@article{3287,
abstract = {Diffusing membrane constituents are constantly exposed to a variety of forces that influence their stochastic path. Single molecule experiments allow for resolving trajectories at extremely high spatial and temporal accuracy, thereby offering insights into en route interactions of the tracer. In this review we discuss approaches to derive information about the underlying processes, based on single molecule tracking experiments. In particular, we focus on a new versatile way to analyze single molecule diffusion in the absence of a full analytical treatment. The method is based on comprehensive comparison of an experimental data set against the hypothetical outcome of multiple experiments performed on the computer. Since Monte Carlo simulations can be easily and rapidly performed even on state-of-the-art PCs, our method provides a simple way for testing various - even complicated - diffusion models. We describe the new method in detail, and show the applicability on two specific examples: firstly, kinetic rate constants can be derived for the transient interaction of mobile membrane proteins; secondly, residence time and corral size can be extracted for confined diffusion.},
author = {Ruprecht, Verena and Axmann, Markus and Wieser, Stefan and Schuetz, Gerhard},
journal = {Current Protein & Peptide Science},
number = {8},
pages = {714 -- 724},
publisher = {Bentham Science Publishers},
title = {{What can we learn from single molecule trajectories?}},
doi = {10.2174/138920311798841753},
volume = {12},
year = {2011},
}
@inproceedings{3299,
abstract = {We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.},
author = {Henzinger, Thomas A and Mateescu, Maria},
location = {Paris, France},
pages = {1 -- 3},
publisher = {Springer},
title = {{Propagation models for computing biochemical reaction networks}},
doi = {10.1145/2037509.2037510},
year = {2011},
}
@inproceedings{3302,
abstract = {Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We present a new job execution environment Flextic that exploits scal- able static scheduling techniques to provide the user with a flexible pricing model, such as a tradeoff between dif- ferent degrees of execution speed and execution price, and at the same time, reduce scheduling overhead for the cloud provider. We have evaluated a prototype of Flextic on Amazon EC2 and compared it against Hadoop. For various data parallel jobs from machine learning, im- age processing, and gene sequencing that we considered, Flextic has low scheduling overhead and reduces job du- ration by up to 15% compared to Hadoop, a dynamic cloud scheduler.},
author = {Henzinger, Thomas A and Singh, Anmol and Singh, Vasu and Wies, Thomas and Zufferey, Damien},
pages = {1 -- 6},
publisher = {USENIX},
title = {{Static scheduling in clouds}},
year = {2011},
}
@article{3352,
abstract = {Exploring the connection of biology with reactive systems to better understand living systems.},
author = {Fisher, Jasmin and Harel, David and Henzinger, Thomas A},
journal = {Communications of the ACM},
number = {10},
pages = {72 -- 82},
publisher = {ACM},
title = {{Biology as reactivity}},
doi = {10.1145/2001269.2001289},
volume = {54},
year = {2011},
}
@inproceedings{3319,
abstract = {We address the problem of metric learning for multi-view data, namely the construction of embedding projections from data in different representations into a shared feature space, such that the Euclidean distance in this space provides a meaningful within-view as well as between-view similarity. Our motivation stems from the problem of cross-media retrieval tasks, where the availability of a joint Euclidean distance function is a pre-requisite to allow fast, in particular hashing-based, nearest neighbor queries. We formulate an objective function that expresses the intuitive concept that matching samples are mapped closely together in the output space, whereas non-matching samples are pushed apart, no matter in which view they are available. The resulting optimization problem is not convex, but it can be decomposed explicitly into a convex and a concave part, thereby allowing efficient optimization using the convex-concave procedure. Experiments on an image retrieval task show that nearest-neighbor based cross-view retrieval is indeed possible, and the proposed technique improves the retrieval accuracy over baseline techniques.},
author = {Quadrianto, Novi and Lampert, Christoph},
location = {Bellevue, USA},
pages = {425 -- 432},
publisher = {Omnipress},
