--- _id: '407' abstract: - lang: eng text: Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N6-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5). All prepared compounds were screened for affinity for the Arabidopsis thaliana cytokinin receptor (CRE1/AHK4). Although the attachment of the fluorescent labels to iP via the linkers mostly disrupted binding to the receptor, several fluorescent derivatives interacted well. For this reason, three derivatives, two rhodamine B and one 4-chloro-7-nitrobenzofurazan labeled iP were tested for their interaction with CRE1/AHK4 and Zea mays cytokinin receptors in detail. We further showed that the three derivatives were able to activate transcription of cytokinin response regulator ARR5 in Arabidopsis seedlings. The activity of fluorescently labeled cytokinins was compared with corresponding 6-dimethylaminopurine fluorescently labeled negative controls. Selected rhodamine B C2-labeled compounds 17, 18 and 4-chloro-7-nitrobenzofurazan N9-labeled compound 28 and their respective negative controls (19, 20 and 29, respectively) were used for in planta staining experiments in Arabidopsis thaliana cell suspension culture using live cell confocal microscopy. acknowledgement: "This work was supported by the Ministry of Education Youth and Sports, Czech Republic (grant LO1204 from the National Program of Sustainability I and Agricultural Research ) and by Czech Science Foundation grants 16-04184S , 501/10/1450 and 13-39982S and by IGA projects IGA_PrF_2018_033 and IGA_PrF_2018_023 . We would like to thank Jarmila Balonová, Olga Hustáková and Miroslava Šubová for their skillful technical assistance and Mgr. Tomáš Pospíšil, Ph.D. for his measurement of 1 H NMR and analysis of some 2D NMR spectral data. \r\n" article_processing_charge: No author: - first_name: Karolina full_name: Kubiasová, Karolina last_name: Kubiasová - first_name: Václav full_name: Mik, Václav last_name: Mik - first_name: Jaroslav full_name: Nisler, Jaroslav last_name: Nisler - first_name: Martin full_name: Hönig, Martin last_name: Hönig - first_name: Alexandra full_name: Husičková, Alexandra last_name: Husičková - first_name: Lukáš full_name: Spíchal, Lukáš last_name: Spíchal - first_name: Zuzana full_name: Pěkná, Zuzana last_name: Pěkná - first_name: Olga full_name: Šamajová, Olga last_name: Šamajová - first_name: Karel full_name: Doležal, Karel last_name: Doležal - first_name: Ondřej full_name: Plíhal, Ondřej last_name: Plíhal - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Lucie full_name: Plíhalová, Lucie last_name: Plíhalová citation: ama: Kubiasová K, Mik V, Nisler J, et al. Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry. 2018;150:1-11. doi:10.1016/j.phytochem.2018.02.015 apa: Kubiasová, K., Mik, V., Nisler, J., Hönig, M., Husičková, A., Spíchal, L., … Plíhalová, L. (2018). Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry. Elsevier. https://doi.org/10.1016/j.phytochem.2018.02.015 chicago: Kubiasová, Karolina, Václav Mik, Jaroslav Nisler, Martin Hönig, Alexandra Husičková, Lukáš Spíchal, Zuzana Pěkná, et al. “Design, Synthesis and Perception of Fluorescently Labeled Isoprenoid Cytokinins.” Phytochemistry. Elsevier, 2018. https://doi.org/10.1016/j.phytochem.2018.02.015. ieee: K. Kubiasová et al., “Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins,” Phytochemistry, vol. 150. Elsevier, pp. 1–11, 2018. ista: Kubiasová K, Mik V, Nisler J, Hönig M, Husičková A, Spíchal L, Pěkná Z, Šamajová O, Doležal K, Plíhal O, Benková E, Strnad M, Plíhalová L. 2018. Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry. 150, 1–11. mla: Kubiasová, Karolina, et al. “Design, Synthesis and Perception of Fluorescently Labeled Isoprenoid Cytokinins.” Phytochemistry, vol. 150, Elsevier, 2018, pp. 1–11, doi:10.1016/j.phytochem.2018.02.015. short: K. Kubiasová, V. Mik, J. Nisler, M. Hönig, A. Husičková, L. Spíchal, Z. Pěkná, O. Šamajová, K. Doležal, O. Plíhal, E. Benková, M. Strnad, L. Plíhalová, Phytochemistry 150 (2018) 1–11. date_created: 2018-12-11T11:46:18Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-11T12:53:11Z day: '01' department: - _id: EvBe doi: 10.1016/j.phytochem.2018.02.015 external_id: isi: - '000435623400001' intvolume: ' 150' isi: 1 language: - iso: eng month: '06' oa_version: None page: 1-11 publication: Phytochemistry publication_status: published publisher: Elsevier publist_id: '7422' quality_controlled: '1' scopus_import: '1' status: public title: Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 150 year: '2018' ... --- _id: '46' abstract: - lang: eng text: We analyze a disordered central spin model, where a central spin interacts