--- _id: '5949' abstract: - lang: eng text: Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer - first_name: Hugo full_name: Malagon-Vina, Hugo last_name: Malagon-Vina - first_name: Desiree full_name: Dickerson, Desiree id: 444EB89E-F248-11E8-B48F-1D18A9856A87 last_name: Dickerson - first_name: Joseph full_name: O'Neill, Joseph last_name: O'Neill - first_name: Svenja V. full_name: Trossbach, Svenja V. last_name: Trossbach - first_name: Carsten full_name: Korth, Carsten last_name: Korth - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 citation: ama: Käfer K, Malagon-Vina H, Dickerson D, et al. Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus. 2019;29(9):802-816. doi:10.1002/hipo.23076 apa: Käfer, K., Malagon-Vina, H., Dickerson, D., O’Neill, J., Trossbach, S. V., Korth, C., & Csicsvari, J. L. (2019). Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus. Wiley. https://doi.org/10.1002/hipo.23076 chicago: Käfer, Karola, Hugo Malagon-Vina, Desiree Dickerson, Joseph O’Neill, Svenja V. Trossbach, Carsten Korth, and Jozsef L Csicsvari. “Disrupted-in-Schizophrenia 1 Overexpression Disrupts Hippocampal Coding and Oscillatory Synchronization.” Hippocampus. Wiley, 2019. https://doi.org/10.1002/hipo.23076. ieee: K. Käfer et al., “Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization,” Hippocampus, vol. 29, no. 9. Wiley, pp. 802–816, 2019. ista: Käfer K, Malagon-Vina H, Dickerson D, O’Neill J, Trossbach SV, Korth C, Csicsvari JL. 2019. Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus. 29(9), 802–816. mla: Käfer, Karola, et al. “Disrupted-in-Schizophrenia 1 Overexpression Disrupts Hippocampal Coding and Oscillatory Synchronization.” Hippocampus, vol. 29, no. 9, Wiley, 2019, pp. 802–16, doi:10.1002/hipo.23076. short: K. Käfer, H. Malagon-Vina, D. Dickerson, J. O’Neill, S.V. Trossbach, C. Korth, J.L. Csicsvari, Hippocampus 29 (2019) 802–816. date_created: 2019-02-10T22:59:18Z date_published: 2019-09-01T00:00:00Z date_updated: 2024-03-27T23:30:22Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1002/hipo.23076 ec_funded: 1 external_id: isi: - '000480635400003' file: - access_level: open_access checksum: 5e8de271ca04aef92a5de42d6aac4404 content_type: application/pdf creator: dernst date_created: 2019-02-11T10:42:51Z date_updated: 2020-07-14T12:47:13Z file_id: '5950' file_name: 2019_Hippocampus_Kaefer.pdf file_size: 2132893 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 29' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 802-816 project: - _id: 257BBB4C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '607616' name: Inter-and intracellular signalling in schizophrenia publication: Hippocampus publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '6825' relation: dissertation_contains status: public scopus_import: '1' status: public title: Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 29 year: '2019' ... --- _id: '6825' abstract: - lang: eng text: "The solving of complex tasks requires the functions of more than one brain area and their interaction. Whilst spatial navigation and memory is dependent on the hippocampus, flexible behavior relies on the medial prefrontal cortex (mPFC). To further examine the roles of the hippocampus and mPFC, we recorded their neural activity during a task that depends on both of these brain regions.\r\nWith tetrodes, we recorded the extracellular activity of dorsal hippocampal CA1 (HPC) and mPFC neurons in Long-Evans rats performing a rule-switching task on the plus-maze. The plus-maze task had a spatial component since it required navigation along one of the two start arms and at the maze center a choice between one of the two goal arms. Which goal contained a reward depended on the rule currently in place. After an uncued rule change the animal had to abandon the old strategy and switch to the new rule, testing cognitive flexibility. Investigating the coordination of activity between the HPC and mPFC allows determination during which task stages their interaction is required. Additionally, comparing neural activity patterns in these two brain regions allows delineation of the specialized functions of the HPC and mPFC in this task. We analyzed neural activity in the HPC and mPFC in terms of oscillatory interactions, rule coding and replay.\r\nWe found that theta coherence between the HPC and mPFC is increased at the center and goals of the maze, both when the rule was stable or has changed. Similar results were found for locking of HPC and mPFC neurons to HPC theta oscillations. However, no differences in HPC-mPFC theta coordination were observed between the spatially- and cue-guided rule. Phase locking of HPC and mPFC neurons to HPC gamma oscillations was not modulated by\r\nmaze position or rule type. We found that the HPC coded for the two different rules with cofiring relationships between\r\ncell pairs. However, we could not find conclusive evidence for rule coding in the mPFC. Spatially-selective firing in the mPFC generalized between the two start and two goal arms. With Bayesian positional decoding, we found that the mPFC reactivated non-local positions during awake immobility periods. Replay of these non-local positions could represent entire behavioral trajectories resembling trajectory replay of the HPC. Furthermore, mPFC\r\ntrajectory-replay at the goal positively correlated with rule-switching performance. \r\nFinally, HPC and mPFC trajectory replay occurred independently of each other. These results show that the mPFC can replay ordered patterns of activity during awake immobility, possibly underlying its role in flexible behavior. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Karola full_name: Käfer, Karola id: 2DAA49AA-F248-11E8-B48F-1D18A9856A87 last_name: Käfer citation: ama: Käfer K. The hippocampus and medial prefrontal cortex during flexible behavior. 2019. doi:10.15479/AT:ISTA:6825 apa: Käfer, K. (2019). The hippocampus and medial prefrontal cortex during flexible behavior. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6825 chicago: Käfer, Karola. “The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6825. ieee: K. Käfer, “The hippocampus and medial prefrontal cortex during flexible behavior,” Institute of Science and Technology Austria, 2019. ista: Käfer K. 2019. The hippocampus and medial prefrontal cortex during flexible behavior. Institute of Science and Technology Austria. mla: Käfer, Karola. The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6825. short: K. Käfer, The Hippocampus and Medial Prefrontal Cortex during Flexible Behavior, Institute of Science and Technology Austria, 2019. date_created: 2019-08-21T15:00:57Z date_published: 2019-08-24T00:00:00Z date_updated: 2023-09-07T13:01:42Z day: '24' ddc: - '570' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:6825 file: - access_level: open_access checksum: 2664420e332a33338568f4f3bfc59287 content_type: application/pdf creator: kkaefer date_created: 2019-09-03T08:07:13Z date_updated: 2020-09-06T22:30:03Z embargo: 2020-09-05 file_id: '6846' file_name: Thesis_Kaefer_PDFA.pdf file_size: 3205202 relation: main_file request_a_copy: 0 - access_level: closed checksum: 9a154eab6f07aa590a3d2651dc0d926a content_type: application/zip creator: kkaefer date_created: 2019-09-03T08:07:17Z date_updated: 2020-09-15T22:30:05Z embargo_to: open_access file_id: '6847' file_name: Thesis_Kaefer.zip file_size: 2506835 relation: main_file file_date_updated: 2020-09-15T22:30:05Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '89' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5949' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: The hippocampus and medial prefrontal cortex during flexible behavior type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6713' abstract: - lang: eng text: Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response. article_number: e42014 article_processing_charge: No author: - first_name: João Pl full_name: Castro, João Pl last_name: Castro - first_name: Michelle N. full_name: Yancoskie, Michelle N. last_name: Yancoskie - first_name: Marta full_name: Marchini, Marta last_name: Marchini - first_name: Stefanie full_name: Belohlavy, Stefanie id: 43FE426A-F248-11E8-B48F-1D18A9856A87 last_name: Belohlavy orcid: 0000-0002-9849-498X - first_name: Layla full_name: Hiramatsu, Layla last_name: Hiramatsu - first_name: Marek full_name: Kučka, Marek last_name: Kučka - first_name: William H. full_name: Beluch, William H. last_name: Beluch - first_name: Ronald full_name: Naumann, Ronald last_name: Naumann - first_name: Isabella full_name: Skuplik, Isabella last_name: Skuplik - first_name: John full_name: Cobb, John last_name: Cobb - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Campbell full_name: Rolian, Campbell last_name: Rolian - first_name: Yingguang Frank full_name: Chan, Yingguang Frank last_name: Chan citation: ama: Castro JP, Yancoskie MN, Marchini M, et al. An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. eLife. 2019;8. doi:10.7554/eLife.42014 apa: Castro, J. P., Yancoskie, M. N., Marchini, M., Belohlavy, S., Hiramatsu, L., Kučka, M., … Chan, Y. F. (2019). An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.42014 chicago: Castro, João Pl, Michelle N. Yancoskie, Marta Marchini, Stefanie Belohlavy, Layla Hiramatsu, Marek Kučka, William H. Beluch, et al. “An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.42014. ieee: J. P. Castro et al., “An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Castro JP, Yancoskie MN, Marchini M, Belohlavy S, Hiramatsu L, Kučka M, Beluch WH, Naumann R, Skuplik I, Cobb J, Barton NH, Rolian C, Chan YF. 2019. An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. eLife. 