@misc{8067,
abstract = {With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, lithium metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the
mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (polymeric and inorganic), Lithium-sulphur and Li-O2 (air) batteries. A particular attention is paid to review recent developments in regard of prototype manufacturing and current state-ofthe-art of these battery technologies with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7.},
author = {Varzi, Alberto and Thanner, Katharina and Scipioni, Roberto and Di Lecce, Daniele and Hassoun, Jusef and Dörfler, Susanne and Altheus, Holger and Kaskel, Stefan and Prehal, Christian and Freunberger, Stefan Alexander},
issn = {2664-1690},
keywords = {Battery, Lithium metal, Lithium-sulphur, Lithium-air, All-solid-state},
pages = {63},
publisher = {IST Austria},
title = {{Current status and future perspectives of Lithium metal batteries}},
doi = {10.15479/AT:ISTA:8067},
year = {2020},
}
@misc{8097,
abstract = {Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks": points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology.},
author = {Kavcic, Bor},
keywords = {Escherichia coli, antibiotic combinations, translation, growth laws, drug interactions, bacterial physiology, translation inhibitors},
publisher = {IST Austria},
title = {{Analysis scripts and research data for the paper "Mechanisms of drug interactions between translation-inhibiting antibiotics"}},
doi = {10.15479/AT:ISTA:8097},
year = {2020},
}
@article{8105,
abstract = {Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches (active states) characterized by power-law size and duration distributions. These emergent features are typical of systems at the critical point of continuous phase transitions, and have led to the hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective behaviors in a number of systems, including the brain. Although considerable effort has been devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical aspects related to the temporal organization of bursts remain often poorly understood or controversial. Of crucial importance to understand the mechanisms responsible for emergent behaviors is the relationship between active and quiet periods, and the nature of the correlations. Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we demonstrate that such temporal organization shares important similarities with earthquake dynamics, and propose that specific power-law correlations and coupling between active and quiet states are distinctive characteristics of a class of systems with self-organization at criticality.},
author = {Lombardi, Fabrizio and Wang, Jilin W.J.L. and Zhang, Xiyun and Ivanov, Plamen Ch},
issn = {2100-014X},
journal = {EPJ Web of Conferences},
publisher = {EDP Sciences},
title = {{Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality}},
doi = {10.1051/epjconf/202023000005},
volume = {230},
year = {2020},
}
@article{8139,
abstract = {Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and inter-cellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how it functions in planta. In order to facilitate the direct quantitative study of plant CME, here we review current routinely used methods and present refined, standardized quantitative imaging protocols which allow the detailed characterization of CME at multiple scales in plant tissues. These include: (i) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultra-structure of clathrin-coated vesicles; (ii) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (iii) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (iv) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.},
author = {Johnson, Alexander J and Gnyliukh, Nataliia and Kaufmann, Walter and Narasimhan, Madhumitha and Vert, G and Bednarek, SY and Friml, Jiří},
issn = {0021-9533},
journal = {Journal of Cell Science},
publisher = {The Company of Biologists},
title = {{Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis}},
doi = {10.1242/jcs.248062},
year = {2020},
}
@unpublished{8101,
abstract = {We propose a quantitative, scale-spanning model for same-material tribocharging. Our key insight is to account for mesoscale spatial correlations in donor/acceptor surface properties, which dramatically affect the macroscopic
charge transfer and quantitatively reconcile previous inconsistencies related to the microscale. We furthermore identify a viable mechanism by which the mesoscale features emerge, which may help constrain the list of donor/acceptor
candidates. As the only free-parameters in our model involve the atomic scale, data analyzed in light of it could help resolve the detailed mechanism of tribocharging.},
author = {Grosjean, Galien M and Wald, Sebastian and Sobarzo Ponce, Juan Carlos A and Waitukaitis, Scott R},
booktitle = {ArXiv},
pages = {5},
publisher = {ArXiv},
title = {{A quantitatively consistent, scale-spanning model for same-material tribocharging}},
year = {2020},
}
@unpublished{8081,
abstract = {Here, we employ micro- and nanosized cellulose particles, namely paper fines and cellulose
nanocrystals, to induce hierarchical organization over a wide length scale. After processing
them into carbonaceous materials, we demonstrate that these hierarchically organized materials