equally with each spin in a periodic one-dimensional (1D) random-field Heisenberg chain. If the Heisenberg chain is initially in the many-body localized (MBL) phase, we find that the coupling to the central spin suffices to delocalize the chain for a substantial range of coupling strengths. We calculate the phase diagram of the model and identify the phase boundary between the MBL and ergodic phase. Within the localized phase, the central spin significantly enhances the rate of the logarithmic entanglement growth and its saturation value. We attribute the increase in entanglement entropy to a nonextensive enhancement of magnetization fluctuations induced by the central spin. Finally, we demonstrate that correlation functions of the central spin can be utilized to distinguish between MBL and ergodic phases of the 1D chain. Hence, we propose the use of a central spin as a possible experimental probe to identify the MBL phase. acknowledgement: F.P. acknowledges the sup- port of the DFG Research Unit FOR 1807 through Grants No. PO 1370/2-1 and No. TRR80, the Nanosystems Initiative Munich (NIM) by the German Excellence Initiative, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 771537). N.Y.Y. acknowledges support from the NSF (PHY-1654740), the ARO STIR program, and a Google research award. article_number: '161122' article_processing_charge: No article_type: original author: - first_name: Daniel full_name: Hetterich, Daniel last_name: Hetterich - first_name: Norman full_name: Yao, Norman last_name: Yao - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Frank full_name: Pollmann, Frank last_name: Pollmann - first_name: Björn full_name: Trauzettel, Björn last_name: Trauzettel citation: ama: Hetterich D, Yao N, Serbyn M, Pollmann F, Trauzettel B. Detection and characterization of many-body localization in central spin models. Physical Review B. 2018;98(16). doi:10.1103/PhysRevB.98.161122 apa: Hetterich, D., Yao, N., Serbyn, M., Pollmann, F., & Trauzettel, B. (2018). Detection and characterization of many-body localization in central spin models. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.98.161122 chicago: Hetterich, Daniel, Norman Yao, Maksym Serbyn, Frank Pollmann, and Björn Trauzettel. “Detection and Characterization of Many-Body Localization in Central Spin Models.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.98.161122. ieee: D. Hetterich, N. Yao, M. Serbyn, F. Pollmann, and B. Trauzettel, “Detection and characterization of many-body localization in central spin models,” Physical Review B, vol. 98, no. 16. American Physical Society, 2018. ista: Hetterich D, Yao N, Serbyn M, Pollmann F, Trauzettel B. 2018. Detection and characterization of many-body localization in central spin models. Physical Review B. 98(16), 161122. mla: Hetterich, Daniel, et al. “Detection and Characterization of Many-Body Localization in Central Spin Models.” Physical Review B, vol. 98, no. 16, 161122, American Physical Society, 2018, doi:10.1103/PhysRevB.98.161122. short: D. Hetterich, N. Yao, M. Serbyn, F. Pollmann, B. Trauzettel, Physical Review B 98 (2018). date_created: 2018-12-11T11:44:20Z date_published: 2018-10-15T00:00:00Z date_updated: 2023-09-11T12:55:03Z day: '15' department: - _id: MaSe doi: 10.1103/PhysRevB.98.161122 external_id: arxiv: - '1806.08316' isi: - '000448596500002' intvolume: ' 98' isi: 1 issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.08316 month: '10' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '8008' quality_controlled: '1' scopus_import: '1' status: public title: Detection and characterization of many-body localization in central spin models type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 98 year: '2018' ... --- _id: '308' abstract: - lang: eng text: Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. acknowledged_ssus: - _id: SSU article_processing_charge: No article_type: original author: - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Michael full_name: Smutny, Michael last_name: Smutny - first_name: Jana full_name: Veselá, Jana id: 433253EE-F248-11E8-B48F-1D18A9856A87 last_name: Veselá - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Ratheesh A, Bicher J, Smutny M, et al. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 2018;45(3):331-346. doi:10.1016/j.devcel.2018.04.002 apa: Ratheesh, A., Bicher, J., Smutny, M., Veselá, J., Papusheva, E., Krens, G., … Siekhaus, D. E. (2018). Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2018.04.002 chicago: Ratheesh, Aparna, Julia Bicher, Michael Smutny, Jana Veselá, Ekaterina Papusheva, Gabriel Krens, Walter Kaufmann, Attila György, Alessandra M Casano, and Daria E Siekhaus. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell. Elsevier, 2018. https://doi.org/10.1016/j.devcel.2018.04.002. ieee: A. Ratheesh et al., “Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration,” Developmental Cell, vol. 45, no. 3. Elsevier, pp. 331–346, 2018. ista: Ratheesh A, Bicher J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. mla: Ratheesh, Aparna, et al. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell, vol. 45, no. 3, Elsevier, 2018, pp. 331–46, doi:10.1016/j.devcel.2018.04.002. short: A. Ratheesh, J. Bicher, M. Smutny, J. Veselá, E. Papusheva, G. Krens, W. Kaufmann, A. György, A.M. Casano, D.E. Siekhaus, Developmental Cell 45 (2018) 331–346. date_created: 2018-12-11T11:45:44Z date_published: 2018-05-07T00:00:00Z date_updated: 2023-09-11T13:22:13Z day: '07' department: - _id: DaSi - _id: CaHe - _id: Bio - _id: EM-Fac - _id: MiSi doi: 10.1016/j.devcel.2018.04.002 ec_funded: 1 external_id: isi: - '000432461400009' pmid: - '29738712' intvolume: ' 45' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2018.04.002 month: '05' oa: 1 oa_version: Published Version page: 331 - 346 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Developmental Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cells-change-tension-to-make-tissue-barriers-easier-to-get-through/ scopus_import: '1' status: public title: Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2018' ... --- _id: '17' abstract: - lang: eng text: Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic turbulence accompanied by drag enhancement due to elastic stress produced by flow-stretched polymers. However, in inertia-dominated flow at high Re and low fluid elasticity El, a reduction in turbulent frictional drag is caused by an intricate competition between inertial and elastic stresses. Here we explore the effect of inertia on the stability of viscoelastic flow in a broad range of control parameters El and (Re,Wi). We present the stability diagram of observed flow regimes in Wi-Re coordinates and find that the instabilities' onsets show an unexpectedly nonmonotonic dependence on El. Further, three distinct regions in the diagram are identified based on El. Strikingly, for high-elasticity fluids we discover a complete relaminarization of flow at Reynolds number in the range of 1 to 10, different from a well-known turbulent drag reduction. These counterintuitive effects may be explained by a finite polymer extensibility and a suppression of vorticity at high Wi. Our results call for further theoretical and numerical development to uncover the role of inertial effect on elastic turbulence in a viscoelastic flow. article_number: '103302 ' article_processing_charge: No author: - first_name: Atul full_name: Varshney, Atul id: 2A2006B2-F248-11E8-B48F-1D18A9856A87 last_name: Varshney orcid: 0000-0002-3072-5999 - first_name: Victor full_name: Steinberg, Victor last_name: Steinberg citation: ama: Varshney A, Steinberg V. Drag enhancement and drag reduction in viscoelastic flow. Physical Review Fluids. 2018;3(10). doi:10.1103/PhysRevFluids.3.103302 apa: Varshney, A., & Steinberg, V. (2018). Drag enhancement and drag reduction in viscoelastic flow. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/PhysRevFluids.3.103302 chicago: Varshney, Atul, and Victor Steinberg. “Drag Enhancement and Drag Reduction in Viscoelastic Flow.” Physical Review Fluids. American Physical Society, 2018. https://doi.org/10.1103/PhysRevFluids.3.103302. ieee: A. Varshney and V. Steinberg, “Drag enhancement and drag reduction in viscoelastic flow,” Physical Review Fluids, vol. 3, no. 10. American Physical Society, 2018. ista: Varshney A, Steinberg V. 2018. Drag enhancement and drag reduction in viscoelastic flow. Physical Review Fluids. 3(10), 103302. mla: Varshney, Atul, and Victor Steinberg. “Drag Enhancement and Drag Reduction in Viscoelastic Flow.” Physical Review Fluids, vol. 3, no. 10, 103302, American Physical Society, 2018, doi:10.1103/PhysRevFluids.3.103302. short: A. Varshney, V. Steinberg, Physical Review Fluids 3 (2018). date_created: 2018-12-11T11:44:11Z date_published: 2018-10-15T00:00:00Z date_updated: 2023-09-11T12:59:28Z day: '15' ddc: - '532' department: - _id: BjHo doi: 10.1103/PhysRevFluids.3.103302 ec_funded: 1 external_id: isi: - '000447311500001' file: - access_level: open_access checksum: e1445be33e8165114e96246275600750 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:14Z date_updated: 2020-07-14T12:45:12Z file_id: '4800' file_name: IST-2018-1061-v1+1_PhysRevFluids.3.103302.pdf file_size: 1409040 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Fluids