TY - JOUR AB - Living tissues are characterized by an intrinsically mechanochemical interplay of active physical forces and complex biochemical signaling pathways. Either feature alone can give rise to complex emergent phenomena, for example, mechanically driven glassy dynamics and rigidity transitions, or chemically driven reaction-diffusion instabilities. An important question is how to quantitatively assess the contribution of these different cues to the large-scale dynamics of biological materials. We address this in Madin-Darby canine kidney (MDCK) monolayers, considering both mechanochemical feedback between extracellular signal-regulated kinase (ERK) signaling activity and cellular density as well as a mechanically active tissue rheology via a self-propelled vertex model. We show that the relative strength of active migration forces to mechanochemical couplings controls a transition from a uniform active glass to periodic spatiotemporal waves. We parametrize the model from published experimental data sets on MDCK monolayers and use it to make new predictions on the correlation functions of cellular dynamics and the dynamics of topological defects associated with the oscillatory phase of cells. Interestingly, MDCK monolayers are best described by an intermediary parameter region in which both mechanochemical couplings and noisy active propulsion have a strong influence on the dynamics. Finally, we study how tissue rheology and ERK waves produce feedback on one another and uncover a mechanism via which tissue fluidity can be controlled by mechanochemical waves at both the local and global levels. AU - Boocock, Daniel R AU - Hirashima, Tsuyoshi AU - Hannezo, Edouard B ID - 14277 IS - 1 JF - PRX Life SN - 2835-8279 TI - Interplay between mechanochemical patterning and glassy dynamics in cellular monolayers VL - 1 ER - TY - JOUR AB - The execution of cognitive functions requires coordinated circuit activity across different brain areas that involves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assembly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling distributed computations. AU - Nardin, Michele AU - Käfer, Karola AU - Stella, Federico AU - Csicsvari, Jozsef L ID - 14314 IS - 9 JF - Cell Reports TI - Theta oscillations as a substrate for medial prefrontal-hippocampal assembly interactions VL - 42 ER - TY - JOUR AB - During apoptosis, caspases degrade 8 out of ~30 nucleoporins to irreversibly demolish the nuclear pore complex. However, for poorly understood reasons, caspases are also activated during cell differentiation. Here, we show that sublethal activation of caspases during myogenesis results in the transient proteolysis of four peripheral Nups and one transmembrane Nup. ‘Trimmed’ NPCs become nuclear export-defective, and we identified in an unbiased manner several classes of cytoplasmic, plasma membrane, and mitochondrial proteins that rapidly accumulate in the nucleus. NPC trimming by non-apoptotic caspases was also observed in neurogenesis and endoplasmic reticulum stress. Our results suggest that caspases can reversibly modulate nuclear transport activity, which allows them to function as agents of cell differentiation and adaptation at sublethal levels. AU - Cho, Ukrae H. AU - Hetzer, Martin W ID - 14315 JF - eLife TI - Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress VL - 12 ER - TY - JOUR AB - We study multigraphs whose edge-sets are the union of three perfect matchings, M1, M2, and M3. Given such a graph G and any a1; a2; a3 2 N with a1 +a2 +a3 6 n - 2, we show there exists a matching M of G with jM \ Mij = ai for each i 2 f1; 2; 3g. The bound n - 2 in the theorem is best possible in general. We conjecture however that if G is bipartite, the same result holds with n - 2 replaced by n - 1. We give a construction that shows such a result would be tight. We also make a conjecture generalising the Ryser-Brualdi-Stein conjecture with colour multiplicities. AU - Anastos, Michael AU - Fabian, David AU - Müyesser, Alp AU - Szabó, Tibor ID - 14319 IS - 3 JF - Electronic Journal of Combinatorics TI - Splitting matchings and the Ryser-Brualdi-Stein conjecture for multisets VL - 30 ER - TY - CONF AB - Probabilistic recurrence relations (PRRs) are a standard formalism for describing the runtime of a randomized algorithm. Given a PRR and a time limit κ, we consider the tail probability Pr[T≥κ], i.e., the probability that the randomized runtime T of the PRR exceeds κ. Our focus is the formal analysis of tail bounds that aims at finding a tight asymptotic upper bound