TY - JOUR
AB - The Brazilian Merganser is a very rare and threatened species that nowadays inhabits only a few protected areas and their surroundings in the Brazilian territory. In order to estimate the remaining genetic diversity and population structure in this species, two mitochondrial genes were sequenced in 39 individuals belonging to two populations and in one individual collected in Argentina in 1950. We found a highly significant divergence between two major remaining populations of Mergus octosetaceus, which suggests a historical population structure in this species. Furthermore, two deeply divergent lineages were found in a single location, which could due to current or historical secondary contact. Based on the available genetic data, we point out future directions which would contribute to design strategies for conservation and management of this threatened species.
AU - Vilaça, Sibelle
AU - Fernandes Redondo, Rodrigo A
AU - Lins, Lívia
AU - Santos, Fabrício
ID - 3247
IS - 1
JF - Conservation Genetics
TI - Remaining genetic diversity in Brazilian Merganser (Mergus octosetaceus)
VL - 13
ER -
TY - JOUR
AB - We describe RTblob, a high speed vision system that detects objects in cluttered scenes based on their color and shape at a speed of over 800 frames/s. Because the system is available as open-source software and relies only on off-the-shelf PC hardware components, it can provide the basis for multiple application scenarios. As an illustrative example, we show how RTblob can be used in a robotic table tennis scenario to estimate ball trajectories through 3D space simultaneously from four cameras images at a speed of 200 Hz.
AU - Lampert, Christoph
AU - Peters, Jan
ID - 3248
IS - 1
JF - Journal of Real-Time Image Processing
TI - Real-time detection of colored objects in multiple camera streams with off-the-shelf hardware components
VL - 7
ER -
TY - JOUR
AB - Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of "fit" or "desirability". We extend the simulation preorder to the quantitative setting by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
ID - 3249
IS - 1
JF - Theoretical Computer Science
TI - Simulation distances
VL - 413
ER -
TY - CONF
AB - The Learning Parity with Noise (LPN) problem has recently found many applications in cryptography as the hardness assumption underlying the constructions of "provably secure" cryptographic schemes like encryption or authentication protocols. Being provably secure means that the scheme comes with a proof showing that the existence of an efficient adversary against the scheme implies that the underlying hardness assumption is wrong. LPN based schemes are appealing for theoretical and practical reasons. On the theoretical side, LPN based schemes offer a very strong security guarantee. The LPN problem is equivalent to the problem of decoding random linear codes, a problem that has been extensively studied in the last half century. The fastest known algorithms run in exponential time and unlike most number-theoretic problems used in cryptography, the LPN problem does not succumb to known quantum algorithms. On the practical side, LPN based schemes are often extremely simple and efficient in terms of code-size as well as time and space requirements. This makes them prime candidates for light-weight devices like RFID tags, which are too weak to implement standard cryptographic primitives like the AES block-cipher. This talk will be a gentle introduction to provable security using simple LPN based schemes as examples. Starting from pseudorandom generators and symmetric key encryption, over secret-key authentication protocols, and, if time admits, touching on recent constructions of public-key identification, commitments and zero-knowledge proofs.
AU - Pietrzak, Krzysztof Z
ID - 3250
TI - Cryptography from learning parity with noise
VL - 7147
ER -
TY - CONF
AB - We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents, the trusted third party (TTP) and the protocols as path formulas in Linear Temporal Logic (LTL) and prove that the satisfaction of the objectives of the agents and the TTP imply satisfaction of the protocol objectives. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail in synthesizing these protocols, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of assume-guarantee synthesis as follows: (a) any solution of assume-guarantee synthesis is attack-free; no subset of participants can violate the objectives of the other participants without violating their own objectives; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has known vulnerabilities is not a solution of AGS; and (c) the Kremer-Markowitch (KM) non-repudiation protocol is a solution of AGS. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can generate correct protocols and automatically discover vulnerabilities. The solution to assume-guarantee synthesis can be computed efficiently as the secure equilibrium solution of three-player graph games. © 2012 Springer-Verlag.
AU - Chatterjee, Krishnendu
AU - Raman, Vishwanath
ID - 3252
TI - Synthesizing protocols for digital contract signing
VL - 7148
ER -