TY - JOUR AB - We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each of thennodes has its own clock. Our algorithms operate in a very strong fault model: we require self-stabilisation, i.e.,the initial state of the system may be arbitrary, and there can be up to f> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential. AU - Schmickler, C.H. AU - Hammer, H.-W. AU - Volosniev, Artem ID - 6955 JF - Physics Letters B SN - 0370-2693 TI - Universal physics of bound states of a few charged particles VL - 798 ER - TY - JOUR AB - Activity-dependent bulk endocytosis generates synaptic vesicles (SVs) during intense neuronal activity via a two-step process. First, bulk endosomes are formed direct from the plasma membrane from which SVs are then generated. SV generation from bulk endosomes requires the efflux of previously accumulated calcium and activation of the protein phosphatase calcineurin. However, it is still unknown how calcineurin mediates SV generation. We addressed this question using a series of acute interventions that decoupled the generation of SVs from bulk endosomes in rat primary neuronal culture. This was achieved by either disruption of protein–protein interactions via delivery of competitive peptides, or inhibition of enzyme activity by known inhibitors. SV generation was monitored using either a morphological horseradish peroxidase assay or an optical assay that monitors the replenishment of the reserve SV pool. We found that SV generation was inhibited by, (i) peptides that disrupt calcineurin interactions, (ii) an inhibitor of dynamin I GTPase activity and (iii) peptides that disrupt the phosphorylation-dependent dynamin I–syndapin I interaction. Peptides that disrupted syndapin I interactions with eps15 homology domain-containing proteins had no effect. This revealed that (i) calcineurin must be localized at bulk endosomes to mediate its effect, (ii) dynamin I GTPase activity is essential for SV fission and (iii) the calcineurin-dependent interaction between dynamin I and syndapin I is essential for SV generation. We therefore propose that a calcineurin-dependent dephosphorylation cascade that requires both dynamin I GTPase and syndapin I lipid-deforming activity is essential for SV generation from bulk endosomes. AU - Cheung, Giselle T AU - Cousin, Michael A. ID - 7005 IS - 5 JF - Journal of Neurochemistry SN - 0022-3042 TI - Synaptic vesicle generation from activity‐dependent bulk endosomes requires a dephosphorylation‐dependent dynamin–syndapin interaction VL - 151 ER - TY - JOUR AB - The main contributions of this paper are the proposition and the convergence analysis of a class of inertial projection-type algorithm for solving variational inequality problems in real Hilbert spaces where the underline operator is monotone and uniformly continuous. We carry out a unified analysis of the proposed method under very mild assumptions. In particular, weak convergence of the generated sequence is established and nonasymptotic O(1 / n) rate of convergence is established, where n denotes the iteration counter. We also present some experimental results to illustrate the profits gained by introducing the inertial extrapolation steps. AU - Shehu, Yekini AU - Iyiola, Olaniyi S. AU - Li, Xiao-Huan AU - Dong, Qiao-Li ID - 7000 IS - 4 JF - Computational and Applied Mathematics SN - 2238-3603 TI - Convergence analysis of projection method for variational inequalities VL - 38 ER -