outperform the best materials for supercapacitors operating with organic electrolytes reported
in literature in terms of specific energy/power (Ragone plot) while showing hardly any capacity
fade over 4,000 cycles. The highly porous materials feature a specific surface area as high as
2500 m2ˑg-1 and exhibit pore sizes in the range of 0.5 to 200 nm as proven by scanning electron
microscopy and N2 physisorption. The carbonaceous materials have been further investigated
by X-ray photoelectron spectroscopy and RAMAN spectroscopy. Since paper fines are an
underutilized side stream in any paper production process, they are a cheap and highly available
feedstock to prepare carbonaceous materials with outstanding performance in electrochemical
applications. },
author = {Hobisch, Mathias A. and Mourad, Eléonore and Fischer, Wolfgang J. and Prehal, Christian and Eyley, Samuel and Childress, Anthony and Zankel, Armin and Mautner, Andreas and Breitenbach, Stefan and Rao, Apparao M. and Thielemans, Wim and Freunberger, Stefan Alexander and Eckhart, Rene and Bauer, Wolfgang and Spirk, Stefan },
title = {{High specific capacitance supercapacitors from hierarchically organized all-cellulose composites}},
year = {2020},
}
@article{8163,
abstract = {Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces.},
author = {Vegter, Gert and Wintraecken, Mathijs},
issn = {1588-2896},
journal = {Studia Scientiarum Mathematicarum Hungarica},
number = {2},
pages = {193--199},
publisher = {AKJournals},
title = {{Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes}},
doi = {10.1556/012.2020.57.2.1454},
volume = {57},
year = {2020},
}
@article{8162,
author = {Laukoter, Susanne and Pauler, Florian and Beattie, Robert J and Amberg, Nicole and Hansen, Andi H and Streicher, Carmen and Penz, Thomas and Bock, Christoph and Hippenmeyer, Simon},
issn = {0896-6273},
journal = {Neuron},
number = {9},
pages = {1--20},
publisher = {Elsevier},
title = {{Cell-type specificity of genomic imprinting in cerebral cortex}},
doi = {10.1016/j.neuron.2020.06.031},
volume = {107},
year = {2020},
}
@article{7389,
abstract = {Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space
W_p(R) for all p \in [1,\infty) \setminus {2}. We show that W_2(R) is also exceptional regarding the
parameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying
space, we prove that the exceptionality of p = 2 disappears if we replace R by the compact
interval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if
p is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1]))
cannot be embedded into Isom(W_1(R)).},
author = {Geher, Gyorgy Pal and Titkos, Tamas and Virosztek, Daniel},
issn = {10886850},
journal = {Transactions of the American Mathematical Society},
keywords = {Wasserstein space, isometric embeddings, isometric rigidity, exotic isometry flow},
number = {8},
pages = {5855--5883},
publisher = {American Mathematical Society},
title = {{Isometric study of Wasserstein spaces - the real line}},
doi = {10.1090/tran/8113},
volume = {373},
year = {2020},
}
@phdthesis{8156,
abstract = {We present solutions to several problems originating from geometry and discrete mathematics: existence of equipartitions, maps without Tverberg multiple points, and inscribing quadrilaterals. Equivariant obstruction theory is the natural topological approach to these type of questions. However, for the specific problems we consider it had yielded only partial or no results. We get our results by complementing equivariant obstruction theory with other techniques from topology and geometry.},
author = {Avvakumov, Sergey},
pages = {119},
publisher = {IST Austria},
title = {{Topological methods in geometry and discrete mathematics}},
doi = {10.15479/AT:ISTA:8156},
year = {2020},
}
@unpublished{7675,
abstract = {In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-physical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal non-equilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in non-equilibrium models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to a much smaller subspace that optimally realizes biological function prior to inference from data, our normative approach holds promise for mathematical models in systems biology.},
author = {Grah, Rok and Zoller, Benjamin and Tkačik, Gašper},
booktitle = {bioRxiv},
pages = {11},
publisher = {Cold Spring Harbor Laboratory},
title = {{Normative models of enhancer function}},
year = {2020},
}
@inproceedings{8186,
abstract = {Numerous methods have been proposed for probabilistic generative modelling of
3D objects. However, none of these is able to produce textured objects, which
renders them of limited use for practical tasks. In this work, we present the
first generative model of textured 3D meshes. Training such a model would
traditionally require a large dataset of textured meshes, but unfortunately,
existing datasets of meshes lack detailed textures. We instead propose a new
training methodology that allows learning from collections of 2D images without
any 3D information. To do so, we train our model to explain a distribution of
images by modelling each image as a 3D foreground object placed in front of a
2D background. Thus, it learns to generate meshes that when rendered, produce
images similar to those in its training set.