publication_status: published publisher: American Physical Society publist_id: '8038' pubrep_id: '1061' quality_controlled: '1' scopus_import: '1' status: public title: Drag enhancement and drag reduction in viscoelastic flow type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 3 year: '2018' ... --- _id: '281' abstract: - lang: eng text: 'Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.' acknowledgement: This work was supported by the Biotechnology and Biological Sciences Research Council (J.M.J.P., I.F., and P.S.S.), the Engineering and Physical Sciences Research Council (EPSRC) (A.A.G.), and Austrian Science Fund Grant FWF P28844 (to G.T.). article_processing_charge: No article_type: original author: - first_name: Alejandro full_name: Granados, Alejandro last_name: Granados - first_name: Julian full_name: Pietsch, Julian last_name: Pietsch - first_name: Sarah A full_name: Cepeda Humerez, Sarah A id: 3DEE19A4-F248-11E8-B48F-1D18A9856A87 last_name: Cepeda Humerez - first_name: Isebail full_name: Farquhar, Isebail last_name: Farquhar - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 - first_name: Peter full_name: Swain, Peter last_name: Swain citation: ama: Granados A, Pietsch J, Cepeda Humerez SA, Farquhar I, Tkačik G, Swain P. Distributed and dynamic intracellular organization of extracellular information. PNAS. 2018;115(23):6088-6093. doi:10.1073/pnas.1716659115 apa: Granados, A., Pietsch, J., Cepeda Humerez, S. A., Farquhar, I., Tkačik, G., & Swain, P. (2018). Distributed and dynamic intracellular organization of extracellular information. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1716659115 chicago: Granados, Alejandro, Julian Pietsch, Sarah A Cepeda Humerez, Isebail Farquhar, Gašper Tkačik, and Peter Swain. “Distributed and Dynamic Intracellular Organization of Extracellular Information.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1716659115. ieee: A. Granados, J. Pietsch, S. A. Cepeda Humerez, I. Farquhar, G. Tkačik, and P. Swain, “Distributed and dynamic intracellular organization of extracellular information,” PNAS, vol. 115, no. 23. National Academy of Sciences, pp. 6088–6093, 2018. ista: Granados A, Pietsch J, Cepeda Humerez SA, Farquhar I, Tkačik G, Swain P. 2018. Distributed and dynamic intracellular organization of extracellular information. PNAS. 115(23), 6088–6093. mla: Granados, Alejandro, et al. “Distributed and Dynamic Intracellular Organization of Extracellular Information.” PNAS, vol. 115, no. 23, National Academy of Sciences, 2018, pp. 6088–93, doi:10.1073/pnas.1716659115. short: A. Granados, J. Pietsch, S.A. Cepeda Humerez, I. Farquhar, G. Tkačik, P. Swain, PNAS 115 (2018) 6088–6093. date_created: 2018-12-11T11:45:35Z date_published: 2018-06-05T00:00:00Z date_updated: 2023-09-11T12:58:24Z day: '05' department: - _id: GaTk doi: 10.1073/pnas.1716659115 external_id: isi: - '000434114900071' pmid: - '29784812' intvolume: ' 115' isi: 1 issue: '23' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/early/2017/09/21/192039 month: '06' oa: 1 oa_version: Preprint page: 6088 - 6093 pmid: 1 project: - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7618' quality_controlled: '1' related_material: record: - id: '6473' relation: part_of_dissertation status: public scopus_import: '1' status: public title: Distributed and dynamic intracellular organization of extracellular information type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '620' abstract: - lang: eng text: Clathrin-mediated endocytosis requires the coordinated assembly of various endocytic proteins and lipids at the plasma membrane. Accumulating evidence demonstrates a crucial role for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) in endocytosis, but specific roles for PtdIns(4)P other than as the biosynthetic precursor of PtdIns(4,5)P2 have not been clarified. In this study we investigated the role of PtdIns(4)P or PtdIns(4,5)P2 in receptor-mediated endocytosis through the construction of temperature-sensitive (ts) mutants for the PI 4-kinases Stt4p and Pik1p and the PtdIns(4) 5-kinase Mss4p. Quantitative analyses of endocytosis revealed that both the stt4(ts)pik1(ts) and mss4(ts) mutants have a severe defect in endocytic internalization. Live-cell imaging of endocytic protein dynamics in stt4(ts)pik1(ts) and mss4(ts) mutants revealed that PtdIns(4)P is required for the recruitment of the alpha-factor receptor Ste2p to clathrin-coated pits whereas PtdIns(4,5)P2 is required for membrane internalization. We also found that the localization to endocytic sites of the ENTH/ANTH domain-bearing clathrin adaptors, Ent1p/Ent2p and Yap1801p/Yap1802p, is