--- _id: '35' abstract: - lang: eng text: 'We consider planning problems for graphs, Markov decision processes (MDPs), and games on graphs. While graphs represent the most basic planning model, MDPs represent interaction with nature and games on graphs represent interaction with an adversarial environment. We consider two planning problems where there are k different target sets, and the problems are as follows: (a) the coverage problem asks whether there is a plan for each individual target set; and (b) the sequential target reachability problem asks whether the targets can be reached in sequence. For the coverage problem, we present a linear-time algorithm for graphs, and quadratic conditional lower bound for MDPs and games on graphs. For the sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our results with conditional lower bounds establish (i) model-separation results showing that for the coverage problem MDPs and games on graphs are harder than graphs and for the sequential reachability problem games on graphs are harder than MDPs and graphs; and (ii) objective-separation results showing that for MDPs the coverage problem is harder than the sequential target problem.' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Wolfgang full_name: Dvorák, Wolfgang last_name: Dvorák - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Alexander full_name: Svozil, Alexander last_name: Svozil citation: ama: 'Chatterjee K, Dvorák W, Henzinger MH, Svozil A. Algorithms and conditional lower bounds for planning problems. In: 28th International Conference on Automated Planning and Scheduling . AAAI Press; 2018.' apa: 'Chatterjee, K., Dvorák, W., Henzinger, M. H., & Svozil, A. (2018). Algorithms and conditional lower bounds for planning problems. In 28th International Conference on Automated Planning and Scheduling . Delft, Netherlands: AAAI Press.' chicago: Chatterjee, Krishnendu, Wolfgang Dvorák, Monika H Henzinger, and Alexander Svozil. “Algorithms and Conditional Lower Bounds for Planning Problems.” In 28th International Conference on Automated Planning and Scheduling . AAAI Press, 2018. ieee: K. Chatterjee, W. Dvorák, M. H. Henzinger, and A. Svozil, “Algorithms and conditional lower bounds for planning problems,” in 28th International Conference on Automated Planning and Scheduling , Delft, Netherlands, 2018. ista: 'Chatterjee K, Dvorák W, Henzinger MH, Svozil A. 2018. Algorithms and conditional lower bounds for planning problems. 28th International Conference on Automated Planning and Scheduling . ICAPS: International Conference on Automated Planning and Scheduling.' mla: Chatterjee, Krishnendu, et al. “Algorithms and Conditional Lower Bounds for Planning Problems.” 28th International Conference on Automated Planning and Scheduling , AAAI Press, 2018. short: K. Chatterjee, W. Dvorák, M.H. Henzinger, A. Svozil, in:, 28th International Conference on Automated Planning and Scheduling , AAAI Press, 2018. conference: end_date: 2018-06-29 location: Delft, Netherlands name: 'ICAPS: International Conference on Automated Planning and Scheduling' start_date: 2018-06-24 date_created: 2018-12-11T11:44:17Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-26T10:41:41Z day: '01' department: - _id: KrCh ec_funded: 1 external_id: arxiv: - '1804.07031' isi: - '000492986200007' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.07031 month: '06' oa: 1 oa_version: None project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: '28th International Conference on Automated Planning and Scheduling ' publication_status: published publisher: AAAI Press publist_id: '8020' quality_controlled: '1' related_material: record: - id: '9293' relation: later_version status: public scopus_import: '1' status: public title: Algorithms and conditional lower bounds for planning problems type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '738' abstract: - lang: eng text: 'This paper is devoted to automatic competitive analysis of real-time scheduling algorithms for firm-deadline tasksets, where only completed tasks con- tribute some utility to the system. Given such a taskset T , the competitive ratio of an on-line scheduling algorithm A for T is the worst-case utility ratio of A over the utility achieved by a clairvoyant algorithm. We leverage the theory of quantitative graph games to address the competitive analysis and competitive synthesis problems. For the competitive analysis case, given any taskset T and any finite-memory on- line scheduling algorithm A , we show that the competitive ratio of A in T can be computed in polynomial time in the size of the state space of A . Our approach is flexible as it also provides ways to model meaningful constraints