A well-known problem when generating meshes with deep networks is the
emergence of self-intersections, which are problematic for many use-cases. As a
second contribution we therefore introduce a new generation process for 3D
meshes that guarantees no self-intersections arise, based on the physical
intuition that faces should push one another out of the way as they move.
We conduct extensive experiments on our approach, reporting quantitative and
qualitative results on both synthetic data and natural images. These show our
method successfully learns to generate plausible and diverse textured 3D
samples for five challenging object classes.},
author = {Henderson, Paul M and Tsiminaki, Vagia and Lampert, Christoph},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
location = {Virtual},
pages = {7498--7507},
publisher = {CVF},
title = {{Leveraging 2D data to learn textured 3D mesh generation}},
year = {2020},
}
@inproceedings{8193,
abstract = {Multiple-environment Markov decision processes (MEMDPs) are MDPs equipped with not one, but multiple probabilistic transition functions, which represent the various possible unknown environments. While the previous research on MEMDPs focused on theoretical properties for long-run average payoff, we study them with discounted-sum payoff and focus on their practical advantages and applications. MEMDPs can be viewed as a special case of Partially observable and Mixed observability MDPs: the state of the system is perfectly observable, but not the environment. We show that the specific structure of MEMDPs allows for more efficient algorithmic analysis, in particular for faster belief updates. We demonstrate the applicability of MEMDPs in several domains. In particular, we formalize the sequential decision-making approach to contextual recommendation systems as MEMDPs and substantially improve over the previous MDP approach.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Karkhanis, Deep and Novotný, Petr and Royer, Amélie},
booktitle = {Proceedings of the 30th International Conference on Automated Planning and Scheduling},
issn = {23340843},
location = {Nancy, France},
pages = {48--56},
publisher = {Association for the Advancement of Artificial Intelligence},
title = {{Multiple-environment Markov decision processes: Efficient analysis and applications}},
volume = {30},
year = {2020},
}
@unpublished{8188,
abstract = {A natural approach to generative modeling of videos is to represent them as a
composition of moving objects. Recent works model a set of 2D sprites over a
slowly-varying background, but without considering the underlying 3D scene that
gives rise to them. We instead propose to model a video as the view seen while
moving through a scene with multiple 3D objects and a 3D background. Our model
is trained from monocular videos without any supervision, yet learns to
generate coherent 3D scenes containing several moving objects. We conduct
detailed experiments on two datasets, going beyond the visual complexity
supported by state-of-the-art generative approaches. We evaluate our method on
depth-prediction and 3D object detection---tasks which cannot be addressed by
those earlier works---and show it out-performs them even on 2D instance
segmentation and tracking.},
author = {Henderson, Paul M and Lampert, Christoph},
booktitle = {arXiv:2007.06705},
pages = {29},
title = {{Unsupervised object-centric video generation and decomposition in 3D}},
year = {2020},
}
@article{8199,
abstract = {We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states which is exponentially large in the inverse driving frequency. Within this lifetime, the quasi-steady state is characterized by maximum entropy subject to the constraint of fixed number of particles in the system's Floquet-Bloch bands. In such a state, all the non-universal properties of these bands are washed out, hence only the topological properties persist.},
author = {Gulden, Tobias and Berg, Erez and Rudner, Mark Spencer and Lindner, Netanel},
issn = {2542-4653},
journal = {SciPost Physics},
publisher = {SciPost Foundation},
title = {{Exponentially long lifetime of universal quasi-steady states in topological Floquet pumps}},
doi = {10.21468/scipostphys.9.1.015},
volume = {9},
year = {2020},
}
@inproceedings{8194,
