TY - DATA AB - Data on Austrian open access publication output at Taylor&Francis from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5582 KW - Publication analysis KW - Bibliography KW - Open Access TI - Taylor&Francis Austrian Publications 2013-2017 ER - TY - DATA AB - Data on Austrian open access publication output at Springer from 2013-2016 including data analysis. AU - Villányi, Márton ID - 5581 KW - Publication analysis KW - Bibliography KW - Open Access TI - Springer Austrian Publications 2013-2016 ER - TY - DATA AB - Data on Austrian open access publication output at SAGE from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5580 KW - Publication analysis KW - Bibliography KW - Open Access TI - SAGE Austrian Publications 2013-2017 ER - TY - DATA AB - Data on Austrian open access publication output at RSC from 2013-2017 including data analysis. AU - Villányi, Márton ID - 5579 KW - Publication analysis KW - Bibliography KW - Open Access TI - RSC Austrian Publications 2013-2017 ER - TY - DATA AB - Comparison of Scopus' and FWF's data on Austrian publication output at T&F. AU - Villányi, Márton ID - 5576 KW - Publication analysis KW - Bibliography KW - Open Access TI - Data Check T&F Scopus vs. FWF ER - TY - DATA AB - Comparison of Scopus' and FWF's data on Austrian publication output at RSC. AU - Villányi, Márton ID - 5575 KW - Publication analysis KW - Bibliography KW - Open Access TI - Data Check RSC Scopus vs. FWF ER - TY - JOUR AB - Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. AU - Botella Soler, Vicent AU - Deny, Stephane AU - Martius, Georg S AU - Marre, Olivier AU - Tkacik, Gasper ID - 292 IS - 5 JF - PLoS Computational Biology TI - Nonlinear decoding of a complex movie from the mammalian retina VL - 14 ER - TY - JOUR AB - The MazF toxin sequence-specifically cleaves single-stranded RNA upon various stressful conditions, and it is activated as a part of the mazEF toxin–antitoxin module in Escherichia coli. Although autoregulation of mazEF expression through the MazE antitoxin-dependent transcriptional repression has been biochemically characterized, less is known about post-transcriptional autoregulation, as well as how both of these autoregulatory features affect growth of single cells during conditions that promote MazF production. Here, we demonstrate post-transcriptional autoregulation of mazF expression dynamics by MazF cleaving its own transcript. Single-cell analyses of bacterial populations during ectopic MazF production indicated that two-level autoregulation of mazEF expression influences cell-to-cell growth rate heterogeneity. The increase in growth rate heterogeneity is governed by the MazE antitoxin, and tuned by the MazF-dependent mazF mRNA cleavage. Also, both autoregulatory features grant rapid exit from the stress caused by mazF overexpression. Time-lapse microscopy revealed that MazF-mediated cleavage of mazF mRNA leads to increased temporal variability in length of individual cells during ectopic mazF overexpression, as explained by a stochastic model indicating that mazEF mRNA cleavage underlies temporal fluctuations in MazF levels during stress. AU - Nikolic, Nela AU - Bergmiller, Tobias AU - Vandervelde, Alexandra AU - Albanese, Tanino AU - Gelens, Lendert AU - Moll, Isabella ID - 438 IS - 6 JF - Nucleic Acids Research TI - Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations VL - 46 ER - TY - JOUR AB - XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno’s classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes. AU - Picard, Marion A AU - Cosseau, Celine AU - Ferré, Sabrina AU - Quack, Thomas AU - Grevelding, Christoph AU - Couté, Yohann AU - Vicoso, Beatriz ID - 131 JF - eLife TI - Evolution of gene dosage on the Z-chromosome of schistosome parasites VL - 7 ER - TY - DATA AB - This package contains data for the publication "Nonlinear decoding of a complex movie from the mammalian retina" by Deny S. et al, PLOS Comput Biol (2018). The data consists of (i) 91 spike sorted, isolated rat retinal ganglion cells that pass stability and quality criteria, recorded on the multi-electrode array, in response to the presentation of the complex movie with many randomly moving dark discs. The responses are represented as 648000 x 91 binary matrix, where the first index indicates the timebin of duration 12.5 ms, and the second index the neural identity. The matrix entry is 0/1 if the neuron didn't/did spike in the particular time bin. (ii) README file and a graphical illustration of the