8, e42014. mla: Castro, João Pl, et al. “An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice.” ELife, vol. 8, e42014, eLife Sciences Publications, 2019, doi:10.7554/eLife.42014. short: J.P. Castro, M.N. Yancoskie, M. Marchini, S. Belohlavy, L. Hiramatsu, M. Kučka, W.H. Beluch, R. Naumann, I. Skuplik, J. Cobb, N.H. Barton, C. Rolian, Y.F. Chan, ELife 8 (2019). date_created: 2019-07-28T21:59:17Z date_published: 2019-06-06T00:00:00Z date_updated: 2024-03-27T23:30:22Z day: '06' ddc: - '576' department: - _id: NiBa doi: 10.7554/eLife.42014 external_id: isi: - '000473588700001' pmid: - '31169497' file: - access_level: open_access checksum: fa0936fe58f0d9e3f8e75038570e5a17 content_type: application/pdf creator: apreinsp date_created: 2019-07-29T07:41:18Z date_updated: 2020-07-14T12:47:38Z file_id: '6721' file_name: 2019_eLife_Castro.pdf file_size: 6748249 relation: main_file file_date_updated: 2020-07-14T12:47:38Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '9804' relation: research_data status: public - id: '11388' relation: dissertation_contains status: public scopus_import: '1' status: public title: An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '10065' abstract: - lang: eng text: We study double quantum dots in a Ge/SiGe heterostructure and test their maturity towards singlet-triplet ($S-T_0$) qubits. We demonstrate a large range of tunability, from two single quantum dots to a double quantum dot. We measure Pauli spin blockade and study the anisotropy of the $g$-factor. We use an adjacent quantum dot for sensing charge transitions in the double quantum dot at interest. In conclusion, Ge/SiGe possesses all ingredients necessary for building a singlet-triplet qubit. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: "We thank Matthias Brauns for helpful discussions and careful proofreading of the manuscript. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 844511 and from the FWF project P30207. The research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA machine shop and the nanofabrication\r\nfacility." article_number: '1910.05841' article_processing_charge: No author: - first_name: Andrea C full_name: Hofmann, Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - first_name: Daniel full_name: Jirovec, Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec orcid: 0000-0002-7197-4801 - first_name: Maxim full_name: Borovkov, Maxim last_name: Borovkov - first_name: Ivan full_name: Prieto Gonzalez, Ivan id: 2A307FE2-F248-11E8-B48F-1D18A9856A87 last_name: Prieto Gonzalez orcid: 0000-0002-7370-5357 - first_name: Andrea full_name: Ballabio, Andrea last_name: Ballabio - first_name: Jacopo full_name: Frigerio, Jacopo last_name: Frigerio - first_name: Daniel full_name: Chrastina, Daniel last_name: Chrastina - first_name: Giovanni full_name: Isella, Giovanni last_name: Isella - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Hofmann AC, Jirovec D, Borovkov M, et al. Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits. arXiv. doi:10.48550/arXiv.1910.05841 apa: Hofmann, A. C., Jirovec, D., Borovkov, M., Prieto Gonzalez, I., Ballabio, A., Frigerio, J., … Katsaros, G. (n.d.). Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits. arXiv. https://doi.org/10.48550/arXiv.1910.05841 chicago: Hofmann, Andrea C, Daniel Jirovec, Maxim Borovkov, Ivan Prieto Gonzalez, Andrea Ballabio, Jacopo Frigerio, Daniel Chrastina, Giovanni Isella, and Georgios Katsaros. “Assessing the Potential of Ge/SiGe Quantum Dots as Hosts for Singlet-Triplet Qubits.” ArXiv, n.d. https://doi.org/10.48550/arXiv.1910.05841. ieee: A. C. Hofmann et al., “Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits,” arXiv. . ista: Hofmann AC, Jirovec D, Borovkov M, Prieto Gonzalez I, Ballabio A, Frigerio J, Chrastina D, Isella G, Katsaros G. Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits. arXiv, 1910.05841. mla: Hofmann, Andrea C., et al. “Assessing the Potential of Ge/SiGe Quantum Dots as Hosts for Singlet-Triplet Qubits.” ArXiv, 1910.05841, doi:10.48550/arXiv.1910.05841. short: A.C. Hofmann, D. Jirovec, M. Borovkov, I. Prieto Gonzalez, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, G. Katsaros, ArXiv (n.d.). date_created: 2021-10-01T12:14:51Z date_published: 2019-10-13T00:00:00Z date_updated: 2024-03-27T23:30:26Z day: '13' department: - _id: GeKa doi: 10.48550/arXiv.1910.05841 ec_funded: 1 external_id: arxiv: - '1910.05841' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1910.05841 month: '10' oa: 1 oa_version: Preprint project: - _id: 26A151DA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '844511' name: Majorana bound states in Ge/SiGe heterostructures - _id: 2641CE5E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P30207 name: Hole spin orbit qubits in Ge quantum wells publication: arXiv publication_status: submitted related_material: record: - id: '10058' relation: dissertation_contains status: public status: public title: Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6187' abstract: - lang: eng text: Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis. acknowledged_ssus: - _id: LifeSc article_number: e41801 article_processing_charge: No author: - first_name: Katarina full_name: Valosková, Katarina id: 46F146FC-F248-11E8-B48F-1D18A9856A87 last_name: Valosková - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Marko full_name: Roblek, Marko id: 3047D808-F248-11E8-B48F-1D18A9856A87 last_name: Roblek orcid: 0000-0001-9588-1389 - first_name: Shamsi full_name: Emtenani, Shamsi id: 49D32318-F248-11E8-B48F-1D18A9856A87 last_name: Emtenani orcid: 0000-0001-6981-6938 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Michaela full_name: Misova, Michaela id: 495A3C32-F248-11E8-B48F-1D18A9856A87 last_name: Misova orcid: 0000-0003-2427-6856 - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Patricia full_name: Rodrigues, Patricia id: 2CE4065A-F248-11E8-B48F-1D18A9856A87 last_name: Rodrigues - first_name: Katerina full_name: Shkarina, Katerina last_name: Shkarina - first_name: Ida Signe Bohse full_name: Larsen, Ida Signe Bohse last_name: Larsen - first_name: Sergey Y full_name: Vakhrushev, Sergey Y last_name: Vakhrushev - first_name: Henrik full_name: Clausen, Henrik last_name: Clausen - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Valosková K, Bicher J, Roblek M, et al. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife. 2019;8. doi:10.7554/elife.41801 apa: Valosková, K., Bicher, J., Roblek, M., Emtenani, S., György, A., Misova, M., … Siekhaus, D. E. (2019). A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.41801 chicago: Valosková, Katarina, Julia Bicher, Marko Roblek, Shamsi Emtenani, Attila György, Michaela Misova, Aparna Ratheesh, et al. “A Conserved Major Facilitator Superfamily Member Orchestrates a Subset of O-Glycosylation to Aid Macrophage Tissue Invasion.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/elife.41801. ieee: K. Valosková et al., “A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Valosková K, Bicher J, Roblek M, Emtenani S, György A, Misova M, Ratheesh A, Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. 2019. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife. 8, e41801. mla: Valosková, Katarina, et al. “A Conserved Major Facilitator Superfamily Member Orchestrates a Subset of O-Glycosylation to Aid Macrophage Tissue Invasion.” ELife, vol. 8, e41801, eLife Sciences Publications, 2019, doi:10.7554/elife.41801. short: K. Valosková, J. Bicher, M. Roblek, S. Emtenani, A. György, M. Misova, A. Ratheesh, P. Rodrigues, K. Shkarina, I.S.B. Larsen, S.Y. Vakhrushev, H. Clausen, D.E. Siekhaus, ELife 8 (2019). date_created: 2019-03-28T13:37:45Z date_published: 2019-03-26T00:00:00Z date_updated: 2024-03-27T23:30:29Z day: '26' ddc: - '570' department: - _id: DaSi doi: 10.7554/elife.41801 ec_funded: 1 external_id: isi: - '000462530200001' file: - access_level: open_access checksum: cc0d1a512559d52e7e7cb0e9b9854b40 content_type: application/pdf creator: dernst date_created: 2019-03-28T14:00:41Z date_updated: 2020-07-14T12:47:23Z file_id: '6188' file_name: 2019_eLife_Valoskova.pdf file_size: 4496017 relation: main_file file_date_updated: 2020-07-14T12:47:23Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 253CDE40-B435-11E9-9278-68D0E5697425 grant_number: '24283' name: Examination of the role of a MFS transporter in the migration of Drosophila immune cells - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: The role of Drosophila TNF alpha in immune cell invasion - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions - _id: 25388084-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '329540' name: 'Breaking barriers: Investigating the junctional and mechanobiological changes underlying the ability of Drosophila immune cells to invade an epithelium' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-gene-potentially-involved-in-metastasis-identified/ record: - id: '6530' relation: dissertation_contains - id: '8983' relation: dissertation_contains status: public - id: '6546' relation: dissertation_contains status: public scopus_import: '1' status: public title: A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '6546' abstract: - lang: eng text: "Invasive migration plays a crucial role not only during development and homeostasis but also in pathological states, such as tumor metastasis. Drosophila macrophage migration into the extended germband is an interesting system to study invasive migration. It carries similarities to immune cell transmigration and cancer cell invasion, therefore studying this process could also bring new understanding of invasion in higher organisms. In our work, we uncover a highly conserved member of the major facilitator family that plays a role in tissue invasion through regulation of glycosylation on a subgroup of proteins and/or by aiding the precise timing of DN-Cadherin downregulation. \r\n\r\nAberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify \r\na key conserved regulator that orchestrates O-glycosylation on a protein subset to activate \r\na program governing migration steps important for both development and cancer metastasis. \r\n" acknowledged_ssus: - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Katarina full_name: Valosková, Katarina id: 46F146FC-F248-11E8-B48F-1D18A9856A87 last_name: Valosková citation: ama: Valosková K. The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration. 2019. doi:10.15479/AT:ISTA:6546 apa: Valosková, K. (2019). The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6546 chicago: Valosková, Katarina. “The Role of a Highly Conserved Major Facilitator Superfamily Member in Drosophila Embryonic Macrophage Migration.