alessandro last_name: Abate - first_name: Sylvie full_name: Bodo, Sylvie last_name: Bodo intvolume: ' 10381' language: - iso: eng month: '01' oa_version: None page: 83 - 89 project: - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_identifier: isbn: - 978-331963500-2 publication_status: published publisher: Springer publist_id: '7159' quality_controlled: '1' scopus_import: 1 status: public title: Challenges and tool implementation of hybrid rapidly exploring random trees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10381 year: '2017' ... --- _id: '635' abstract: - lang: eng text: Memory-hard functions (MHFs) are hash algorithms whose evaluation cost is dominated by memory cost. As memory, unlike computation, costs about the same across different platforms, MHFs cannot be evaluated at significantly lower cost on dedicated hardware like ASICs. MHFs have found widespread applications including password hashing, key derivation, and proofs-of-work. This paper focuses on scrypt, a simple candidate MHF designed by Percival, and described in RFC 7914. It has been used within a number of cryptocurrencies (e.g., Litecoin and Dogecoin) and has been an inspiration for Argon2d, one of the winners of the recent password-hashing competition. Despite its popularity, no rigorous lower bounds on its memory complexity are known. We prove that scrypt is optimally memory-hard, i.e., its cumulative memory complexity (cmc) in the parallel random oracle model is Ω(n2w), where w and n are the output length and number of invocations of the underlying hash function, respectively. High cmc is a strong security target for MHFs introduced by Alwen and Serbinenko (STOC’15) which implies high memory cost even for adversaries who can amortize the cost over many evaluations and evaluate the underlying hash functions many times in parallel. Our proof is the first showing optimal memory-hardness for any MHF. Our result improves both quantitatively and qualitatively upon the recent work by Alwen et al. (EUROCRYPT’16) who proved a weaker lower bound of Ω(n2w/ log2 n) for a restricted class of adversaries. alternative_title: - LNCS author: - first_name: Joel F full_name: Alwen, Joel F id: 2A8DFA8C-F248-11E8-B48F-1D18A9856A87 last_name: Alwen - first_name: Binchi full_name: Chen, Binchi last_name: Chen - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Leonid full_name: Reyzin, Leonid last_name: Reyzin - first_name: Stefano full_name: Tessaro, Stefano last_name: Tessaro citation: ama: 'Alwen JF, Chen B, Pietrzak KZ, Reyzin L, Tessaro S. Scrypt is maximally memory hard. In: Coron J-S, Buus Nielsen J, eds. Vol 10212. Springer; 2017:33-62. doi:10.1007/978-3-319-56617-7_2' apa: 'Alwen, J. F., Chen, B., Pietrzak, K. Z., Reyzin, L., & Tessaro, S. (2017). Scrypt is maximally memory hard. In J.-S. Coron & J. Buus Nielsen (Eds.) (Vol. 10212, pp. 33–62). Presented at the EUROCRYPT: Theory and Applications of Cryptographic Techniques, Paris, France: Springer. https://doi.org/10.1007/978-3-319-56617-7_2' chicago: Alwen, Joel F, Binchi Chen, Krzysztof Z Pietrzak, Leonid Reyzin, and Stefano Tessaro. “Scrypt Is Maximally Memory Hard.” edited by Jean-Sébastien Coron and Jesper Buus Nielsen, 10212:33–62. Springer, 2017. https://doi.org/10.1007/978-3-319-56617-7_2. ieee: 'J. F. Alwen, B. Chen, K. Z. Pietrzak, L. Reyzin, and S. Tessaro, “Scrypt is maximally memory hard,” presented at the EUROCRYPT: Theory and Applications of Cryptographic Techniques, Paris, France, 2017, vol. 10212, pp. 33–62.' ista: 'Alwen JF, Chen B, Pietrzak KZ, Reyzin L, Tessaro S. 2017. Scrypt is maximally memory hard. EUROCRYPT: Theory and Applications of Cryptographic Techniques, LNCS, vol. 10212, 33–62.' mla: Alwen, Joel F., et al. Scrypt Is Maximally Memory Hard. Edited by Jean-Sébastien Coron and Jesper Buus Nielsen, vol. 10212, Springer, 2017, pp. 33–62, doi:10.1007/978-3-319-56617-7_2. short: J.F. Alwen, B. Chen, K.Z. Pietrzak, L. Reyzin, S. Tessaro, in:, J.