on the released task sequences that determine the competitive ratio. We provide an experimental study of many well-known on-line scheduling algorithms, which demonstrates the feasibility of our competitive analysis approach that effectively replaces human ingenuity (required Preliminary versions of this paper have appeared in Chatterjee et al. ( 2013 , 2014 ). B Andreas Pavlogiannis pavlogiannis@ist.ac.at Krishnendu Chatterjee krish.chat@ist.ac.at Alexander Kößler koe@ecs.tuwien.ac.at Ulrich Schmid s@ecs.tuwien.ac.at 1 IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria 2 Embedded Computing Systems Group, Vienna University of Technology, Treitlstrasse 3, 1040 Vienna, Austria 123 Real-Time Syst for finding worst-case scenarios) by computing power. For the competitive synthesis case, we are just given a taskset T , and the goal is to automatically synthesize an opti- mal on-line scheduling algorithm A , i.e., one that guarantees the largest competitive ratio possible for T . We show how the competitive synthesis problem can be reduced to a two-player graph game with partial information, and establish that the compu- tational complexity of solving this game is Np -complete. The competitive synthesis problem is hence in Np in the size of the state space of the non-deterministic labeled transition system encoding the taskset. Overall, the proposed framework assists in the selection of suitable scheduling algorithms for a given taskset, which is in fact the most common situation in real-time systems design. ' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Alexander full_name: Kößler, Alexander last_name: Kößler - first_name: Ulrich full_name: Schmid, Ulrich last_name: Schmid citation: ama: Chatterjee K, Pavlogiannis A, Kößler A, Schmid U. Automated competitive analysis of real time scheduling with graph games. Real-Time Systems. 2018;54(1):166-207. doi:10.1007/s11241-017-9293-4 apa: Chatterjee, K., Pavlogiannis, A., Kößler, A., & Schmid, U. (2018). Automated competitive analysis of real time scheduling with graph games. Real-Time Systems. Springer. https://doi.org/10.1007/s11241-017-9293-4 chicago: Chatterjee, Krishnendu, Andreas Pavlogiannis, Alexander Kößler, and Ulrich Schmid. “Automated Competitive Analysis of Real Time Scheduling with Graph Games.” Real-Time Systems. Springer, 2018. https://doi.org/10.1007/s11241-017-9293-4. ieee: K. Chatterjee, A. Pavlogiannis, A. Kößler, and U. Schmid, “Automated competitive analysis of real time scheduling with graph games,” Real-Time Systems, vol. 54, no. 1. Springer, pp. 166–207, 2018. ista: Chatterjee K, Pavlogiannis A, Kößler A, Schmid U. 2018. Automated competitive analysis of real time scheduling with graph games. Real-Time Systems. 54(1), 166–207. mla: Chatterjee, Krishnendu, et al. “Automated Competitive Analysis of Real Time Scheduling with Graph Games.” Real-Time Systems, vol. 54, no. 1, Springer, 2018, pp. 166–207, doi:10.1007/s11241-017-9293-4. short: K. Chatterjee, A. Pavlogiannis, A. Kößler, U. Schmid, Real-Time Systems 54 (2018) 166–207. date_created: 2018-12-11T11:48:14Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-27T12:52:38Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1007/s11241-017-9293-4 ec_funded: 1 external_id: isi: - '000419955500006' file: - access_level: open_access checksum: c2590ef160709d8054cf29ee173f1454 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:14Z date_updated: 2020-07-14T12:47:56Z file_id: '5267' file_name: IST-2018-960-v1+1_2017_Chatterjee_Automated_competetive.pdf file_size: 1163507 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 54' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version page: 166 - 207 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Real-Time Systems publication_status: published publisher: Springer publist_id: '6929' pubrep_id: '960' quality_controlled: '1' related_material: record: - id: '2820' relation: earlier_version status: public scopus_import: '1' status: public title: Automated competitive analysis of real time scheduling with graph games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 54 year: '2018' ... --- _id: '52' abstract: - lang: eng text: In this thesis we will discuss systems of point interacting fermions, their stability and other spectral properties. Whereas for bosons a point interacting system is always unstable this ques- tion is more subtle for a gas of two species of fermions. In particular the answer depends on the mass ratio between these two species. Most of this work will be focused on the N + M model which consists of two species of fermions with N, M particles respectively which interact via point interactions. We will introduce this model using a formal