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6546. ieee: K. Valosková, “The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration,” Institute of Science and Technology Austria, 2019. ista: Valosková K. 2019. The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration. Institute of Science and Technology Austria. mla: Valosková, Katarina. The Role of a Highly Conserved Major Facilitator Superfamily Member in Drosophila Embryonic Macrophage Migration. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6546. short: K. Valosková, The Role of a Highly Conserved Major Facilitator Superfamily Member in Drosophila Embryonic Macrophage Migration, Institute of Science and Technology Austria, 2019. date_created: 2019-06-07T12:49:19Z date_published: 2019-06-07T00:00:00Z date_updated: 2023-09-19T10:15:54Z day: '07' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:6546 file: - access_level: closed checksum: 68949c2d96210b45b981a23e9c9cd93c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: khribikova date_created: 2019-06-07T13:00:04Z date_updated: 2020-07-14T12:47:33Z embargo_to: open_access file_id: '6549' file_name: Katarina Valoskova_PhD thesis_final version.docx file_size: 14110626 relation: source_file - access_level: open_access checksum: 555329cd76e196c96f5278c480ee2e6e content_type: application/pdf creator: khribikova date_created: 2019-06-07T13:00:08Z date_updated: 2021-02-11T11:17:14Z embargo: 2020-06-07 file_id: '6550' file_name: Katarina Valoskova_PhD thesis_final version.pdf file_size: 10054156 relation: main_file file_date_updated: 2021-02-11T11:17:14Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '141' project: - _id: 253CDE40-B435-11E9-9278-68D0E5697425 grant_number: '24283' name: Examination of the role of a MFS transporter in the migration of Drosophila immune cells publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6187' relation: part_of_dissertation status: public - id: '544' relation: part_of_dissertation status: public status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6363' abstract: - lang: eng text: "Distinguishing between similar experiences is achieved by the brain \ in a process called pattern separation. In the hippocampus, pattern \ separation reduces the interference of memories and increases the storage capacity by decorrelating similar inputs patterns of neuronal activity into \ non-overlapping output firing patterns. Winners-take-all (WTA) mechanism \ is a theoretical model for pattern separation in which a \"winner\" \ cell suppresses the activity of the neighboring neurons through feedback inhibition. However, if the network properties of the dentate gyrus support WTA as a biologically conceivable model remains unknown. Here, we showed that the connectivity rules of PV+interneurons and their synaptic properties are optimizedfor efficient pattern separation. We found using multiple whole-cell in vitrorecordings that PV+interneurons mainly connect to granule cells (GC) through lateral inhibition, a form of feedback inhibition in which a GC inhibits other GCs but not \ itself through the activation of PV+interneurons. Thus, lateral inhibition between GC–PV+interneurons was ~10 times more abundant than recurrent connections. Furthermore, the GC–PV+interneuron connectivity was more spatially confined \ but less abundant than PV+interneurons–GC connectivity, leading to an \ asymmetrical distribution of excitatory and inhibitory connectivity. Our network model of the dentate gyrus with incorporated real connectivity rules efficiently decorrelates neuronal activity patterns using WTA as the primary mechanism. \ This process relied on lateral inhibition, fast-signaling properties of \ PV+interneurons and the asymmetrical distribution of excitatory and inhibitory connectivity. Finally, we found that silencing the activity of PV+interneurons in vivoleads to acute deficits in discrimination between similar environments, suggesting that PV+interneuron networks are necessary for behavioral relevant computations. Our results demonstrate that PV+interneurons possess unique connectivity and fast signaling properties that confer to the dentate \ gyrus network properties that allow the emergence of pattern separation. Thus, our results contribute to the knowledge of how specific forms of network organization underlie sophisticated types of information processing. \r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: 'Claudia ' full_name: 'Espinoza Martinez, Claudia ' id: 31FFEE2E-F248-11E8-B48F-1D18A9856A87 last_name: Espinoza Martinez orcid: 0000-0003-4710-2082 citation: ama: Espinoza Martinez C. Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits. 2019. doi:10.15479/AT:ISTA:6363 apa: Espinoza Martinez, C. (2019). Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6363 chicago: Espinoza Martinez, Claudia . “Parvalbumin+ Interneurons Enable Efficient Pattern Separation in Hippocampal Microcircuits.