-S. Coron, J. Buus Nielsen (Eds.), Springer, 2017, pp. 33–62. conference: end_date: 2017-05-04 location: Paris, France name: 'EUROCRYPT: Theory and Applications of Cryptographic Techniques' start_date: 2017-04-30 date_created: 2018-12-11T11:47:37Z date_published: 2017-01-01T00:00:00Z date_updated: 2021-01-12T08:07:10Z day: '01' department: - _id: KrPi doi: 10.1007/978-3-319-56617-7_2 ec_funded: 1 editor: - first_name: Jean-Sébastien full_name: Coron, Jean-Sébastien last_name: Coron - first_name: Jesper full_name: Buus Nielsen, Jesper last_name: Buus Nielsen intvolume: ' 10212' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2016/989 month: '01' oa: 1 oa_version: Submitted Version page: 33 - 62 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: isbn: - 978-331956616-0 publication_status: published publisher: Springer publist_id: '7154' quality_controlled: '1' scopus_import: 1 status: public title: Scrypt is maximally memory hard type: conference user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 10212 year: '2017' ... --- _id: '636' abstract: - lang: eng text: Signal regular expressions can specify sequential properties of real-valued signals based on threshold conditions, regular operations, and duration constraints. In this paper we endow them with a quantitative semantics which indicates how robustly a signal matches or does not match a given expression. First, we show that this semantics is a safe approximation of a distance between the signal and the language defined by the expression. Then, we consider the robust matching problem, that is, computing the quantitative semantics of every segment of a given signal relative to an expression. We present an algorithm that solves this problem for piecewise-constant and piecewise-linear signals and show that for such signals the robustness map is a piecewise-linear function. The availability of an indicator describing how robustly a signal segment matches some regular pattern provides a general framework for quantitative monitoring of cyber-physical systems. alternative_title: - LNCS author: - first_name: Alexey full_name: Bakhirkin, Alexey last_name: Bakhirkin - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Dogan full_name: Ulus, Dogan last_name: Ulus citation: ama: 'Bakhirkin A, Ferrere T, Maler O, Ulus D. On the quantitative semantics of regular expressions over real-valued signals. In: Abate A, Geeraerts G, eds. Vol 10419. Springer; 2017:189-206. doi:10.1007/978-3-319-65765-3_11' apa: 'Bakhirkin, A., Ferrere, T., Maler, O., & Ulus, D. (2017). On the quantitative semantics of regular expressions over real-valued signals. In A. Abate & G. Geeraerts (Eds.) (Vol. 10419, pp. 189–206). Presented at the FORMATS: Formal Modelling and Analysis of Timed Systems, Berlin, Germany: Springer. https://doi.org/10.1007/978-3-319-65765-3_11' chicago: Bakhirkin, Alexey, Thomas Ferrere, Oded Maler, and Dogan Ulus. “On the Quantitative Semantics of Regular Expressions over Real-Valued Signals.” edited by Alessandro Abate and Gilles Geeraerts, 10419:189–206. Springer, 2017. https://doi.org/10.1007/978-3-319-65765-3_11. ieee: 'A. Bakhirkin, T. Ferrere, O. Maler, and D. Ulus, “On the quantitative semantics of regular expressions over real-valued signals,” presented at the FORMATS: Formal Modelling and Analysis of Timed Systems, Berlin, Germany, 2017, vol. 10419, pp. 189–206.' ista: 'Bakhirkin A, Ferrere T, Maler O, Ulus D. 2017. On the quantitative semantics of regular expressions over real-valued signals. FORMATS: Formal Modelling and Analysis of Timed Systems, LNCS, vol. 10419, 