limit and discuss the N + 1 system in more detail. In particular, we will show that for mass ratios above a critical one, which does not depend on the particle number, the N + 1 system is stable. In the context of this model we will prove rigorous versions of Tan relations which relate various quantities of the point-interacting model. By restricting the N + 1 system to a box we define a finite density model with point in- teractions. In the context of this system we will discuss the energy change when introducing a point-interacting impurity into a system of non-interacting fermions. We will see that this change in energy is bounded independently of the particle number and in particular the bound only depends on the density and the scattering length. As another special case of the N + M model we will show stability of the 2 + 2 model for mass ratios in an interval around one. Further we will investigate a different model of point interactions which was discussed before in the literature and which is, contrary to the N + M model, not given by a limiting procedure but is based on a Dirichlet form. We will show that this system behaves trivially in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the non-interacting system. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Thomas full_name: Moser, Thomas id: 2B5FC9A4-F248-11E8-B48F-1D18A9856A87 last_name: Moser citation: ama: Moser T. Point interactions in systems of fermions. 2018. doi:10.15479/AT:ISTA:th_1043 apa: Moser, T. (2018). Point interactions in systems of fermions. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1043 chicago: Moser, Thomas. “Point Interactions in Systems of Fermions.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1043. ieee: T. Moser, “Point interactions in systems of fermions,” Institute of Science and Technology Austria, 2018. ista: Moser T. 2018. Point interactions in systems of fermions. Institute of Science and Technology Austria. mla: Moser, Thomas. Point Interactions in Systems of Fermions. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1043. short: T. Moser, Point Interactions in Systems of Fermions, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:22Z date_published: 2018-09-04T00:00:00Z date_updated: 2023-09-27T12:34:14Z day: '04' ddc: - '515' - '530' - '519' degree_awarded: PhD department: - _id: RoSe doi: 10.15479/AT:ISTA:th_1043 file: - access_level: open_access checksum: fbd8c747d148b468a21213b7cf175225 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:45:38Z date_updated: 2020-07-14T12:46:37Z file_id: '6256' file_name: 2018_Thesis_Moser.pdf file_size: 851164 relation: main_file - access_level: closed checksum: c28e16ecfc1126d3ce324ec96493c01e content_type: application/zip creator: dernst date_created: 2019-04-09T07:45:38Z date_updated: 2020-07-14T12:46:37Z file_id: '6257' file_name: 2018_Thesis_Moser_Source.zip file_size: 1531516 relation: source_file file_date_updated: 2020-07-14T12:46:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '115' project: - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8002' pubrep_id: '1043' related_material: record: - id: '5856' relation: part_of_dissertation status: public - id: '154' relation: part_of_dissertation status: public - id: '1198' relation: part_of_dissertation status: public - id: '741' relation: part_of_dissertation status: public status: public supervisor: - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 title: Point interactions in systems of fermions type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '913' abstract: - lang: eng text: Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We performed a microarray-based approach to find regulators of the auxin-induced PIN relocation in the Arabidopsis thaliana root. We identified a subset of a family of phosphatidylinositol transfer proteins (PITP), the PATELLINs (PATL). Here, we show that PATLs are expressed in partially overlapping cells types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia, and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests PATLs redundantly play a crucial role in polarity and patterning in Arabidopsis. article_number: jcs.204198 article_processing_charge: No author: - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Cecilia full_name: Rodríguez Furlán, Cecilia last_name: Rodríguez Furlán - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Lorena full_name: Norambuena, Lorena last_name: Norambuena - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 2018;131(2). doi:10.1242/jcs.204198 apa: Tejos, R., Rodríguez Furlán, C., Adamowski, M., Sauer, M., Norambuena, L., & Friml, J. (2018). PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.204198 chicago: Tejos, Ricardo, Cecilia Rodríguez Furlán, Maciek Adamowski, Michael Sauer, Lorena Norambuena, and Jiří Friml. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science. Company of Biologists, 2018. https://doi.org/10.1242/jcs.204198. ieee: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, and J. Friml, “PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana,” Journal of Cell Science, vol. 131, no. 2. Company of Biologists, 2018. ista: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. 2018. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 131(2), jcs. 204198. mla: Tejos, Ricardo, et al. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science, vol. 131, no. 2, jcs. 204198, Company of Biologists, 2018, doi:10.1242/jcs.204198. short: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, J. Friml, Journal of Cell Science 131 (2018). date_created: 2018-12-11T11:49:10Z date_published: 2018-01-29T00:00:00Z date_updated: 2023-09-26T15:47:50Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.1242/jcs.204198 ec_funded: 1 external_id: isi: - '000424842400019' file: - access_level: open_access checksum: bf156c20a4f117b4b932370d54cbac8c content_type: application/pdf creator: dernst date_created: 2019-04-12T08:46:32Z date_updated: 2020-07-14T12:48:15Z file_id: '6299' file_name: 2017_adamowski_PATELLINS_are.pdf file_size: 14925985 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 131' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Cell Science publication_identifier: issn: - '00219533' publication_status: published publisher: Company of Biologists publist_id: '6530' pubrep_id: '988' quality_controlled: '1' scopus_import: '1' status: public title: PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 131 year: '2018' ... --- _id: '69' abstract: - lang: eng text: 'A qubit, a unit of quantum information, is essentially any quantum mechanical two-level system which can be coherently controlled. Still, to be used for computation, it has to fulfill criteria. Qubits, regardless of the system in which they are realized, suffer from decoherence. This leads to loss of the information stored in the qubit. The upper bound of the time scale on which decoherence happens is set by the spin relaxation time. In this thesis I studied a two-level system consisting of a Zeeman-split hole spin confined in a quantum dot formed in a Ge hut wire. Such Ge hut wires have emerged as a promising material system for the realization of spin qubits, due to the combination of two significant properties: long spin coherence time as expected for group IV semiconductors due to the low hyperfine interaction and a strong valence band spin-orbit coupling. Here, I present how to fabricate quantum dot devices suitable for electrical transport measurements. Coupled quantum dot devices allowed the realization of a charge sensor, which is electrostatically and tunnel coupled to a quantum dot. By integrating the charge sensor into a radio-frequency reflectometry setup, I performed for the first time single-shot readout measurements of hole spins and extracted the hole spin relaxation times in Ge hut wires.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 citation: ama: Vukušić L. Charge sensing and spin relaxation times of holes in Ge hut wires. 2018. doi:10.15479/AT:ISTA:TH_1047 apa: Vukušić, L. (2018). Charge sensing and spin relaxation times of holes in Ge hut wires. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1047 chicago: Vukušić, Lada. “Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1047. ieee: L. Vukušić, “Charge sensing and spin relaxation times of holes in Ge hut wires,” Institute of Science and Technology Austria, 2018. ista: Vukušić L. 2018. Charge sensing and spin relaxation times of holes in Ge hut wires. Institute of Science and Technology Austria. mla: Vukušić, Lada. Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1047. short: L. Vukušić, Charge Sensing and Spin Relaxation Times of Holes in Ge Hut Wires, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:28Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-26T15:50:22Z day: '01' ddc: - '530' - '600' degree_awarded: PhD department: - _id: GeKa - _id: GradSch doi: 10.15479/AT:ISTA:TH_1047 file: - access_level: open_access checksum: c570b656e30749cd65b1c7e13a9ce0a8 content_type: application/pdf creator: dernst date_created: 2019-04-09T07:00:40Z date_updated: 2020-07-14T12:47:44Z file_id: '6247' file_name: 2018_Thesis_Vukusic.pdf file_size: 28452385 relation: main_file - access_level: closed checksum: 7856771d9cd401fe0b311191076db6e1 content_type: application/zip creator: dernst date_created: 2019-04-09T07:00:40Z date_updated: 2020-07-14T12:47:44Z file_id: '6248' file_name: 