abstract = {Fixed-point arithmetic is a popular alternative to floating-point arithmetic on embedded systems. Existing work on the verification of fixed-point programs relies on custom formalizations of fixed-point arithmetic, which makes it hard to compare the described techniques or reuse the implementations. In this paper, we address this issue by proposing and formalizing an SMT theory of fixed-point arithmetic. We present an intuitive yet comprehensive syntax of the fixed-point theory, and provide formal semantics for it based on rational arithmetic. We also describe two decision procedures for this theory: one based on the theory of bit-vectors and the other on the theory of reals. We implement the two decision procedures, and evaluate our implementations using existing mature SMT solvers on a benchmark suite we created. Finally, we perform a case study of using the theory we propose to verify properties of quantized neural networks.},
author = {Baranowski, Marek and He, Shaobo and Lechner, Mathias and Nguyen, Thanh Son and Rakamarić, Zvonimir},
booktitle = {Automated Reasoning},
isbn = {9783030510732},
issn = {16113349},
location = {Paris, France},
pages = {13--31},
publisher = {Springer Nature},
title = {{An SMT theory of fixed-point arithmetic}},
doi = {10.1007/978-3-030-51074-9_2},
volume = {12166},
year = {2020},
}
@inproceedings{8195,
abstract = {This paper presents a foundation for refining concurrent programs with structured control flow. The verification problem is decomposed into subproblems that aid interactive program development, proof reuse, and automation. The formalization in this paper is the basis of a new design and implementation of the Civl verifier.},
author = {Kragl, Bernhard and Qadeer, Shaz and Henzinger, Thomas A},
booktitle = {Computer Aided Verification},
isbn = {9783030532871},
issn = {0302-9743},
pages = {275--298},
publisher = {Springer Nature},
title = {{Refinement for structured concurrent programs}},
doi = {10.1007/978-3-030-53288-8_14},
volume = {12224},
year = {2020},
}
@inproceedings{8191,
abstract = {There has been a significant amount of research on hardware and software support for efficient concurrent data structures; yet, the question of how to build correct, simple, and scalable data structures has not yet been definitively settled. In this paper, we revisit this question from a minimalist perspective, and ask: what is the smallest amount of synchronization required for correct and efficient concurrent search data structures, and how could this minimal synchronization support be provided in hardware?
To address these questions, we introduce memory tagging, a simple hardware mechanism which enables the programmer to "tag" a dynamic set of memory locations, at cache-line granularity, and later validate whether the memory has been concurrently modified, with the possibility of updating one of the underlying locations atomically if validation succeeds. We provide several examples showing that this mechanism can enable fast and arguably simple concurrent data structure designs, such as lists, binary search trees, balanced search trees, range queries, and Software Transactional Memory (STM) implementations. We provide an implementation of memory tags in the Graphite multi-core simulator, showing that the mechanism can be implemented entirely at the level of L1 cache, and that it can enable non-trivial speedups versus existing implementations of the above data structures.},
author = {Alistarh, Dan-Adrian and Brown, Trevor A and Singhal, Nandini},
booktitle = {Annual ACM Symposium on Parallelism in Algorithms and Architectures},
isbn = {9781450369350},
location = {Virtual Event, United States},
number = {7},
pages = {37--49},
publisher = {ACM},
title = {{Memory tagging: Minimalist synchronization for scalable concurrent data structures}},
doi = {10.1145/3350755.3400213},
year = {2020},
}
@unpublished{8198,
abstract = {In this work, we investigate how the critical driving amplitude at the Floquet MBL-to-ergodic phase transition differs between smooth and non-smooth driving over a wide range of driving frequencies. To this end, we study numerically a disordered spin-1/2 chain which is periodically driven by a sine or a square-wave drive, respectively. In both cases, the critical driving amplitude increases monotonically with the frequency, and at large frequencies, it is identical for the two drives in the appropriate normalization. However, at low and intermediate frequencies the critical amplitude of the square-wave drive depends strongly on the frequency, while the one of the cosine drive is almost constant in a wide frequency range. By analyzing the density of drive-induced resonance in a Fourier space perspective, we conclude that this difference is due to resonances induced by the higher harmonics which are present (absent) in the Fourier spectrum of the square-wave (sine) drive. Furthermore, we suggest a numerically efficient method to estimate the frequency dependence of the critical driving amplitudes for different drives, based on measuring the density of drive-induced resonances.},