title = {{Learning multi-view neighborhood preserving projections}},
year = {2011},
}
@inproceedings{3357,
abstract = {We consider two-player graph games whose objectives are request-response condition, i.e conjunctions of conditions of the form "if a state with property Rq is visited, then later a state with property Rp is visited". The winner of such games can be decided in EXPTIME and the problem is known to be NP-hard. In this paper, we close this gap by showing that this problem is, in fact, EXPTIME-complete. We show that the problem becomes PSPACE-complete if we only consider games played on DAGs, and NP-complete or PTIME-complete if there is only one player (depending on whether he wants to enforce or spoil the request-response condition). We also present near-optimal bounds on the memory needed to design winning strategies for each player, in each case.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Horn, Florian},
editor = {Dediu, Adrian-Horia and Inenaga, Shunsuke and Martín-Vide, Carlos},
location = {Tarragona, Spain},
pages = {227 -- 237},
publisher = {Springer},
title = {{The complexity of request-response games}},
doi = {10.1007/978-3-642-21254-3_17},
volume = {6638},
year = {2011},
}
@article{3383,
author = {Heisenberg, Carl-Philipp J},
journal = {FEBS Journal},
number = {S1},
pages = {24 -- 24},
publisher = {Wiley-Blackwell},
title = {{Invited Lectures ‐ Symposia Area}},
doi = {10.1111/j.1742-4658.2011.08136.x},
volume = {278},
year = {2011},
}
@article{3388,
abstract = {Background: Fragmentation of terrestrial ecosystems has had detrimental effects on metapopulations of habitat specialists. Maculinea butterflies have been particularly affected because of their specialized lifecycles, requiring both specific food-plants and host-ants. However, the interaction between dispersal, effective population size, and long-term genetic erosion of these endangered butterflies remains unknown. Using non-destructive sampling, we investigated the genetic diversity of the last extant population of M. arion in Denmark, which experienced critically low numbers in the 1980s. Results: Using nine microsatellite markers, we show that the population is genetically impoverished compared to nearby populations in Sweden, but less so than monitoring programs suggested. Ten additional short repeat microsatellites were used to reconstruct changes in genetic diversity and population structure over the last 77 years from museum specimens. We also tested amplification efficiency in such historical samples as a function of repeat length and sample age. Low population numbers in the 1980s did not affect genetic diversity, but considerable turnover of alleles has characterized this population throughout the time-span of our analysis. Conclusions: Our results suggest that M. arion is less sensitive to genetic erosion via population bottlenecks than previously thought, and that managing clusters of high quality habitat may be key for long-term conservation.},
author = {Ugelvig, Line V and Nielsen, Per and Boomsma, Jacobus and Nash, David},
journal = {BMC Evolutionary Biology},
number = {201},
publisher = {BioMed Central},
title = {{Reconstructing eight decades of genetic variation in an isolated Danish population of the large blue butterfly Maculinea arion}},
doi = {10.1186/1471-2148-11-201},
volume = {11},
year = {2011},
}
@article{3390,
abstract = {What determines the genetic contribution that an individual makes to future generations? With biparental reproduction, each individual leaves a 'pedigree' of descendants, determined by the biparental relationships in the population. The pedigree of an individual constrains the lines of descent of each of its genes. An individual's reproductive value is the expected number of copies of each of its genes that is passed on to distant generations conditional on its pedigree. For the simplest model of biparental reproduction analogous to the Wright-Fisher model, an individual's reproductive value is determined within ~10 generations, independent of population size. Partial selfing and subdivision do not greatly slow this convergence. Our central result is that the probability that a gene will survive is proportional to the reproductive value of the individual that carries it, and that conditional on survival, after a few tens of generations, the distribution of the number of surviving copies is the same for all individuals, whatever their reproductive value. These results can be generalized to the joint distribution of surviving blocks of ancestral genome. Selection on unlinked loci in the genetic background may greatly increase the variance in reproductive value, but the above results nevertheless still hold. The almost linear relationship between survival probability and reproductive value also holds for weakly favored alleles. Thus, the influence of the complex pedigree of descendants on an individual's genetic contribution to the population can be summarized through a single number: its reproductive value.},