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6363. ieee: C. Espinoza Martinez, “Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits,” Institute of Science and Technology Austria, 2019. ista: Espinoza Martinez C. 2019. Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits. Institute of Science and Technology Austria. mla: Espinoza Martinez, Claudia. Parvalbumin+ Interneurons Enable Efficient Pattern Separation in Hippocampal Microcircuits. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6363. short: C. Espinoza Martinez, Parvalbumin+ Interneurons Enable Efficient Pattern Separation in Hippocampal Microcircuits, Institute of Science and Technology Austria, 2019. date_created: 2019-04-30T11:56:10Z date_published: 2019-04-30T00:00:00Z date_updated: 2023-09-15T12:03:48Z day: '30' ddc: - '570' degree_awarded: PhD department: - _id: PeJo doi: 10.15479/AT:ISTA:6363 file: - access_level: open_access checksum: 77c6c05cfe8b58c8abcf1b854375d084 content_type: application/pdf creator: cespinoza date_created: 2019-05-07T16:00:39Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-05-09 file_id: '6389' file_name: Espinozathesis_all2.pdf file_size: 13966891 relation: main_file - access_level: closed checksum: f6aa819f127691a2b0fc21c76eb09746 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cespinoza date_created: 2019-05-07T16:00:48Z date_updated: 2020-07-14T12:47:28Z embargo_to: open_access file_id: '6390' file_name: Espinoza_Thesis.docx file_size: 11159900 relation: source_file file_date_updated: 2021-02-11T11:17:15Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '140' publication_identifier: isbn: - 978-3-99078-000-8 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '21' relation: part_of_dissertation status: public status: public supervisor: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 title: Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6780' abstract: - lang: eng text: "In this work, we consider the almost-sure termination problem for probabilistic programs that asks whether a\r\ngiven probabilistic program terminates with probability 1. Scalable approaches for program analysis often\r\nrely on modularity as their theoretical basis. In non-probabilistic programs, the classical variant rule (V-rule)\r\nof Floyd-Hoare logic provides the foundation for modular analysis. Extension of this rule to almost-sure\r\ntermination of probabilistic programs is quite tricky, and a probabilistic variant was proposed in [16]. While the\r\nproposed probabilistic variant cautiously addresses the key issue of integrability, we show that the proposed\r\nmodular rule is still not sound for almost-sure termination of probabilistic programs.\r\nBesides establishing unsoundness of the previous rule, our contributions are as follows: First, we present a\r\nsound modular rule for almost-sure termination of probabilistic programs. Our approach is based on a novel\r\nnotion of descent supermartingales. Second, for algorithmic approaches, we consider descent supermartingales\r\nthat are linear and show that they can be synthesized in polynomial time. Finally, we present experimental\r\nresults on a variety of benchmarks and several natural examples that model various types of nested while\r\nloops in probabilistic programs and demonstrate that our approach is able to efficiently prove their almost-sure\r\ntermination property" article_number: '129' article_processing_charge: No author: - first_name: Mingzhang full_name: Huang, Mingzhang last_name: Huang - first_name: Hongfei full_name: Fu, Hongfei last_name: Fu - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 citation: ama: 'Huang M, Fu H, Chatterjee K, Goharshady AK. Modular verification for almost-sure termination of probabilistic programs. In: Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications . Vol 3. ACM; 2019. doi:10.1145/3360555' apa: 'Huang, M., Fu, H., Chatterjee, K., & Goharshady, A. K. (2019). Modular verification for almost-sure termination of probabilistic programs. In Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications (Vol. 3). Athens, Greece: ACM. https://doi.org/10.1145/3360555' chicago: Huang, Mingzhang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. “Modular Verification for Almost-Sure Termination of Probabilistic Programs.” In Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , Vol. 3. ACM, 2019. https://doi.org/10.1145/3360555. ieee: M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady, “Modular verification for almost-sure termination of probabilistic programs,” in Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , Athens, Greece, 2019, vol. 3. ista: 'Huang M, Fu H, Chatterjee K, Goharshady AK. 2019. Modular verification for almost-sure termination of probabilistic programs. Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications . OOPSLA: Object-oriented Programming, Systems, Languages and Applications vol. 3, 129.' mla: Huang, Mingzhang, et al. “Modular Verification for Almost-Sure Termination of Probabilistic Programs.” Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , vol. 3, 129, ACM, 2019, doi:10.1145/3360555. short: M. Huang, H. Fu, K. Chatterjee, A.K. Goharshady, in:, Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications , ACM, 2019. conference: end_date: 2019-10-25 location: Athens, Greece name: 'OOPSLA: Object-oriented Programming, Systems, Languages and Applications' start_date: 2019-10-23 date_created: 2019-08-09T09:54:20Z date_published: 2019-10-01T00:00:00Z date_updated: 2024-03-27T23:30:33Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1145/3360555 ec_funded: 1 external_id: arxiv: - '1901.06087' file: - access_level: open_access checksum: 3482d8ace6fb4991eb7810e3b70f1b9f content_type: application/pdf creator: akafshda date_created: 2019-08-12T15:40:57Z date_updated: 2020-07-14T12:47:40Z file_id: '6807' file_name: oopsla-2019.pdf file_size: 1024643 relation: main_file - access_level: open_access checksum: 4e5a6fb2b59a75222a4e8335a5a60eac content_type: application/pdf creator: dernst date_created: 2020-05-12T15:15:14Z date_updated: 2020-07-14T12:47:40Z file_id: '7821' file_name: 2019_ACM_Huang.pdf file_size: 538579 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 3' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts publication: 'Proceedings of the 34th ACM International Conference on Object-Oriented Programming, Systems, Languages, and Applications ' publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public status: public title: Modular verification for almost-sure termination of probabilistic programs tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 3 year: '2019' ... --- _id: '6380' abstract: - lang: eng text: 'There is a huge gap between the speeds of modern caches and main memories, and therefore cache misses account for a considerable loss of efficiency in programs. The predominant technique to address this issue has been Data Packing: data elements that are frequently accessed within time proximity are packed into the same cache block, thereby minimizing accesses to the main memory. We consider the algorithmic problem of Data Packing on a two-level memory system. Given a reference sequence R of accesses to data elements, the task is to partition the elements into cache blocks such that the number of cache misses on R is minimized. The problem is notoriously difficult: it is NP-hard even when the cache has size 1, and is hard to approximate for any cache size larger than 4. Therefore, all existing techniques for Data Packing are based on heuristics and lack theoretical guarantees. In this work, we present the first positive theoretical results for Data Packing, along with new and stronger negative results. We consider the problem under the lens of the underlying access hypergraphs, which are hypergraphs of affinities between the data elements, where the order of an access hypergraph corresponds to the size of the affinity group. We study the problem parameterized by the treewidth of access hypergraphs, which is a standard notion in graph theory to measure the closeness of a graph to a tree. Our main results are as follows: We show there is a number q* depending on the cache parameters such that (a) if the access hypergraph of order q* has constant treewidth, then there is a linear-time algorithm for Data Packing; (b)the Data Packing problem remains NP-hard even if the access hypergraph of order q*-1 has constant treewidth. Thus, we establish a fine-grained dichotomy depending on a single parameter, namely, the highest order among access hypegraphs that have constant treewidth; and establish the optimal value q* of this parameter. Finally, we present an experimental evaluation of a prototype implementation of our algorithm. Our results demonstrate that, in practice, access hypergraphs of many commonly-used algorithms have small treewidth. We compare our approach with several state-of-the-art heuristic-based algorithms and show that our algorithm leads to significantly fewer cache-misses. ' article_number: '53' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Nastaran full_name: Okati, Nastaran last_name: Okati - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Chatterjee K, Goharshady AK, Okati N, Pavlogiannis A. Efficient parameterized algorithms for data packing. Proceedings of the ACM on Programming Languages. 2019;3(POPL). doi:10.1145/3290366 apa: Chatterjee, K., Goharshady, A. K., Okati, N., & Pavlogiannis, A. (2019). Efficient parameterized algorithms for data packing. Proceedings of the ACM on Programming Languages. ACM. https://doi.org/10.1145/3290366 chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Nastaran Okati, and Andreas Pavlogiannis. “Efficient Parameterized Algorithms for Data Packing.” Proceedings of the ACM on Programming Languages. ACM, 2019. https://doi.org/10.1145/3290366. ieee: K. Chatterjee, A. K. Goharshady, N. Okati, and A. Pavlogiannis, “Efficient parameterized algorithms for data packing,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL. ACM, 2019. ista: Chatterjee K, Goharshady AK, Okati N, Pavlogiannis A. 2019. Efficient parameterized algorithms for data packing. Proceedings of the ACM on Programming Languages. 