significantly impaired in the stt4(ts)pik1(ts) mutant, but not in the mss4(ts) mutant. These results suggest distinct roles in successive steps for PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis. article_number: jcs207696 article_processing_charge: No author: - first_name: Wataru full_name: Yamamoto, Wataru last_name: Yamamoto - first_name: Suguru full_name: Wada, Suguru last_name: Wada - first_name: Makoto full_name: Nagano, Makoto last_name: Nagano - first_name: Kaito full_name: Aoshima, Kaito last_name: Aoshima - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Junko full_name: Toshima, Junko last_name: Toshima - first_name: Jiro full_name: Toshima, Jiro last_name: Toshima citation: ama: Yamamoto W, Wada S, Nagano M, et al. Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis. Journal of Cell Science. 2018;131(1). doi:10.1242/jcs.207696 apa: Yamamoto, W., Wada, S., Nagano, M., Aoshima, K., Siekhaus, D. E., Toshima, J., & Toshima, J. (2018). Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.207696 chicago: Yamamoto, Wataru, Suguru Wada, Makoto Nagano, Kaito Aoshima, Daria E Siekhaus, Junko Toshima, and Jiro Toshima. “Distinct Roles for Plasma Membrane PtdIns 4 P and PtdIns 4 5 P2 during Yeast Receptor Mediated Endocytosis.” Journal of Cell Science. Company of Biologists, 2018. https://doi.org/10.1242/jcs.207696. ieee: W. Yamamoto et al., “Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis,” Journal of Cell Science, vol. 131, no. 1. Company of Biologists, 2018. ista: Yamamoto W, Wada S, Nagano M, Aoshima K, Siekhaus DE, Toshima J, Toshima J. 2018. Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis. Journal of Cell Science. 131(1), jcs207696. mla: Yamamoto, Wataru, et al. “Distinct Roles for Plasma Membrane PtdIns 4 P and PtdIns 4 5 P2 during Yeast Receptor Mediated Endocytosis.” Journal of Cell Science, vol. 131, no. 1, jcs207696, Company of Biologists, 2018, doi:10.1242/jcs.207696. short: W. Yamamoto, S. Wada, M. Nagano, K. Aoshima, D.E. Siekhaus, J. Toshima, J. Toshima, Journal of Cell Science 131 (2018). date_created: 2018-12-11T11:47:32Z date_published: 2018-01-04T00:00:00Z date_updated: 2023-09-11T12:57:13Z day: '04' department: - _id: DaSi doi: 10.1242/jcs.207696 external_id: isi: - '000424786900012' pmid: - '29192062' intvolume: ' 131' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/29192062 month: '01' oa: 1 oa_version: Published Version pmid: 1 publication: Journal of Cell Science publication_status: published publisher: Company of Biologists publist_id: '7184' quality_controlled: '1' scopus_import: '1' status: public title: Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 131 year: '2018' ... --- _id: '182' abstract: - lang: eng text: We describe a new algorithm for the parametric identification problem for signal temporal logic (STL), stated as follows. Given a densetime real-valued signal w and a parameterized temporal logic formula φ, compute the subset of the parameter space that renders the formula satisfied by the signal. Unlike previous solutions, which were based on search in the parameter space or quantifier elimination, our procedure works recursively on φ and computes the evolution over time of the set of valid parameter assignments. This procedure is similar to that of monitoring or computing the robustness of φ relative to w. Our implementation and experiments demonstrate that this approach can work well in practice. alternative_title: - HSCC Proceedings article_processing_charge: No author: - first_name: Alexey full_name: Bakhirkin, Alexey last_name: Bakhirkin - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Oded full_name: Maler, Oded last_name: Maler citation: ama: 'Bakhirkin A, Ferrere T, Maler O. Efficient parametric identification for STL. In: Proceedings of the 21st International Conference on Hybrid Systems. ACM; 2018:177-186. doi:10.1145/3178126.3178132' apa: 'Bakhirkin, A., Ferrere, T., & Maler, O. (2018). Efficient parametric identification for STL. In Proceedings of the 21st International Conference on Hybrid Systems (pp. 177–186). Porto, Portugal: ACM. https://doi.org/10.1145/3178126.3178132' chicago: Bakhirkin, Alexey, Thomas Ferrere, and Oded Maler. “Efficient Parametric Identification for STL.” In Proceedings of the 21st International Conference on Hybrid Systems, 177–86. ACM, 2018. https://doi.org/10.1145/3178126.3178132. ieee: A. Bakhirkin, T. Ferrere, and O. Maler, “Efficient parametric identification for STL,” in Proceedings of the 21st International Conference on Hybrid Systems, Porto, Portugal, 2018, pp. 177–186. ista: 'Bakhirkin A, Ferrere T, Maler O. 2018. Efficient parametric identification