author = {Barton, Nicholas H and Etheridge, Alison},
journal = {Genetics},
number = {4},
pages = {953 -- 973},
publisher = {Genetics Society of America},
title = {{The relation between reproductive value and genetic contribution}},
doi = {10.1534/genetics.111.127555},
volume = {188},
year = {2011},
}
@article{3395,
abstract = {Defining population structure and genetic diversity levels is of the utmost importance for developing efficient conservation strategies. Overfishing has caused mean annual catches of the European spiny lobster (Palinurus elephas) to decrease alarmingly along its distribution area. In this context, there is a need for comprehensive studies aiming to evaluate the genetic health of the exploited populations. The present study is based on a set of ten nuclear markers amplified in 331 individuals from ten different localities covering most of P. elephas distribution area. Samples from Atlantic and Mediterranean basins showed small but significant differences, indicating that P. elephas populations do not behave as a single panmictic unit but form two partially-overlapping groups. Despite intense overfishing, our dataset did not recover a recent bottleneck signal, and instead showed a large and stable historical effective size. This result could be accounted for by specific life-history traits (reproduction and longevity) and the limitations of molecular markers in covering recent timescales for nontemporal samples. The findings of the present study emphasize the need to integrate information on effective population sizes and life-history parameters when evaluating population connectivity levels from genetic data.},
author = {Palero, Ferran and Abello, Pere and Macpherson, Enrique and Beaumont, Mark and Pascual, Marta},
journal = {Biological Journal of the Linnean Society},
number = {2},
pages = {407 -- 418},
publisher = {Wiley-Blackwell},
title = {{Effect of oceanographic barriers and overfishing on the population genetic structure of the European spiny lobster Palinurus elephas }},
doi = {10.1111/j.1095-8312.2011.01728.x},
volume = {104},
year = {2011},
}
@article{3376,
abstract = {Regulatory conflicts occur when two signals that individually trigger opposite cellular responses are present simultaneously. Here, we investigate regulatory conflicts in the bacterial response to antibiotic combinations. We use an Escherichia coli promoter-GFP library to study the transcriptional response of many promoters to either additive or antagonistic drug pairs at fine two-dimensional (2D) resolution of drug concentration. Surprisingly, we find that this data set can be characterized as a linear sum of only two principal components. Component one, accounting for over 70% of the response, represents the response to growth inhibition by the drugs. Component two describes how regulatory conflicts are resolved. For the additive drug pair, conflicts are resolved by linearly interpolating the single drug responses, while for the antagonistic drug pair, the growth-limiting drug dominates the response. Importantly, for a given drug pair, the same conflict resolution strategy applies to almost all genes. These results provide a recipe for predicting gene expression responses to antibiotic combinations.},
author = {Bollenbach, Mark Tobias and Kishony, Roy},
journal = {Molecular Cell},
number = {4},
pages = {413 -- 425},
publisher = {Cell Press},
title = {{Resolution of gene regulatory conflicts caused by combinations of antibiotics}},
doi = {10.1016/j.molcel.2011.04.016},
volume = {42},
year = {2011},
}
@article{3369,
abstract = {Rab3 interacting molecules (RIMs) are highly enriched in the active zones of presynaptic terminals. It is generally thought that they operate as effectors of the small G protein Rab3. Three recent papers, by Han et al. (this issue of Neuron), Deng et al. (this issue of Neuron), and Kaeser et al. (a recent issue of Cell), shed new light on the functional role of RIM in presynaptic terminals. First, RIM tethers Ca2+ channels to active zones. Second, RIM contributes to priming of synaptic vesicles by interacting with another presynaptic protein, Munc13.},