2018_Thesis_Vukusic_source.zip file_size: 53058704 relation: source_file file_date_updated: 2020-07-14T12:47:44Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '103' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7985' pubrep_id: '1047' related_material: record: - id: '23' relation: part_of_dissertation status: public - id: '840' relation: part_of_dissertation status: public status: public supervisor: - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X title: Charge sensing and spin relaxation times of holes in Ge hut wires tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '324' abstract: - lang: eng text: Neuronal networks in the brain consist of two main types of neuron, glutamatergic principal neurons and GABAergic interneurons. Although these interneurons only represent 10–20% of the whole population, they mediate feedback and feedforward inhibition and are involved in the generation of high-frequency network oscillations. A hallmark functional property of GABAergic interneurons, especially of the parvalbumin‑expressing (PV+) subtypes, is the speed of signaling at their output synapse across species and brain regions. Several molecular and subcellular factors may underlie the submillisecond signaling at GABAergic synapses. Such as the selective use of P/Q type Ca2+ channels and the tight coupling between Ca2+ channels and Ca2+ sensors of exocytosis. However, whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Besides, these interneurons are mainly show depression in response to train of stimuli. How could they keep sufficient release to control the activity of postsynaptic principal neurons during high network activity, is largely elusive. For my Ph.D. work, we firstly examined the Ca2+ sensor of exocytosis at the GABAergic basket cell (BC) to Purkinje cell (PC) synapse in the cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ~10% compared to the wild-type control, identifying Syt2 as the major Ca2+ sensor at BC‑PC synapses. Differential adenovirus-mediated rescue revealed Syt2 triggered release with shorter latency and higher temporal precision, and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as the release sensor at BC–PC synapse ensures fast feedforward inhibition in cerebellar microcircuits. Additionally, we tested the function of another synaptotagmin member, Syt7, for inhibitory synaptic transmission at the BC–PC synapse. Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, it is strongly expressed in fast-spiking, PV+ GABAergic interneurons and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. How could Syt7, a facilitation sensor, contribute to the depressed inhibitory synaptic transmission needs to be further investigated and understood. Our results indicated that at the BC–PC synapse, Syt7 contributes to asynchronous release, pool replenishment and facilitation. In combination, these three effects ensure efficient transmitter release during high‑frequency activity and guarantee frequency independence of inhibition. Taken together, our results confirmed that Syt2, which has the fastest kinetic properties among all synaptotagmin members, is mainly used by the inhibitory BC‑PC synapse for synaptic transmission, contributing to the speed and temporal precision of transmitter release. Furthermore, we showed that Syt7, another highly expressed synaptotagmin member in the output synapses of cerebellar BCs, is used for ensuring efficient inhibitor synaptic transmission during high activity. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Chong full_name: Chen, Chong id: 3DFD581A-F248-11E8-B48F-1D18A9856A87 last_name: Chen citation: ama: Chen C. Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. 2018. doi:10.15479/AT:ISTA:th_997 apa: Chen, C. (2018). Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_997 chicago: Chen, Chong. “Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_997. ieee: C. Chen, “Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release,” Institute of Science and Technology Austria, 2018. ista: Chen C. 2018. Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release. Institute of Science and Technology Austria. mla: Chen, Chong. Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_997. short: C. Chen, Synaptotagmins Ensure Speed and Efficiency of Inhibitory Neurotransmitter Release, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-27T12:26:03Z day: '01' ddc: - '571' degree_awarded: PhD department: - _id: PeJo doi: 10.15479/AT:ISTA:th_997 file: - access_level: open_access checksum: 8e163ae9e927401b9fa7c1b3e6a3631a content_type: application/pdf creator: system date_created: 2018-12-12T10:13:58Z date_updated: 2020-07-14T12:46:04Z file_id: '5046' file_name: IST-2018-997-v1+1_Thesis_chong_a.pdf file_size: 8719458 relation: main_file - access_level: closed checksum: f7d7260029a5fbb5c982db61328ade52 content_type: application/octet-stream creator: dernst date_created: 2019-04-05T09:25:26Z date_updated: 2020-07-14T12:46:04Z file_id: '6221' file_name: 2018_Thesis_chong_source.pages file_size: 47841940 relation: source_file file_date_updated: 2020-07-14T12:46:04Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '110' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7541' pubrep_id: '997' related_material: record: - id: '1117' relation: part_of_dissertation status: public - id: '749' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Synaptotagmins ensure speed and efficiency of inhibitory neurotransmitter release tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '742' abstract: - lang: eng text: 'We give a detailed and easily accessible proof of Gromov’s Topological Overlap Theorem. Let X be a finite simplicial complex or, more generally, a finite polyhedral cell complex of dimension d. Informally, the theorem states that if X has sufficiently strong higher-dimensional expansion properties (which generalize edge expansion of graphs and are defined in terms of cellular cochains of X) then X has the following topological overlap property: for every continuous map (Formula presented.) there exists a point (Formula presented.) that is contained in the images of a positive fraction (Formula presented.) of the d-cells of X. More generally, the conclusion holds if (Formula presented.) is replaced by any d-dimensional piecewise-linear manifold M, with a constant (Formula presented.) that depends only on d and on the expansion properties of X, but not on M.' article_processing_charge: Yes (via OA deal) author: - first_name: Dominic full_name: Dotterrer, Dominic last_name: Dotterrer - first_name: Tali full_name: Kaufman, Tali last_name: Kaufman - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: Dotterrer D, Kaufman T, Wagner U. On expansion and topological overlap. Geometriae Dedicata. 2018;195(1):307–317. doi:10.1007/s10711-017-0291-4 apa: Dotterrer, D., Kaufman, T., & Wagner, U. (2018). On expansion and topological overlap. Geometriae Dedicata. Springer. https://doi.org/10.1007/s10711-017-0291-4 chicago: Dotterrer, Dominic, Tali Kaufman, and Uli Wagner. “On Expansion and Topological Overlap.” Geometriae Dedicata. Springer, 2018. https://doi.org/10.1007/s10711-017-0291-4. ieee: D. Dotterrer, T. Kaufman, and U. Wagner, “On expansion and topological overlap,” Geometriae Dedicata, vol. 195, no. 1. Springer, pp. 307–317, 2018. ista: Dotterrer D, Kaufman T, Wagner U. 2018. On expansion and topological overlap. Geometriae Dedicata. 195(1), 307–317. mla: Dotterrer, Dominic, et al. “On Expansion and Topological Overlap.” Geometriae Dedicata, vol. 195, no. 1, Springer, 2018, pp. 307–317, doi:10.1007/s10711-017-0291-4. short: D. Dotterrer, T. Kaufman, U. Wagner, Geometriae Dedicata 195 (2018) 307–317. date_created: 2018-12-11T11:48:16Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-27T12:29:57Z day: '01' ddc: - '514' - '516' department: - _id: UlWa doi: 10.1007/s10711-017-0291-4 external_id: isi: - '000437122700017' file: - access_level: open_access checksum: d2f70fc132156504aa4c626aa378a7ab content_type: application/pdf creator: kschuh date_created: 2019-01-15T13:44:05Z date_updated: 2020-07-14T12:47:58Z file_id: '5835' file_name: s10711-017-0291-4.pdf file_size: 412486 relation: main_file file_date_updated: 2020-07-14T12:47:58Z has_accepted_license: '1' intvolume: ' 195' isi: 1 issue: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 307–317 project: - _id: 25FA3206-B435-11E9-9278-68D0E5697425 grant_number: PP00P2_138948 name: 'Embeddings in Higher Dimensions: Algorithms and Combinatorics' publication: Geometriae Dedicata publication_status: published publisher: Springer publist_id: '6925' pubrep_id: '912' quality_controlled: '1' related_material: record: - id: '1378' relation: earlier_version status: public scopus_import: '1' status: public title: On expansion and topological overlap tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 195 year: '2018' ... --- _id: '70' abstract: - lang: eng text: We consider the totally asymmetric simple exclusion process in a critical scaling parametrized by a≥0, which creates a shock in the particle density of order aT−1/3, T the observation time. When starting from step initial data, we provide bounds on the limiting law which in particular imply that in the double limit lima→∞limT→∞ one recovers the product limit law and the degeneration of the correlation length observed at shocks of order 1. This result is shown to apply to a general last-passage percolation model. We also obtain bounds on the two-point functions of several airy processes. article_processing_charge: No article_type: original author: - first_name: Peter full_name: Nejjar, Peter id: 4BF426E2-F248-11E8-B48F-1D18A9856A87 last_name: Nejjar citation: ama: Nejjar P. Transition to shocks in TASEP and decoupling of last passage times. Latin American Journal of Probability and Mathematical Statistics. 