TY - JOUR AB - A d-dimensional simplex S is called a k-reptile (or a k-reptile simplex) if it can be tiled by k simplices with disjoint interiors that are all mutually congruent and similar to S. For d = 2, triangular k-reptiles exist for all k of the form a^2, 3a^2 or a^2+b^2 and they have been completely characterized by Snover, Waiveris, and Williams. On the other hand, the only k-reptile simplices that are known for d ≥ 3, have k = m^d, where m is a positive integer. We substantially simplify the proof by Matoušek and the second author that for d = 3, k-reptile tetrahedra can exist only for k = m^3. We then prove a weaker analogue of this result for d = 4 by showing that four-dimensional k-reptile simplices can exist only for k = m^2. AU - Kynčl, Jan AU - Patakova, Zuzana ID - 701 IS - 3 JF - The Electronic Journal of Combinatorics SN - 10778926 TI - On the nonexistence of k reptile simplices in ℝ^3 and ℝ^4 VL - 24 ER - TY - JOUR AB - Leading autism-associated mutation in mouse partially mimics human disorder. AU - Novarino, Gaia ID - 702 IS - 399 JF - Science Translational Medicine SN - 19466234 TI - The riddle of CHD8 haploinsufficiency in autism spectrum disorder VL - 9 ER - TY - JOUR AB - A hippocampal mossy fiber synapse has a complex structure and is implicated in learning and memory. In this synapse, the mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions and wrap around a multiply-branched spine, forming synaptic junctions. We have recently shown using transmission electron microscopy, immunoelectron microscopy and serial block face-scanning electron microscopy that atypical puncta adherentia junctions are formed in the afadin-deficient mossy fiber synapse and that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities and the density of synaptic vesicles docked to active zones are decreased in the afadin-deficient synapse. We investigated here the roles of afadin in the functional differentiations of the mossy fiber synapse using the afadin-deficient mice. The electrophysiological studies showed that both the release probability of glutamate and the postsynaptic responsiveness to glutamate were markedly reduced, but not completely lost, in the afadin-deficient mossy fiber synapse, whereas neither long-term potentiation nor long-term depression was affected. These results indicate that afadin plays roles in the functional differentiations of the presynapse and the postsynapse of the hippocampal mossy fiber synapse. AU - Geng, Xiaoqi AU - Maruo, Tomohiko AU - Mandai, Kenji AU - Supriyanto, Irwan AU - Miyata, Muneaki AU - Sakakibara, Shotaro AU - Mizoguchi, Akira AU - Takai, Yoshimi AU - Mori, Masahiro ID - 706 IS - 8 JF - Genes to Cells SN - 13569597 TI - Roles of afadin in functional differentiations of hippocampal mossy fiber synapse VL - 22 ER - TY - JOUR AB - We answer a question of M. Gromov on the waist of the unit ball. AU - Akopyan, Arseniy AU - Karasev, Roman ID - 707 IS - 4 JF - Bulletin of the London Mathematical Society SN - 00246093 TI - A tight estimate for the waist of the ball VL - 49 ER - TY - JOUR AB - In the developing and adult brain, oligodendrocyte precursor cells (OPCs) are influenced by neuronal activity: they are involved in synaptic signaling with neurons, and their proliferation and differentiation into myelinating glia can be altered by transient changes in neuronal firing. An important question that has been unanswered is whether OPCs can discriminate different patterns of neuronal activity and respond to them in a distinct way. Here, we demonstrate in brain slices that the pattern of neuronal activity determines the functional changes triggered at synapses between axons and OPCs. Furthermore, we show that stimulation of the corpus callosum at different frequencies in vivo affects proliferation and differentiation of OPCs in a dissimilar way. Our findings suggest that neurons do not influence OPCs in “all-or-none” fashion but use their firing pattern to tune the response and behavior of these nonneuronal cells. AU - Nagy, Balint AU - Hovhannisyan, Anahit AU - Barzan, Ruxandra AU - Chen, Ting AU - Kukley, Maria ID - 708 IS - 8 JF - PLoS Biology SN - 15449173 TI - Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum VL - 15 ER -