3(POPL), 53. mla: Chatterjee, Krishnendu, et al. “Efficient Parameterized Algorithms for Data Packing.” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, 53, ACM, 2019, doi:10.1145/3290366. short: K. Chatterjee, A.K. Goharshady, N. Okati, A. Pavlogiannis, Proceedings of the ACM on Programming Languages 3 (2019). date_created: 2019-05-06T12:18:17Z date_published: 2019-01-01T00:00:00Z date_updated: 2024-03-27T23:30:33Z day: '01' ddc: - '004' department: - _id: KrCh doi: 10.1145/3290366 ec_funded: 1 file: - access_level: open_access checksum: c157752f96877b36685ad7063ada4524 content_type: application/pdf creator: dernst date_created: 2019-05-06T12:23:11Z date_updated: 2020-07-14T12:47:29Z file_id: '6381' file_name: 2019_ACM_POPL_Chatterjee.pdf file_size: 1294962 relation: main_file file_date_updated: 2020-07-14T12:47:29Z has_accepted_license: '1' intvolume: ' 3' issue: POPL language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Proceedings of the ACM on Programming Languages publication_identifier: issn: - 2475-1421 publication_status: published publisher: ACM pubrep_id: '1056' quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public status: public title: Efficient parameterized algorithms for data packing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2019' ... --- _id: '6056' abstract: - lang: eng text: In today's programmable blockchains, smart contracts are limited to being deterministic and non-probabilistic. This lack of randomness is a consequential limitation, given that a wide variety of real-world financial contracts, such as casino games and lotteries, depend entirely on randomness. As a result, several ad-hoc random number generation approaches have been developed to be used in smart contracts. These include ideas such as using an oracle or relying on the block hash. However, these approaches are manipulatable, i.e. their output can be tampered with by parties who might not be neutral, such as the owner of the oracle or the miners.We propose a novel game-theoretic approach for generating provably unmanipulatable pseudorandom numbers on the blockchain. Our approach allows smart contracts to access a trustworthy source of randomness that does not rely on potentially compromised miners or oracles, hence enabling the creation of a new generation of smart contracts that are not limited to being non-probabilistic and can be drawn from the much more general class of probabilistic programs. article_number: '8751326' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Arash full_name: Pourdamghani, Arash last_name: Pourdamghani citation: ama: 'Chatterjee K, Goharshady AK, Pourdamghani A. Probabilistic smart contracts: Secure randomness on the blockchain. In: IEEE International Conference on Blockchain and Cryptocurrency. IEEE; 2019. doi:10.1109/BLOC.2019.8751326' apa: 'Chatterjee, K., Goharshady, A. K., & Pourdamghani, A. (2019). Probabilistic smart contracts: Secure randomness on the blockchain. In IEEE International Conference on Blockchain and Cryptocurrency. Seoul, Korea: IEEE. https://doi.org/10.1109/BLOC.2019.8751326' chicago: 'Chatterjee, Krishnendu, Amir Kafshdar Goharshady, and Arash Pourdamghani. “Probabilistic Smart Contracts: Secure Randomness on the Blockchain.” In IEEE International Conference on Blockchain and Cryptocurrency. IEEE, 2019. https://doi.org/10.1109/BLOC.2019.8751326.' ieee: 'K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Probabilistic smart contracts: Secure randomness on the blockchain,” in IEEE International Conference on Blockchain and Cryptocurrency, Seoul, Korea, 2019.' ista: 'Chatterjee K, Goharshady AK, Pourdamghani A. 2019. Probabilistic smart contracts: Secure randomness on the blockchain. IEEE International Conference on Blockchain and Cryptocurrency. IEEE International Conference on Blockchain and Cryptocurrency, 8751326.' mla: 'Chatterjee, Krishnendu, et al. “Probabilistic Smart Contracts: Secure Randomness on the Blockchain.” IEEE International Conference on Blockchain and Cryptocurrency, 8751326, IEEE, 2019, doi:10.1109/BLOC.2019.8751326.' short: K. Chatterjee, A.K. Goharshady, A. Pourdamghani, in:, IEEE International Conference on Blockchain and Cryptocurrency, IEEE, 2019. conference: end_date: 2019-05-17 location: Seoul, Korea name: IEEE International Conference on Blockchain and Cryptocurrency start_date: 2019-05-14 date_created: 2019-02-26T09:03:15Z date_published: 2019-05-01T00:00:00Z date_updated: 2024-03-27T23:30:33Z day: '01' department: - _id: KrCh doi: 10.1109/BLOC.2019.8751326 ec_funded: 1 external_id: arxiv: - '1902.07986' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.07986 month: '05' oa: 1 oa_version: Preprint project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies publication: IEEE International Conference on Blockchain and Cryptocurrency publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '8934' relation: dissertation_contains status: public scopus_import: 1 status: public title: 'Probabilistic smart contracts: Secure randomness on the blockchain' type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2019' ...