u≥Pr[T≥κ]. To address this problem, the classical and most well-known approach is the cookbook method by Karp (JACM 1994), while other approaches are mostly limited to deriving tail bounds of specific PRRs via involved custom analysis. In this work, we propose a novel approach for deriving the common exponentially-decreasing tail bounds for PRRs whose preprocessing time and random passed sizes observe discrete or (piecewise) uniform distribution and whose recursive call is either a single procedure call or a divide-and-conquer. We first establish a theoretical approach via Markov’s inequality, and then instantiate the theoretical approach with a template-based algorithmic approach via a refined treatment of exponentiation. Experimental evaluation shows that our algorithmic approach is capable of deriving tail bounds that are (i) asymptotically tighter than Karp’s method, (ii) match the best-known manually-derived asymptotic tail bound for QuickSelect, and (iii) is only slightly worse (with a loglogn factor) than the manually-proven optimal asymptotic tail bound for QuickSort. Moreover, our algorithmic approach handles all examples (including realistic PRRs such as QuickSort, QuickSelect, DiameterComputation, etc.) in less than 0.1 s, showing that our approach is efficient in practice. AU - Sun, Yican AU - Fu, Hongfei AU - Chatterjee, Krishnendu AU - Goharshady, Amir Kafshdar ID - 14318 SN - 0302-9743 T2 - Computer Aided Verification TI - Automated tail bound analysis for probabilistic recurrence relations VL - 13966 ER - TY - CONF AB - Markov decision processes can be viewed as transformers of probability distributions. While this view is useful from a practical standpoint to reason about trajectories of distributions, basic reachability and safety problems are known to be computationally intractable (i.e., Skolem-hard) to solve in such models. Further, we show that even for simple examples of MDPs, strategies for safety objectives over distributions can require infinite memory and randomization. In light of this, we present a novel overapproximation approach to synthesize strategies in an MDP, such that a safety objective over the distributions is met. More precisely, we develop a new framework for template-based synthesis of certificates as affine distributional and inductive invariants for safety objectives in MDPs. We provide two algorithms within this framework. One can only synthesize memoryless strategies, but has relative completeness guarantees, while the other can synthesize general strategies. The runtime complexity of both algorithms is in PSPACE. We implement these algorithms and show that they can solve several non-trivial examples. AU - Akshay, S. AU - Chatterjee, Krishnendu AU - Meggendorfer, Tobias AU - Zikelic, Dorde ID - 14317 SN - 0302-9743 T2 - International Conference on Computer Aided Verification TI - MDPs as distribution transformers: Affine invariant synthesis for safety objectives VL - 13966 ER - TY - JOUR AB - Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN–endosome trafficking pathway. AU - Nagano, Makoto AU - Aoshima, Kaito AU - Shimamura, Hiroki AU - Siekhaus, Daria E AU - Toshima, Junko Y. AU - Toshima, Jiro ID - 14316 IS - 17 JF - Journal of Cell Science SN - 0021-9533 TI - Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway VL - 136 ER - TY - JOUR AB - The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance. AU - Henderson, Paul M AU - Ghazaryan, Areg AU - Zibrov, Alexander A. AU - Young, Andrea F. AU - Serbyn, Maksym ID - 14320 IS - 12 JF - Physical Review B SN - 2469-9950 TI - Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene VL - 108 ER - TY - THES AB - Nonergodic systems, whose out-of-equilibrium dynamics fail to thermalize, provide a fascinating research direction both for fundamental reasons and for application in state of the art quantum devices. Going beyond the description of statistical mechanics, ergodicity breaking yields a new paradigm in quantum many-body physics, introducing novel phases of matter with no counterpart at equilibrium. In this Thesis, we address different open questions in the field, focusing on disorder-induced many-body localization (MBL) and on weak ergodicity breaking in kinetically constrained models. In particular, we contribute to the debate about transport in kinetically constrained models, studying the effect of $U(1)$ conservation and inversion-symmetry breaking in a family of quantum East models. Using tensor network techniques, we analyze the dynamics of large MBL systems beyond the limit of exact