TY - JOUR
AB - Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life-history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.
AU - Prizak, Roshan
AU - Ezard, Thomas
AU - Hoyle, Rebecca
ID - 537
IS - 15
JF - Ecology and Evolution
TI - Fitness consequences of maternal and grandmaternal effects
VL - 4
ER -
TY - GEN
AB - Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design process. Exploiting the compositional structure of system specifications can considerably reduce the effort in model-based testing. Moreover, inferring properties about the system from testing its individual components allows the designer to reduce the amount of integration testing.
In this paper, we study compositional properties of the IOCO-testing theory. We propose a new approach to composition and hiding operations, inspired by contract-based design and interface theories. These operations preserve behaviors that are compatible under composition and hiding, and prune away incompatible ones. The resulting specification characterizes the input sequences for which the unit testing of components is sufficient to infer the correctness of component integration without the need for further tests. We provide a methodology that uses these results to minimize integration testing effort, but also to detect potential weaknesses in specifications. While we focus on asynchronous models and the IOCO conformance relation, the resulting methodology can be applied to a broader class of systems.
AU - Daca, Przemyslaw
AU - Henzinger, Thomas A
AU - Krenn, Willibald
AU - Nickovic, Dejan
ID - 5411
SN - 2664-1690
TI - Compositional specifications for IOCO testing
ER -
TY - GEN
AB - We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements.
AU - Chatterjee, Krishnendu
AU - Daca, Przemyslaw
AU - Chmelik, Martin
ID - 5412
SN - 2664-1690
TI - CEGAR for qualitative analysis of probabilistic systems
ER -
TY - GEN
AB - We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements.
AU - Chatterjee, Krishnendu
AU - Daca, Przemyslaw
AU - Chmelik, Martin
ID - 5413
SN - 2664-1690
TI - CEGAR for qualitative analysis of probabilistic systems
ER -
TY - GEN
AB - We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation.
We have implemented our algorithms and show that the compositional analysis leads to significant improvements.
AU - Chatterjee, Krishnendu
AU - Daca, Przemyslaw
AU - Chmelik, Martin
ID - 5414
SN - 2664-1690
TI - CEGAR for qualitative analysis of probabilistic systems
ER -