TY - CONF
AB - We study the complexity of central controller synthesis problems for finite-state Markov decision processes, where the objective is to optimize both the expected mean-payoff performance of the system and its stability. e argue that the basic theoretical notion of expressing the stability in terms of the variance of the mean-payoff (called global variance in our paper) is not always sufficient, since it ignores possible instabilities on respective runs. For this reason we propose alernative definitions of stability, which we call local and hybrid variance, and which express how rewards on each run deviate from the run's own mean-payoff and from the expected mean-payoff, respectively. We show that a strategy ensuring both the expected mean-payoff and the variance below given bounds requires randomization and memory, under all the above semantics of variance. We then look at the problem of determining whether there is a such a strategy. For the global variance, we show that the problem is in PSPACE, and that the answer can be approximated in pseudo-polynomial time. For the hybrid variance, the analogous decision problem is in NP, and a polynomial-time approximating algorithm also exists. For local variance, we show that the decision problem is in NP. Since the overall performance can be traded for stability (and vice versa), we also present algorithms for approximating the associated Pareto curve in all the three cases. Finally, we study a special case of the decision problems, where we require a given expected mean-payoff together with zero variance. Here we show that the problems can be all solved in polynomial time.
AU - Brázdil, Tomáš
AU - Chatterjee, Krishnendu
AU - Forejt, Vojtěch
AU - Kučera, Antonín
ID - 2305
T2 - 28th Annual ACM/IEEE Symposium
TI - Trading performance for stability in Markov decision processes
ER -
TY - BOOK
AB - Das Buch ist sowohl eine Einführung in die Themen Linked Data, Open Data und Open Linked Data als es auch den konkreten Bezug auf Bibliotheken behandelt. Hierzu werden konkrete Anwendungsprojekte beschrieben. Der Band wendet sich dabei sowohl an Personen aus der Bibliothekspraxis als auch an Personen aus dem Bibliotheksmanagement, die noch nicht mit dem Thema vertraut sind.
AU - Danowski, Patrick
AU - Pohl, Adrian
ID - 2306
TI - (Open) Linked Data in Bibliotheken
VL - 50
ER -
TY - CONF
AB - We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models M′ within distance ρ from M satisfy (or violate) φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification. We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved. We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging. We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 2327
TI - From model checking to model measuring
VL - 8052
ER -
TY - CONF
AB - Linearizability of concurrent data structures is usually proved by monolithic simulation arguments relying on identifying the so-called linearization points. Regrettably, such proofs, whether manual or automatic, are often complicated and scale poorly to advanced non-blocking concurrency patterns, such as helping and optimistic updates.
In response, we propose a more modular way of checking linearizability of concurrent queue algorithms that does not involve identifying linearization points. We reduce the task of proving linearizability with respect to the queue specification to establishing four basic properties, each of which can be proved independently by simpler arguments. As a demonstration of our approach, we verify the Herlihy and Wing queue, an algorithm that is challenging to verify by a simulation proof.
AU - Henzinger, Thomas A
AU - Sezgin, Ali
AU - Vafeiadis, Viktor
ID - 2328
TI - Aspect-oriented linearizability proofs
VL - 8052
ER -
TY - CONF
AB - Two-player games on graphs are central in many problems in formal verification and program analysis such as synthesis and verification of open systems. In this work, we consider both finite-state game graphs, and recursive game graphs (or pushdown game graphs) that model the control flow of sequential programs with recursion. The objectives we study are multidimensional mean-payoff objectives, where the goal of player 1 is to ensure that the mean-payoff is non-negative in all dimensions. In pushdown games two types of strategies are relevant: (1) global strategies, that depend on the entire global history; and (2) modular strategies, that have only local memory and thus do not depend on the context of invocation. Our main contributions are as follows: (1) We show that finite-state multidimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of the weights are fixed; whereas if the number of dimensions is arbitrary, then the problem is known to be coNP-complete. (2) We show that pushdown graphs with multidimensional mean-payoff objectives can be solved in polynomial time. For both (1) and (2) our algorithms are based on hyperplane separation technique. (3) For pushdown games under global strategies both one and multidimensional mean-payoff objectives problems are known to be undecidable, and we show that under modular strategies the multidimensional problem is also undecidable; under modular strategies the one-dimensional problem is NP-complete. We show that if the number of modules, the number of exits, and the maximal absolute value of the weights are fixed, then pushdown games under modular strategies with one-dimensional mean-payoff objectives can be solved in polynomial time, and if either the number of exits or the number of modules is unbounded, then the problem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm for finite-state multidimensional mean-payoff games or pushdown games under modular strategies with one-dimensional mean-payoff objectives would imply the fixed parameter tractability of parity games.
AU - Chatterjee, Krishnendu
AU - Velner, Yaron
ID - 2329
TI - Hyperplane separation technique for multidimensional mean-payoff games
VL - 8052
ER -