structure of the experiment, specifying how the 648000 timebins are split into epochs where 1, 2, 4, or 10 discs were displayed, and which stimulus segments are exact repeats or unique ball trajectories. (iii) a 648000 x 400 matrix of luminance traces for each of the 20 x 20 positions ("sites") in the movie frame, with time that is locked to the recorded raster. The luminance traces are produced as described in the manuscript by filtering the raw disc movie with a small gaussian spatial kernel. AU - Deny, Stephane AU - Marre, Olivier AU - Botella-Soler, Vicente AU - Martius, Georg S AU - Tkacik, Gasper ID - 5584 KW - retina KW - decoding KW - regression KW - neural networks KW - complex stimulus TI - Nonlinear decoding of a complex movie from the mammalian retina ER - TY - JOUR AB - Pedigree and sibship reconstruction are important methods in quantifying relationships and fitness of individuals in natural populations. Current methods employ a Markov chain-based algorithm to explore plausible possible pedigrees iteratively. This provides accurate results, but is time-consuming. Here, we develop a method to infer sibship and paternity relationships from half-sibling arrays of known maternity using hierarchical clustering. Given 50 or more unlinked SNP markers and empirically derived error rates, the method performs as well as the widely used package Colony, but is faster by two orders of magnitude. Using simulations, we show that the method performs well across contrasting mating scenarios, even when samples are large. We then apply the method to open-pollinated arrays of the snapdragon Antirrhinum majus and find evidence for a high degree of multiple mating. Although we focus on diploid SNP data, the method does not depend on marker type and as such has broad applications in nonmodel systems. AU - Ellis, Thomas AU - Field, David AU - Barton, Nicholas H ID - 286 IS - 5 JF - Molecular Ecology Resources TI - Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering VL - 18 ER - TY - DATA AB - Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018). AU - Vicoso, Beatriz ID - 5586 KW - schistosoma KW - Z-chromosome KW - gene expression TI - Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018) ER - TY - DATA AB - Data and scripts are provided in support of the manuscript "Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering", and the associated Python package FAPS, available from www.github.com/ellisztamas/faps. Simulation scripts cover: 1. Performance under different mating scenarios. 2. Comparison with Colony2. 3. Effect of changing the number of Monte Carlo draws The final script covers the analysis of half-sib arrays from wild-pollinated seed in an Antirrhinum majus hybrid zone. AU - Ellis, Thomas ID - 5583 TI - Data and Python scripts supporting Python package FAPS ER - TY - DATA AB - Nela Nikolic, Tobias Bergmiller, Alexandra Vandervelde, Tanino G. Albanese, Lendert Gelens, and Isabella Moll (2018) “Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations” Nucleic Acids Research, doi: 10.15479/AT:ISTA:74; microscopy experiments by Tobias Bergmiller; image and data analysis by Nela Nikolic. AU - Bergmiller, Tobias AU - Nikolic, Nela ID - 5569 KW - microscopy KW - microfluidics TI - Time-lapse microscopy data ER - TY - JOUR AB - Which properties of metabolic networks can be derived solely from stoichiometry? Predictive results have been obtained by flux balance analysis (FBA), by postulating that cells set metabolic fluxes to maximize growth rate. Here we consider a generalization of FBA to single-cell level using maximum entropy modeling, which we extend and test experimentally. Specifically, we define for Escherichia coli metabolism a flux distribution that yields the experimental growth rate: the model, containing FBA as a limit, provides a better match to measured fluxes and it makes a wide range of predictions: on flux variability, regulation, and correlations; on the relative importance of stoichiometry vs. optimization; on scaling relations for growth rate distributions. We validate the latter here with single-cell data at different sub-inhibitory antibiotic concentrations. The model quantifies growth optimization as emerging from the interplay of competitive dynamics in the population and regulation of metabolism at the level of single cells. AU - De Martino, Daniele AU - Mc, Andersson Anna AU - Bergmiller, Tobias AU - Guet, Calin C AU - Tkacik, Gasper ID - 161 IS - 1 JF - Nature Communications TI - Statistical mechanics for