author = {Pernia-Andrade, Alejandro and Jonas, Peter M},
journal = {Neuron},
number = {2},
pages = {185 -- 187},
publisher = {Elsevier},
title = {{The multiple faces of RIM}},
doi = {10.1016/j.neuron.2011.01.010},
volume = {69},
year = {2011},
}
@article{3371,
abstract = {The Minisymposium “Cell Migration and Motility” was attended by approximately 500 visitors and covered a broad range of questions in the field using diverse model systems. Topics comprised actin dynamics, cell polarity, force transduction, signal transduction, bar- rier transmigration, and chemotactic guidance.},
author = {Sixt, Michael K and Parent, Carole},
journal = {Molecular Biology and Evolution},
number = {6},
pages = {724},
publisher = {Oxford University Press},
title = {{Cells on the move in Philadelphia}},
doi = {10.1091/mbc.E10-12-0958},
volume = {22},
year = {2011},
}
@article{3965,
abstract = {The elevation function on a smoothly embedded 2-manifold in R-3 reflects the multiscale topography of cavities and protrusions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Transporting the concept from the smooth to the piecewise linear category, this paper describes an algorithm for finding all local maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian curvature of the 2-manifold.},
author = {Wang, Bei and Edelsbrunner, Herbert and Morozov, Dmitriy},
journal = {Journal of Experimental Algorithmics},
number = {2.2},
pages = {1 -- 13},
publisher = {ACM},
title = {{Computing elevation maxima by searching the Gauss sphere}},
doi = {10.1145/1963190.1970375},
volume = {16},
year = {2011},
}
@article{3364,
abstract = {Molecular noise, which arises from the randomness of the discrete events in the cell, significantly influences fundamental biological processes. Discrete-state continuous-time stochastic models (CTMC) can be used to describe such effects, but the calculation of the probabilities of certain events is computationally expensive. We present a comparison of two analysis approaches for CTMC. On one hand, we estimate the probabilities of interest using repeated Gillespie simulation and determine the statistical accuracy that we obtain. On the other hand, we apply a numerical reachability analysis that approximates the probability distributions of the system at several time instances. We use examples of cellular processes to demonstrate the superiority of the reachability analysis if accurate results are required.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
journal = {Theoretical Computer Science},
number = {21},
pages = {2128 -- 2141},
publisher = {Elsevier},
title = {{Approximation of event probabilities in noisy cellular processes}},
doi = {10.1016/j.tcs.2010.10.022},
volume = {412},
year = {2011},
}
@article{491,
abstract = {In their search for antigens, lymphocytes continuously shuttle among blood vessels, lymph vessels, and lymphatic tissues. Chemokines mediate entry of lymphocytes into lymphatic tissues, and sphingosine 1-phosphate (S1P) promotes localization of lymphocytes to the vasculature. Both signals are sensed through G protein-coupled receptors (GPCRs). Most GPCRs undergo ligand-dependent homologous receptor desensitization, a process that decreases their signaling output after previous exposure to high ligand concentration. Such desensitization can explain why lymphocytes do not take an intermediate position between two signals but rather oscillate between them. The desensitization of S1P receptor 1 (S1PR1) is mediated by GPCR kinase 2 (GRK2). Deletion of GRK2 in lymphocytes compromises desensitization by high vascular S1P concentrations, thereby reducing responsiveness to the chemokine signal and trapping the cells in the vascular compartment. The desensitization kinetics of S1PR1 allows lymphocytes to dynamically shuttle between vasculature and lymphatic tissue, although the positional information in both compartments is static.},
author = {Eichner, Alexander and Sixt, Michael K},
journal = {Science Signaling},
number = {198},
publisher = {American Association for the Advancement of Science},
title = {{Setting the clock for recirculating lymphocytes}},
doi = {10.1126/scisignal.2002617},
volume = {4},
year = {2011},
}
@unpublished{3338,
abstract = {We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves inde- pendently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respec- tively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite- precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as power- ful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms, that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.},
