TY - JOUR AB - Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm. AU - Napiórkowski, Marcin M AU - Reuvers, Robin AU - Solovej, Jan ID - 399 IS - 1 JF - EPL TI - Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation VL - 121 ER - TY - JOUR AB - CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants. AU - Zhang, Luosha AU - Shi, Xiong AU - Zhang, Yutao AU - Wang, Jiajing AU - Yang, Jingwei AU - Ishida, Takashi AU - Jiang, Wenqian AU - Han, Xiangyu AU - Kang, Jingke AU - Wang, Xuening AU - Pan, Lixia AU - Lv, Shuo AU - Cao, Bing AU - Zhang, Yonghong AU - Wu, Jinbin AU - Han, Huibin AU - Hu, Zhubing AU - Cui, Langjun AU - Sawa, Shinichiro AU - He, Junmin AU - Wang, Guodong ID - 5830 JF - Plant Cell and Environment SN - 01407791 TI - CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana ER - TY - JOUR AB - Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer. AU - Lilja, Anna AU - Rodilla, Veronica AU - Huyghe, Mathilde AU - Hannezo, Edouard B AU - Landragin, Camille AU - Renaud, Olivier AU - Leroy, Olivier AU - Rulands, Steffen AU - Simons, Benjamin AU - Fré, Silvia ID - 288 IS - 6 JF - Nature Cell Biology TI - Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland VL - 20 ER - TY - JOUR AB - Additive manufacturing has recently seen drastic improvements in resolution, making it now possible to fabricate features at scales of hundreds or even dozens of nanometers, which previously required very expensive lithographic methods. As a result, additive manufacturing now seems poised for optical applications, including those relevant to computer graphics, such as material design, as well as display and imaging applications. In this work, we explore the use of additive manufacturing for generating structural colors, where the structures are designed using a fabrication-aware optimization process. This requires a combination of full-wave simulation, a feasible parameterization of the design space, and a tailored optimization procedure. Many of these components should be re-usable for the design of other optical structures at this scale. We show initial results of material samples fabricated based on our designs. While these suffer from the prototype character of state-of-the-art fabrication hardware, we believe they clearly demonstrate the potential of additive nanofabrication for structural colors and other graphics applications. AU - Auzinger, Thomas AU - Heidrich, Wolfgang AU - Bickel, Bernd ID - 304 IS - 4 JF - ACM Transactions on Graphics TI - Computational design of nanostructural color for additive manufacturing VL - 37 ER - TY - JOUR AB - Molding is a popular mass production method, in which the initial expenses for the mold are offset by the low per-unit production cost. However, the physical fabrication constraints of the molding technique commonly restrict the shape of moldable objects. For a complex shape, a decomposition of the object into moldable parts is a common strategy to address these constraints, with plastic model kits being a popular and illustrative example. However, conducting such a decomposition requires considerable expertise, and it depends on the technical aspects of the fabrication technique, as well as aesthetic considerations. We present an interactive technique to create such decompositions for two-piece molding, in which each part of the object is cast between two rigid mold pieces. Given the surface description of an object, we decompose its thin-shell equivalent into moldable parts by first performing a coarse decomposition and then utilizing an active contour model for the boundaries between individual parts. Formulated as an optimization problem, the movement of the contours is guided by an energy reflecting fabrication constraints to ensure the moldability of each part. Simultaneously, the user is provided with editing capabilities to enforce aesthetic guidelines. Our interactive interface provides control of the contour positions by allowing, for example, the alignment of part boundaries with object features. Our technique enables a novel workflow, as it empowers novice users to explore the design space, and it generates fabrication-ready two-piece molds that can be used either for casting or industrial injection molding of free-form objects. AU - Nakashima, Kazutaka AU - Auzinger, Thomas AU - Iarussi, Emmanuel AU - Zhang, Ran AU - Igarashi, Takeo AU - Bickel, Bernd ID - 12 IS - 4 JF - ACM Transaction on Graphics TI - CoreCavity: Interactive shell decomposition for fabrication with two-piece rigid molds VL - 37 ER -