metabolic networks during steady state growth VL - 9 ER - TY - DATA AB - Supporting material to the article STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH boundscoli.dat Flux Bounds of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium. polcoli.dat Matrix enconding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium, obtained from the soichiometric matrix by standard linear algebra (reduced row echelon form). ellis.dat Approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium obtained with the Lovasz method. point0.dat Center of the approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium obtained with the Lovasz method. lovasz.cpp This c++ code file receives in input the polytope of the feasible steady states of a metabolic network, (matrix and bounds), and it gives in output an approximate Lowner-John ellipsoid rounding the polytope with the Lovasz method NB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. For further details we refer to PLoS ONE 10.4 e0122670 (2015). sampleHRnew.cpp This c++ code file receives in input the polytope of the feasible steady states of a metabolic network, (matrix and bounds), the ellipsoid rounding the polytope, a point inside and it gives in output a max entropy sampling at fixed average growth rate of the steady states by performing an Hit-and-Run Monte Carlo Markov chain. NB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. For further details we refer to PLoS ONE 10.4 e0122670 (2015). AU - De Martino, Daniele AU - Tkacik, Gasper ID - 5587 KW - metabolic networks KW - e.coli core KW - maximum entropy KW - monte carlo markov chain sampling KW - ellipsoidal rounding TI - Supporting materials "STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH" ER - TY - JOUR AB - The t-haplotype, a mouse meiotic driver found on chromosome 17, has been a model for autosomal segregation distortion for close to a century, but several questions remain regarding its biology and evolutionary history. A recently published set of population genomics resources for wild mice includes several individuals heterozygous for the t-haplotype, which we use to characterize this selfish element at the genomic and transcriptomic level. Our results show that large sections of the t-haplotype have been replaced by standard homologous sequences, possibly due to occasional events of recombination, and that this complicates the inference of its history. As expected for a long genomic segment of very low recombination, the t-haplotype carries an excess of fixed nonsynonymous mutations compared to the standard chromosome. This excess is stronger for regions that have not undergone recent recombination, suggesting that occasional gene flow between the t and the standard chromosome may provide a mechanism to regenerate coding sequences that have accumulated deleterious mutations. Finally, we find that t-complex genes with altered expression largely overlap with deleted or amplified regions, and that carrying a t-haplotype alters the testis expression of genes outside of the t-complex, providing new leads into the pathways involved in the biology of this segregation distorter. AU - Kelemen, Réka K AU - Vicoso, Beatriz ID - 542 IS - 1 JF - Genetics TI - Complex history and differentiation patterns of the t-haplotype, a mouse meiotic driver VL - 208 ER - TY - JOUR AB - Because of the intrinsic randomness of the evolutionary process, a mutant with a fitness advantage has some chance to be selected but no certainty. Any experiment that searches for advantageous mutants will lose many of them due to random drift. It is therefore of great interest to find population structures that improve the odds of advantageous mutants. Such structures are called amplifiers of natural selection: they increase the probability that advantageous mutants are selected. Arbitrarily strong amplifiers guarantee the selection of advantageous mutants, even for very small fitness advantage. Despite intensive research over the past decade, arbitrarily strong amplifiers have remained rare. Here we show how to construct a large variety of them. Our amplifiers are so simple that they could be useful in biotechnology, when optimizing biological molecules, or as a diagnostic tool, when searching for faster dividing cells or viruses. They could also occur in natural population structures. AU - Pavlogiannis, Andreas AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin A. ID - 5751 IS - 1 JF - Communications Biology SN - 2399-3642 TI - Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory VL - 1 ER - TY - DATA AB - File S1. Variant Calling Format file of the ingroup: 197 haploid sequences of D. melanogaster from Zambia (Africa) aligned to the D. melanogaster 5.57 reference genome. File S2. Variant Calling Format file of the outgroup: 1 haploid sequence of D. simulans aligned to the D. melanogaster 5.57 reference genome. File S3. Annotations of each transcript in coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pn (# of non-synonymous polymorphic sites); Ds (# of synonymous divergent sites); Dn (# of non-synonymous divergent sites); DoS; ⍺ MK . All variants were included. File S4. Annotations of each transcript in non-coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pu (# of UTR polymorphic sites); Ds (# of synonymous divergent sites); Du (# of UTR divergent sites); DoS; ⍺ MK . All variants were included. File S5. Annotations of each transcript in coding regions with SNPGenie: Ps (# of synonymous polymorphic sites); πs (synonymous diversity); Ss_p (total # of synonymous sites in the polymorphism data); Pn (# of non-synonymous polymorphic sites); πn (non-synonymous diversity); Sn_p (total # of non-synonymous sites in the polymorphism data); Ds (# of synonymous divergent sites); ks (synonymous evolutionary rate); Ss_d (total # of synonymous sites in the divergence data); Dn (# of non-synonymous divergent sites); kn (non-synonymous evolutionary rate); Sn_d (total # of non- synonymous sites in the divergence data); DoS; ⍺ MK . All variants were included. File S6. Gene expression values (RPKM summed over all transcripts) for each sample. Values were quantile-normalized across all samples. File S7. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for coding sites, excluding variants below 5% frequency. File S8. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for non-coding sites, excluding variants below 5% frequency. File S9. Final dataset with all covariates, ⍺ EWK , ωA EWK and deleterious SFS for coding sites obtained with the Eyre-Walker and Keightley method on binned data and using all variants. AU - Fraisse, Christelle ID - 5757 KW - (mal)adaptation KW - pleiotropy KW - selective constraint KW - evo-devo KW - gene expression KW - Drosophila melanogaster TI - Supplementary Files for "Pleiotropy modulates the efficacy of selection in Drosophila melanogaster" ER - TY - THES AB - The eigenvalue density of many large random matrices is well approximated by a deterministic measure, the self-consistent density of states. In the present work, we show this behaviour for several classes of random matrices. In fact, we establish that, in each of these classes, the self-consistent density of states approximates the eigenvalue density of the random matrix on all scales slightly above the typical eigenvalue spacing. For large classes of random matrices, the self-consistent density of states exhibits several universal features. We prove that, under suitable assumptions, random Gram matrices and Hermitian random matrices with decaying correlations have a 1/3-Hölder continuous self-consistent density of states ρ on R, which is analytic, where it is positive, and has either a square root edge or a cubic root cusp, where it vanishes. We, thus, extend the validity of the corresponding result for Wigner-type matrices from [4, 5, 7]. We show that ρ is determined as the inverse Stieltjes transform of the normalized trace of the unique solution m(z) to the Dyson equation −m(z) −1 = z − a + S[m(z)] on C N×N with the constraint Im m(z) ≥ 0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of C N×N and S is a positivity-preserving operator on C N×N encoding the first two moments of the random matrix. In order to analyze a possible limit of ρ for N → ∞ and address some applications in free probability theory, we also consider the Dyson equation on infinite dimensional von Neumann algebras. We present two applications to random matrices. We first establish that, under certain assumptions, large random matrices with independent entries have a rotationally symmetric self-consistent density of states which is supported on a centered disk in C. Moreover, it is infinitely often differentiable apart from a jump on the boundary of this disk. Second, we show edge universality at all regular (not necessarily extreme) spectral edges for Hermitian random matrices with decaying correlations. AU - Alt, Johannes ID - 149 SN - 2663-337X TI - Dyson equation and eigenvalue statistics of random matrices ER -