author = {Chatterjee, Krishnendu},
booktitle = {arXiv},
pages = {1 -- 51},
publisher = {ArXiv},
title = {{Bounded rationality in concurrent parity games}},
year = {2011},
}
@misc{5384,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by parity conditions. We consider three qualitative decision problems: (i) the positive decision problem asks whether there is a word that is accepted with positive probability; (ii) the almost decision problem asks whether there is a word that is accepted with probability 1; and (iii) the limit decision problem asks whether for every ε > 0 there is a word that is accepted with probability at least 1 − ε. We unify and generalize several decidability results for probabilistic automata over infinite words, and identify a robust (closed under union and intersection) subclass of probabilistic automata for which all the qualitative decision problems are decidable for parity conditions. We also show that if the input words are restricted to lasso shape words, then the positive and almost problems are decidable for all probabilistic automata with parity conditions.},
author = {Chatterjee, Krishnendu and Tracol, Mathieu},
issn = {2664-1690},
pages = {30},
publisher = {IST Austria},
title = {{Decidable problems for probabilistic automata on infinite words}},
doi = {10.15479/AT:IST-2011-0004},
year = {2011},
}
@inproceedings{3345,
abstract = {We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode ω-regular specifications, and the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition re- quires that the resource level never drops below 0, and the mean-payoff condi- tion requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean- payoff parity MDPs, the problem is solvable in polynomial time, improving a recent PSPACE bound.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Warsaw, Poland},
pages = {206 -- 218},
publisher = {Springer},
title = {{Energy and mean-payoff parity Markov Decision Processes}},
doi = {10.1007/978-3-642-22993-0_21},
volume = {6907},
year = {2011},
}
@inproceedings{3326,
abstract = {Weighted automata map input words to numerical values. Ap- plications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. A weighted au- tomaton is defined with respect to a semiring. For the tropical semiring, the weight of a run is the sum of the weights of the transitions taken along the run, and the value of a word is the minimal weight of an accepting run on it. In the 90’s, Krob studied the decidability of problems on rational series defined with respect to the tropical semiring. Rational series are strongly related to weighted automata, and Krob’s results apply to them. In par- ticular, it follows from Krob’s results that the universality problem (that is, deciding whether the values of all words are below some threshold) is decidable for weighted automata defined with respect to the tropical semir- ing with domain ∪ {∞}, and that the equality problem is undecidable when the domain is ∪ {∞}. In this paper we continue the study of the borders of decidability in weighted automata, describe alternative and direct proofs of the above results, and tighten them further. Unlike the proofs of Krob, which are algebraic in their nature, our proofs stay in the terrain of state machines, and the reduction is from the halting problem of a two-counter machine. This enables us to significantly simplify Krob’s reasoning, make the un- decidability result accessible to the automata-theoretic community, and strengthen it to apply already to a very simple class of automata: all the states are accepting, there are no initial nor final weights, and all the weights on the transitions are from the set {−1, 0, 1}. The fact we work directly with the automata enables us to tighten also the decidability re- sults and to show that the universality problem for weighted automata defined with respect to the tropical semiring with domain ∪ {∞}, and in fact even with domain ≥0 ∪ {∞}, is PSPACE-complete. Our results thus draw a sharper picture about the decidability of decision problems for weighted automata, in both the front of containment vs. universality and the front of the ∪ {∞} vs. the ∪ {∞} domains.},
author = {Almagor, Shaull and Boker, Udi and Kupferman, Orna},
location = {Taipei, Taiwan},
pages = {482 -- 491},
publisher = {Springer},
title = {{What’s decidable about weighted automata }},
doi = {10.1007/978-3-642-24372-1_37},
volume = {6996},
year = {2011},
}