TY - JOUR AB - The initial amount of pathogens required to start an infection within a susceptible host is called the infective dose and is known to vary to a large extent between different pathogen species. We investigate the hypothesis that the differences in infective doses are explained by the mode of action in the underlying mechanism of pathogenesis: Pathogens with locally acting mechanisms tend to have smaller infective doses than pathogens with distantly acting mechanisms. While empirical evidence tends to support the hypothesis, a formal theoretical explanation has been lacking. We give simple analytical models to gain insight into this phenomenon and also investigate a stochastic, spatially explicit, mechanistic within-host model for toxin-dependent bacterial infections. The model shows that pathogens secreting locally acting toxins have smaller infective doses than pathogens secreting diffusive toxins, as hypothesized. While local pathogenetic mechanisms require smaller infective doses, pathogens with distantly acting toxins tend to spread faster and may cause more damage to the host. The proposed model can serve as a basis for the spatially explicit analysis of various virulence factors also in the context of other problems in infection dynamics. AU - Rybicki, Joel AU - Kisdi, Eva AU - Anttila, Jani ID - 43 IS - 42 JF - PNAS TI - Model of bacterial toxin-dependent pathogenesis explains infective dose VL - 115 ER - TY - JOUR AB - We propose a new method for fabricating digital objects through reusable silicone molds. Molds are generated by casting liquid silicone into custom 3D printed containers called metamolds. Metamolds automatically define the cuts that are needed to extract the cast object from the silicone mold. The shape of metamolds is designed through a novel segmentation technique, which takes into account both geometric and topological constraints involved in the process of mold casting. Our technique is simple, does not require changing the shape or topology of the input objects, and only requires off-the- shelf materials and technologies. We successfully tested our method on a set of challenging examples with complex shapes and rich geometric detail. © 2018 Association for Computing Machinery. AU - Alderighi, Thomas AU - Malomo, Luigi AU - Giorgi, Daniela AU - Pietroni, Nico AU - Bickel, Bernd AU - Cignoni, Paolo ID - 13 IS - 4 JF - ACM Trans. Graph. TI - Metamolds: Computational design of silicone molds VL - 37 ER - TY - JOUR AB - Fluorescent sensors are an essential part of the experimental toolbox of the life sciences, where they are used ubiquitously to visualize intra- and extracellular signaling. In the brain, optical neurotransmitter sensors can shed light on temporal and spatial aspects of signal transmission by directly observing, for instance, neurotransmitter release and spread. Here we report the development and application of the first optical sensor for the amino acid glycine, which is both an inhibitory neurotransmitter and a co-agonist of the N-methyl-d-aspartate receptors (NMDARs) involved in synaptic plasticity. Computational design of a glycine-specific binding protein allowed us to produce the optical glycine FRET sensor (GlyFS), which can be used with single and two-photon excitation fluorescence microscopy. We took advantage of this newly developed sensor to test predictions about the uneven spatial distribution of glycine in extracellular space and to demonstrate that extracellular glycine levels are controlled by plasticity-inducing stimuli. AU - Zhang, William AU - Herde, Michel AU - Mitchell, Joshua AU - Whitfield, Jason AU - Wulff, Andreas AU - Vongsouthi, Vanessa AU - Sanchez Romero, Inmaculada AU - Gulakova, Polina AU - Minge, Daniel AU - Breithausen, Björn AU - Schoch, Susanne AU - Janovjak, Harald L AU - Jackson, Colin AU - Henneberger, Christian ID - 137 IS - 9 JF - Nature Chemical Biology TI - Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS VL - 14 ER - TY - CHAP AB - Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile “pillar forests” to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters. AU - Renkawitz, Jörg AU - Reversat, Anne AU - Leithner, Alexander F AU - Merrin, Jack AU - Sixt, Michael K ID - 153 SN - 0091679X T2 - Methods in Cell Biology TI - Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments VL - 147 ER - TY - JOUR AB - During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs’ composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics. AU - Nunes Pinheiro, Diana C AU - Bellaïche, Yohanns ID - 54 IS - 1 JF - Developmental Cell TI - Mechanical force-driven adherents junction remodeling and epithelial dynamics VL - 47 ER -