2018;15(2):1311-1334. doi:10.30757/ALEA.v15-49 apa: Nejjar, P. (2018). Transition to shocks in TASEP and decoupling of last passage times. Latin American Journal of Probability and Mathematical Statistics. Instituto Nacional de Matematica Pura e Aplicada. https://doi.org/10.30757/ALEA.v15-49 chicago: Nejjar, Peter. “Transition to Shocks in TASEP and Decoupling of Last Passage Times.” Latin American Journal of Probability and Mathematical Statistics. Instituto Nacional de Matematica Pura e Aplicada, 2018. https://doi.org/10.30757/ALEA.v15-49. ieee: P. Nejjar, “Transition to shocks in TASEP and decoupling of last passage times,” Latin American Journal of Probability and Mathematical Statistics, vol. 15, no. 2. Instituto Nacional de Matematica Pura e Aplicada, pp. 1311–1334, 2018. ista: Nejjar P. 2018. Transition to shocks in TASEP and decoupling of last passage times. Latin American Journal of Probability and Mathematical Statistics. 15(2), 1311–1334. mla: Nejjar, Peter. “Transition to Shocks in TASEP and Decoupling of Last Passage Times.” Latin American Journal of Probability and Mathematical Statistics, vol. 15, no. 2, Instituto Nacional de Matematica Pura e Aplicada, 2018, pp. 1311–34, doi:10.30757/ALEA.v15-49. short: P. Nejjar, Latin American Journal of Probability and Mathematical Statistics 15 (2018) 1311–1334. date_created: 2018-12-11T11:44:28Z date_published: 2018-10-01T00:00:00Z date_updated: 2023-10-10T13:11:29Z day: '01' ddc: - '510' department: - _id: LaEr - _id: JaMa doi: 10.30757/ALEA.v15-49 ec_funded: 1 external_id: arxiv: - '1705.08836' isi: - '000460475800022' file: - access_level: open_access checksum: 2ded46aa284a836a8cbb34133a64f1cb content_type: application/pdf creator: kschuh date_created: 2019-02-14T09:44:10Z date_updated: 2020-07-14T12:47:46Z file_id: '5981' file_name: 2018_ALEA_Nejjar.pdf file_size: 394851 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 1311-1334 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics publication: Latin American Journal of Probability and Mathematical Statistics publication_identifier: issn: - 1980-0436 publication_status: published publisher: Instituto Nacional de Matematica Pura e Aplicada quality_controlled: '1' scopus_import: '1' status: public title: Transition to shocks in TASEP and decoupling of last passage times type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2018' ... --- _id: '44' abstract: - lang: eng text: 'Recent realization of a kinetically constrained chain of Rydberg atoms by Bernien et al., [Nature (London) 551, 579 (2017)] resulted in the observation of unusual revivals in the many-body quantum dynamics. In our previous work [C. J. Turner et al., Nat. Phys. 14, 745 (2018)], such dynamics was attributed to the existence of “quantum scarred” eigenstates in the many-body spectrum of the experimentally realized model. Here, we present a detailed study of the eigenstate properties of the same model. We find that the majority of the eigenstates exhibit anomalous thermalization: the observable expectation values converge to their Gibbs ensemble values, but parametrically slower compared to the predictions of the eigenstate thermalization hypothesis (ETH). Amidst the thermalizing spectrum, we identify nonergodic eigenstates that strongly violate the ETH, whose number grows polynomially with system size. Previously, the same eigenstates were identified via large overlaps with certain product states, and were used to explain the revivals observed in experiment. Here, we find that these eigenstates, in addition to highly atypical expectation values of local observables, also exhibit subthermal entanglement entropy that scales logarithmically with the system size. Moreover, we identify an additional class of quantum scarred eigenstates, and discuss their manifestations in the dynamics starting from initial product states. We use forward scattering approximation to describe the structure and physical properties of quantum scarred eigenstates. Finally, we discuss the stability of quantum scars to various perturbations. We observe that quantum scars remain robust when the introduced perturbation is compatible with the forward scattering approximation. In contrast, the perturbations which most efficiently destroy quantum scars also lead to the restoration of “canonical” thermalization.' acknowledged_ssus: - _id: ScienComp article_number: '155134' article_processing_charge: No author: - first_name: C J full_name: Turner, C J last_name: Turner - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: D A full_name: Abanin, D A last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Z full_name: Papić, Z last_name: Papić citation: ama: 'Turner CJ, Michailidis A, Abanin DA, Serbyn M, Papić Z. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Physical Review B. 2018;98(15). doi:10.1103/PhysRevB.98.155134' apa: 'Turner, C. J., Michailidis, A., Abanin, D. A., Serbyn, M., & Papić, Z. (2018). Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.98.155134' chicago: 'Turner, C J, Alexios Michailidis, D A Abanin, Maksym Serbyn, and Z Papić. “Quantum Scarred Eigenstates in a Rydberg Atom Chain: Entanglement, Breakdown of Thermalization, and Stability to Perturbations.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.98.155134.' ieee: 'C. J. Turner, A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, “Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations,” Physical Review B, vol. 98, no. 15. American Physical Society, 2018.' ista: 'Turner CJ, Michailidis A, Abanin DA, Serbyn M, Papić Z. 2018. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Physical Review B. 98(15), 155134.' mla: 'Turner, C. J., et al. “Quantum Scarred Eigenstates in a Rydberg Atom Chain: Entanglement, Breakdown of Thermalization, and Stability to Perturbations.” Physical Review B, vol. 98, no. 15, 155134, American Physical Society, 2018, doi:10.1103/PhysRevB.98.155134.' short: C.J. Turner, A. Michailidis, D.A. Abanin, M. Serbyn, Z. Papić, Physical Review B 98 (2018). date_created: 2018-12-11T11:44:19Z date_published: 2018-10-22T00:00:00Z date_updated: 2023-10-10T13:28:49Z day: '22' department: - _id: MaSe doi: 10.1103/PhysRevB.98.155134 external_id: arxiv: - '1806.10933' isi: - '000447919100001' intvolume: ' 98' isi: 1 issue: '15' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.10933 month: '10' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '8010' quality_controlled: '1' scopus_import: '1' status: public title: 'Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 98 year: '2018' ... --- _id: '328' abstract: - lang: eng text: The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence. © 2018 American Physical Society. acknowledged_ssus: - _id: SSU acknowledgement: The authors thank Philipp Maier and the IST Austria workshop for their dedicated technical support. article_number: '124501' article_processing_charge: No author: - first_name: George H full_name: Choueiri, George H id: 448BD5BC-F248-11E8-B48F-1D18A9856A87 last_name: Choueiri - first_name: Jose M full_name: Lopez Alonso, Jose M id: 40770848-F248-11E8-B48F-1D18A9856A87 last_name: Lopez Alonso orcid: 0000-0002-0384-2022 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Choueiri GH, Lopez Alonso JM, Hof B. Exceeding the asymptotic limit of polymer drag reduction. Physical Review Letters. 2018;120(12). doi:10.1103/PhysRevLett.120.124501 apa: Choueiri, G. H., Lopez Alonso, J. M., & Hof, B. (2018). Exceeding the asymptotic limit of polymer drag reduction. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.120.124501 chicago: Choueiri, George H, Jose M Lopez Alonso, and Björn Hof. “Exceeding the Asymptotic Limit of Polymer Drag Reduction.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/PhysRevLett.120.124501. ieee: G. H. Choueiri, J. M. Lopez Alonso, and B. Hof, “Exceeding the asymptotic limit of polymer drag reduction,” Physical Review Letters, vol. 120, no. 12. American Physical Society, 2018. ista: Choueiri GH, Lopez Alonso JM, Hof B. 2018. Exceeding the asymptotic limit of polymer drag reduction. Physical Review Letters. 120(12), 124501. mla: Choueiri, George H., et al. “Exceeding the Asymptotic Limit of Polymer Drag Reduction.” Physical Review Letters, vol. 120, no. 12, 124501, American Physical Society, 2018, doi:10.1103/PhysRevLett.120.124501. short: G.H. Choueiri, J.M. Lopez Alonso, B. Hof, Physical Review Letters 120 (2018). date_created: 2018-12-11T11:45:51Z date_published: 2018-03-19T00:00:00Z date_updated: 2023-10-10T13:27:44Z day: '19' department: - _id: BjHo doi: 10.1103/PhysRevLett.120.124501 ec_funded: 1 external_id: isi: - '000427804000005' intvolume: ' 120' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1703.06271 month: '03' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '7537' quality_controlled: '1' scopus_import: '1' status: public title: Exceeding the asymptotic limit of polymer drag reduction type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 120 year: '2018' ...