189–206.' mla: Bakhirkin, Alexey, et al. On the Quantitative Semantics of Regular Expressions over Real-Valued Signals. Edited by Alessandro Abate and Gilles Geeraerts, vol. 10419, Springer, 2017, pp. 189–206, doi:10.1007/978-3-319-65765-3_11. short: A. Bakhirkin, T. Ferrere, O. Maler, D. Ulus, in:, A. Abate, G. Geeraerts (Eds.), Springer, 2017, pp. 189–206. conference: end_date: 2017-09-07 location: Berlin, Germany name: 'FORMATS: Formal Modelling and Analysis of Timed Systems' start_date: 2017-09-05 date_created: 2018-12-11T11:47:38Z date_published: 2017-08-03T00:00:00Z date_updated: 2021-01-12T08:07:14Z day: '03' department: - _id: ToHe doi: 10.1007/978-3-319-65765-3_11 editor: - first_name: Alessandro full_name: Abate, Alessandro last_name: Abate - first_name: Gilles full_name: Geeraerts, Gilles last_name: Geeraerts intvolume: ' 10419' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.archives-ouvertes.fr/hal-01552132 month: '08' oa: 1 oa_version: Submitted Version page: 189 - 206 project: - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_identifier: isbn: - 978-331965764-6 publication_status: published publisher: Springer publist_id: '7152' quality_controlled: '1' scopus_import: 1 status: public title: On the quantitative semantics of regular expressions over real-valued signals type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 10419 year: '2017' ... --- _id: '638' abstract: - lang: eng text: "This book constitutes the refereed proceedings of the 9th InternationalWorkshop on Numerical Software Verification, NSV 2016, held in Toronto, ON, Canada in July 2011 - colocated with CAV 2016, the 28th International Conference on Computer Aided Verification.\r\nThe NSV workshop is dedicated to the development of logical and mathematical techniques for the reasoning about programmability and reliability." article_processing_charge: No citation: ama: Bogomolov S, Martel M, Prabhakar P, eds. Numerical Software Verification. Vol 10152. Springer; 2017. doi:10.1007/978-3-319-54292-8 apa: 'Bogomolov, S., Martel, M., & Prabhakar, P. (Eds.). (2017). Numerical Software Verification (Vol. 10152). Presented at the NSV: Numerical Software Verification, Toronto, ON, Canada: Springer. https://doi.org/10.1007/978-3-319-54292-8' chicago: Bogomolov, Sergiy, Matthieu Martel, and Pavithra Prabhakar, eds. Numerical Software Verification. Vol. 10152. LNCS. Springer, 2017. https://doi.org/10.1007/978-3-319-54292-8. ieee: S. Bogomolov, M. Martel, and P. Prabhakar, Eds., Numerical Software Verification, vol. 10152. Springer, 2017. ista: Bogomolov S, Martel M, Prabhakar P eds. 2017. Numerical Software Verification, Springer,p. mla: Bogomolov, Sergiy, et al., editors. Numerical Software Verification. Vol. 10152, Springer, 2017, doi:10.1007/978-3-319-54292-8. short: S. Bogomolov, M. Martel, P. Prabhakar, eds., Numerical Software Verification, Springer, 2017. conference: end_date: 2016-07-18 location: Toronto, ON, Canada name: 'NSV: Numerical Software Verification' start_date: 2016-07-17 date_created: 2018-12-11T11:47:38Z date_published: 2017-01-01T00:00:00Z date_updated: 2022-05-24T07:09:52Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-319-54292-8 editor: - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Matthieu full_name: Martel, Matthieu last_name: Martel - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar intvolume: ' 10152' language: - iso: eng month: '01' oa_version: None publication_identifier: eisbn: - 978-3-319-54292-8 issn: - 0302-9743 publication_status: published publisher: Springer publist_id: '7150' quality_controlled: '1' series_title: LNCS status: public title: Numerical Software Verification type: conference_editor user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10152 year: '2017' ...