for STL. Proceedings of the 21st International Conference on Hybrid Systems. HSCC: Hybrid Systems: Computation and Control, HSCC Proceedings, , 177–186.' mla: Bakhirkin, Alexey, et al. “Efficient Parametric Identification for STL.” Proceedings of the 21st International Conference on Hybrid Systems, ACM, 2018, pp. 177–86, doi:10.1145/3178126.3178132. short: A. Bakhirkin, T. Ferrere, O. Maler, in:, Proceedings of the 21st International Conference on Hybrid Systems, ACM, 2018, pp. 177–186. conference: end_date: 2018-04-13 location: Porto, Portugal name: 'HSCC: Hybrid Systems: Computation and Control' start_date: 2018-04-11 date_created: 2018-12-11T11:45:04Z date_published: 2018-04-11T00:00:00Z date_updated: 2023-09-11T13:30:51Z day: '11' ddc: - '000' department: - _id: ToHe doi: 10.1145/3178126.3178132 external_id: isi: - '000474781600020' file: - access_level: open_access checksum: 81eabc96430e84336ea88310ac0a1ad0 content_type: application/pdf creator: dernst date_created: 2020-05-14T12:18:29Z date_updated: 2020-07-14T12:45:17Z file_id: '7833' file_name: 2018_HSCC_Bakhirkin.pdf file_size: 5900421 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 177 - 186 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Proceedings of the 21st International Conference on Hybrid Systems publication_identifier: isbn: - '978-1-4503-5642-8 ' publication_status: published publisher: ACM publist_id: '7739' quality_controlled: '1' scopus_import: '1' status: public title: Efficient parametric identification for STL type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '143' abstract: - lang: eng text: 'Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parameterized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Θ(nk), for some integer k d, where d is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal k. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e., a k such that the termination complexity is (nk). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.' alternative_title: - ACM/IEEE Symposium on Logic in Computer Science article_processing_charge: No author: - first_name: Tomáš full_name: Brázdil, Tomáš last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Antonín full_name: Kučera, Antonín last_name: Kučera - first_name: Petr full_name: Novotny, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotny - first_name: Dominik full_name: Velan, Dominik last_name: Velan - first_name: Florian full_name: Zuleger, Florian last_name: Zuleger citation: ama: 'Brázdil T, Chatterjee K, Kučera A, Novotný P, Velan D, Zuleger F. Efficient algorithms for asymptotic bounds on termination time in VASS. In: Vol F138033. IEEE; 2018:185-194. doi:10.1145/3209108.3209191' apa: 'Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P., Velan, D., & Zuleger, F. (2018). Efficient algorithms for asymptotic bounds on termination time in VASS (Vol. F138033, pp. 185–194). Presented at the LICS: Logic in Computer Science, Oxford, United Kingdom: IEEE. https://doi.org/10.1145/3209108.3209191' chicago: Brázdil, Tomáš, Krishnendu Chatterjee, Antonín Kučera, Petr Novotný, Dominik Velan, and Florian Zuleger. “Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS,” F138033:185–94. IEEE, 2018. https://doi.org/10.1145/3209108.3209191. ieee: 'T. Brázdil, K. Chatterjee, A. Kučera, P. Novotný, D. Velan, and F. Zuleger, “Efficient algorithms for asymptotic bounds on termination time in VASS,” presented at the LICS: Logic in Computer Science, Oxford, United Kingdom, 2018, vol. F138033, pp. 185–194.' ista: 'Brázdil T, Chatterjee K, Kučera A, Novotný P, Velan D, Zuleger F. 2018. Efficient algorithms for asymptotic bounds on termination time in VASS. LICS: Logic in Computer Science, ACM/IEEE Symposium on Logic in Computer Science, vol. F138033, 185–194.' mla: Brázdil, Tomáš, et al. Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS. Vol. F138033, IEEE, 2018, pp. 185–94, doi:10.1145/3209108.3209191. short: T. Brázdil, K. Chatterjee, A. Kučera, P. Novotný, D. Velan, F. Zuleger, in:, IEEE, 2018, pp. 185–194. conference: end_date: 2018-07-12 location: Oxford, United Kingdom name: 'LICS: Logic in Computer Science' start_date: 2018-07-09 date_created: 2018-12-11T11:44:51Z date_published: 2018-07-09T00:00:00Z date_updated: 2023-09-11T13:23:42Z day: '09' department: - _id: KrCh doi: 10.1145/3209108.3209191 ec_funded: 1 external_id: isi: - '000545262800020' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.10985 month: '07' oa: 1 oa_version: Preprint page: 185 - 194 project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_identifier: isbn: - 978-1-4503-5583-4 publication_status: published publisher: IEEE publist_id: '7780' quality_controlled: '1' scopus_import: '1' status: public title: Efficient algorithms for asymptotic bounds on termination time in VASS type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: F138033 year: '2018' ... --- _id: '273' abstract: - lang: eng text: The accuracy of information retrieval systems is often measured using complex loss functions such as the average precision (AP) or the normalized discounted cumulative gain (NDCG). Given a set of positive and negative samples, the parameters of a retrieval system can be estimated by minimizing these loss functions. However, the non-differentiability and non-decomposability of these loss functions does not allow for simple gradient based optimization algorithms. This issue is generally circumvented by either optimizing a structured hinge-loss upper bound to the loss function or by using asymptotic methods like the direct-loss minimization framework. Yet, the high computational complexity of loss-augmented inference, which is necessary for both the frameworks, prohibits its use in large training data sets. To alleviate this deficiency, we present a novel quicksort flavored algorithm for a large class of non-decomposable loss functions. We provide a complete characterization of the loss functions that are amenable to our algorithm, and show that it includes both AP and NDCG based loss functions. Furthermore, we prove that no comparison based algorithm can improve upon the computational complexity of our approach asymptotically. We demonstrate the effectiveness of our approach in the context of optimizing the structured hinge loss upper bound of AP and NDCG loss for learning models for a variety of vision tasks. We show that our approach provides significantly better results than simpler decomposable loss functions, while requiring a comparable training time. article_processing_charge: No author: - first_name: Pritish full_name: Mohapatra, Pritish last_name: Mohapatra - first_name: Michal full_name: Rolinek, Michal id: 3CB3BC06-F248-11E8-B48F-1D18A9856A87 last_name: Rolinek - first_name: C V full_name: Jawahar, C V last_name: Jawahar - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov - first_name: M Pawan full_name: Kumar, M Pawan last_name: Kumar citation: ama: 'Mohapatra P, Rolinek M, Jawahar CV, Kolmogorov V, Kumar MP. Efficient optimization for rank-based loss functions. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2018:3693-3701. doi:10.1109/cvpr.2018.00389' apa: 'Mohapatra, P., Rolinek, M., Jawahar, C. V., Kolmogorov, V., & Kumar, M. P. (2018). Efficient optimization for rank-based loss functions. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3693–3701). Salt Lake City, UT, USA: IEEE. https://doi.org/10.1109/cvpr.2018.00389' chicago: Mohapatra, Pritish, Michal Rolinek, C V Jawahar, Vladimir Kolmogorov, and M Pawan Kumar. “Efficient Optimization for Rank-Based Loss Functions.” In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3693–3701. IEEE, 2018. https://doi.org/10.1109/cvpr.2018.00389. ieee: P. Mohapatra, M. Rolinek, C. V. Jawahar, V. Kolmogorov, and M. P. Kumar, “Efficient optimization for rank-based loss functions,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3693–3701. ista: 'Mohapatra P, Rolinek M, Jawahar CV, Kolmogorov V, Kumar MP. 2018. Efficient optimization for rank-based loss functions. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR: Conference on Computer Vision and Pattern Recognition, 3693–3701.' mla: Mohapatra, Pritish, et al. “Efficient Optimization for Rank-Based Loss Functions.” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 3693–701, doi:10.1109/cvpr.2018.00389. short: P. Mohapatra, M. Rolinek, C.V. Jawahar, V. Kolmogorov, M.P. Kumar, in:, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 3693–3701. conference: end_date: 2018-06-22 location: Salt Lake City, UT, USA name: 'CVPR: Conference on Computer Vision and Pattern Recognition' start_date: 2018-06-18 date_created: 2018-12-11T11:45:33Z date_published: 2018-06-28T00:00:00Z date_updated: 2023-09-11T13:24:43Z day: '28' department: - _id: VlKo doi: 10.1109/cvpr.2018.00389 ec_funded: 1 external_id: arxiv: - '1604.08269' isi: - '000457843603087' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1604.08269 month: '06' oa: 1 oa_version: Preprint page: 3693-3701 project: - _id: 25FBA906-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '616160' name: 'Discrete Optimization in Computer Vision: Theory and Practice' publication: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition publication_identifier: isbn: - '9781538664209' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Efficient