numerical methods. In this setting, we approach the debated topic of the coexistence of localized and thermal eigenstates separated by energy thresholds known as many-body mobility edges. Inspired by recent experiments, our work further investigates the localization of a small bath induced by the coupling to a large localized chain, the so-called MBL proximity effect. In the first Chapter, we introduce a family of particle-conserving kinetically constrained models, inspired by the quantum East model. The system we study features strong inversion-symmetry breaking, due to the nature of the correlated hopping. We show that these models host so-called quantum Hilbert space fragmentation, consisting of disconnected subsectors in an entangled basis, and further provide an analytical description of this phenomenon. We further probe its effect on dynamics of simple product states, showing revivals in fidelity and local observalbes. The study of dynamics within the largest subsector reveals an anomalous transient superdiffusive behavior crossing over to slow logarithmic dynamics at later times. This work suggests that particle conserving constrained models with inversion-symmetry breaking realize new universality classes of dynamics and invite their further theoretical and experimental studies. Next, we use kinetic constraints and disorder to design a model with many-body mobility edges in particle density. This feature allows to study the dynamics of localized and thermal states in large systems beyond the limitations of previous studies. The time-evolution shows typical signatures of localization at small densities, replaced by thermal behavior at larger densities. Our results provide evidence in favor of the stability of many-body mobility edges, which was recently challenged by a theoretical argument. To support our findings, we probe the mechanism proposed as a cause of delocalization in many-body localized systems with mobility edges suggesting its ineffectiveness in the model studied. In the last Chapter of this Thesis, we address the topic of many-body localization proximity effect. We study a model inspired by recent experiments, featuring Anderson localized coupled to a small bath of free hard-core bosons. The interaction among the two particle species results in non-trivial dynamics, which we probe using tensor network techniques. Our simulations show convincing evidence of many-body localization proximity effect when the bath is composed by a single free particle and interactions are strong. We furthter observe an anomalous entanglement dynamics, which we explain through a phenomenological theory. Finally, we extract highly excited eigenstates of large systems, providing supplementary evidence in favor of our findings. AU - Brighi, Pietro ID - 12732 SN - 2663-337X TI - Ergodicity breaking in disordered and kinetically constrained quantum many-body systems ER - TY - JOUR AB - Quantum kinetically constrained models have recently attracted significant attention due to their anomalous dynamics and thermalization. In this work, we introduce a hitherto unexplored family of kinetically constrained models featuring conserved particle number and strong inversion-symmetry breaking due to facilitated hopping. We demonstrate that these models provide a generic example of so-called quantum Hilbert space fragmentation, that is manifested in disconnected sectors in the Hilbert space that are not apparent in the computational basis. Quantum Hilbert space fragmentation leads to an exponential in system size number of eigenstates with exactly zero entanglement entropy across several bipartite cuts. These eigenstates can be probed dynamically using quenches from simple initial product states. In addition, we study the particle spreading under unitary dynamics launched from the domain wall state, and find faster than diffusive dynamics at high particle densities, that crosses over into logarithmically slow relaxation at smaller densities. Using a classically simulable cellular automaton, we reproduce the logarithmic dynamics observed in the quantum case. Our work suggests that particle conserving constrained models with inversion symmetry breaking realize so far unexplored dynamical behavior and invite their further theoretical and experimental studies. AU - Brighi, Pietro AU - Ljubotina, Marko AU - Serbyn, Maksym ID - 14334 IS - 3 JF - SciPost Physics KW - General Physics and Astronomy SN - 2542-4653 TI - Hilbert space fragmentation and slow dynamics in particle-conserving quantum East models VL - 15 ER -