optimization for rank-based loss functions type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '289' abstract: - lang: eng text: We report on quantum capacitance measurements of high quality, graphite- and hexagonal boron nitride encapsulated Bernal stacked trilayer graphene devices. At zero applied magnetic field, we observe a number of electron density- and electrical displacement-tuned features in the electronic compressibility associated with changes in Fermi surface topology. At high displacement field and low density, strong trigonal warping gives rise to emergent Dirac gullies centered near the corners of the hexagonal Brillouin and related by three fold rotation symmetry. At low magnetic fields of B=1.25~T, the gullies manifest as a change in the degeneracy of the Landau levels from two to three. Weak incompressible states are also observed at integer filling within these triplets Landau levels, which a Hartree-Fock analysis indicates are associated with Coulomb-driven nematic phases that spontaneously break rotation symmetry. acknowledgement: The experimental work at UCSB was funded by the National Science Foundation under Grant No. DMR- 1654186. Work at Columbia was supported by the National Science Foundation under Grant No. DMR- 1507788. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science KAKENHI Grant No. JP15K21722. E. M. S. acknowledges the support of the Elings Fellowship from the California Nanosystems Institute at the University of California, Santa Barbara. A. F. Y. acknowledges the support of the David and Lucile Packard foundation and the Sloan Foundation. Measurements made use of a dilution refrigerator funded through the Major Research Instrumentation program of the U.S. National Science Foundation under Grant No. DMR- 1531389, and the MRL Shared Experimental Facilities, which are supported by the MRSEC Program of the U.S. National Science Foundation under Grant No. DMR- 1720256. article_number: '167601' article_processing_charge: No article_type: original author: - first_name: Alexander full_name: Zibrov, Alexander last_name: Zibrov - first_name: Rao full_name: Peng, Rao id: 47C23AC6-02D0-11E9-BD0E-99399A5D3DEB last_name: Peng orcid: 0000-0003-1250-0021 - first_name: Carlos full_name: Kometter, Carlos last_name: Kometter - first_name: Jia full_name: Li, Jia last_name: Li - first_name: Cory full_name: Dean, Cory last_name: Dean - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: Zibrov A, Rao P, Kometter C, et al. Emergent dirac gullies and gully-symmetry-breaking quantum hall states in ABA trilayer graphene. Physical Review Letters. 2018;121(16). doi:10.1103/PhysRevLett.121.167601 apa: Zibrov, A., Rao, P., Kometter, C., Li, J., Dean, C., Taniguchi, T., … Young, A. (2018). Emergent dirac gullies and gully-symmetry-breaking quantum hall states in ABA trilayer graphene. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.121.167601 chicago: Zibrov, Alexander, Peng Rao, Carlos Kometter, Jia Li, Cory Dean, Takashi Taniguchi, Kenji Watanabe, Maksym Serbyn, and Andrea Young. “Emergent Dirac Gullies and Gully-Symmetry-Breaking Quantum Hall States in ABA Trilayer Graphene.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/PhysRevLett.121.167601. ieee: A. Zibrov et al., “Emergent dirac gullies and gully-symmetry-breaking quantum hall states in ABA trilayer graphene,” Physical Review Letters, vol. 121, no. 16. American Physical Society, 2018. ista: Zibrov A, Rao P, Kometter C, Li J, Dean C, Taniguchi T, Watanabe K, Serbyn M, Young A. 2018. Emergent dirac gullies and gully-symmetry-breaking quantum hall states in ABA trilayer graphene. Physical Review Letters. 121(16), 167601. mla: Zibrov, Alexander, et al. “Emergent Dirac Gullies and Gully-Symmetry-Breaking Quantum Hall States in ABA Trilayer Graphene.” Physical Review Letters, vol. 121, no. 16, 167601, American Physical Society, 2018, doi:10.1103/PhysRevLett.121.167601. short: A. Zibrov, P. Rao, C. Kometter, J. Li, C. Dean, T. Taniguchi, K. Watanabe, M. Serbyn, A. Young, Physical Review Letters 121 (2018). date_created: 2018-12-11T11:45:38Z date_published: 2018-10-19T00:00:00Z date_updated: 2023-09-11T13:39:50Z day: '19' department: - _id: MaSe doi: 10.1103/PhysRevLett.121.167601 external_id: arxiv: - '1805.01038' isi: - '000447307500007' intvolume: ' 121' isi: 1 issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.01038 month: '10' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Emergent dirac gullies and gully-symmetry-breaking quantum hall states in ABA trilayer graphene type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 121 year: '2018' ...