author = {Diringer, Asaf A. and Gulden, Tobias},
booktitle = {arXiv:2007.14879},
pages = {10},
publisher = {arXiv},
title = {{Robustness of the Floquet many-body localized phase in the presence of a smooth and a non-smooth drive}},
year = {2020},
}
@article{8203,
abstract = {Using inelastic cotunneling spectroscopy we observe a zero field splitting within the spin triplet manifold of Ge hut wire quantum dots. The states with spin ±1 in the confinement direction are energetically favored by up to 55 μeV compared to the spin 0 triplet state because of the strong spin–orbit coupling. The reported effect should be observable in a broad class of strongly confined hole quantum-dot systems and might need to be considered when operating hole spin qubits.},
author = {Katsaros, Georgios and Kukucka, Josip and Vukušić, Lada and Watzinger, Hannes and Gao, Fei and Wang, Ting and Zhang, Jian-Jun and Held, Karsten},
issn = {1530-6984},
journal = {Nano Letters},
number = {7},
pages = {5201--5206},
publisher = {ACS Publications},
title = {{Zero field splitting of heavy-hole states in quantum dots}},
doi = {10.1021/acs.nanolett.0c01466},
volume = {20},
year = {2020},
}
@misc{7689,
abstract = {These are the supplementary research data to the publication "Zero field splitting of heavy-hole states in quantum dots". All matrix files have the same format. Within each column the bias voltage is changed. Each column corresponds to either a different gate voltage or magnetic field. The voltage values are given in mV, the current values in pA. Find a specific description in the included Readme file.
},
author = {Katsaros, Georgios},
publisher = {IST Austria},
title = {{Supplementary data for "Zero field splitting of heavy-hole states in quantum dots"}},
doi = {10.15479/AT:ISTA:7689},
year = {2020},
}
@article{6184,
abstract = {We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.},
author = {Alt, Johannes and Erdös, László and Krüger, Torben H and Schröder, Dominik J},
journal = {Annals of Probability},
number = {2},
pages = {963--1001},
publisher = {Project Euclid},
title = {{Correlated random matrices: Band rigidity and edge universality}},
volume = {48},
year = {2020},
}
@article{7546,
abstract = {The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change.},
author = {Beets, Isabel and Zhang, Gaotian and Fenk, Lorenz A. and Chen, Changchun and Nelson, Geoffrey M. and Félix, Marie-Anne and de Bono, Mario},
issn = {0896-6273},
journal = {Neuron},
number = {1},
pages = {106--121.e10},
publisher = {Cell Press},
title = {{Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression}},
doi = {10.1016/j.neuron.2019.10.001},
volume = {105},
year = {2020},
}
@article{8196,
abstract = {This paper aims to obtain a strong convergence result for a Douglas–Rachford splitting method with inertial extrapolation step for finding a zero of the sum of two set-valued maximal monotone operators without any further assumption of uniform monotonicity on any of the involved maximal monotone operators. Furthermore, our proposed method is easy to implement and the inertial factor in our proposed method is a natural choice. Our method of proof is of independent interest. Finally, some numerical implementations are given to confirm the theoretical analysis.},
author = {Shehu, Yekini and Dong, Qiao-Li and Liu, Lu-Lu and Yao, Jen-Chih},
issn = {1389-4420},
journal = {Optimization and Engineering},
publisher = {Springer Nature},
title = {{New strong convergence method for the sum of two maximal monotone operators}},
doi = {10.1007/s11081-020-09544-5},
year = {2020},
}
@article{8220,
abstract = {Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.},
author = {Corominas-Murtra, Bernat and Scheele, Colinda L.G.J. and Kishi, Kasumi and Ellenbroek, Saskia I.J. and Simons, Benjamin D. and Van Rheenen, Jacco and Hannezo, Edouard B},
issn = {10916490},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = {29},
pages = {16969--16975},
publisher = {National Academy of Sciences},
title = {{Stem cell lineage survival as a noisy competition for niche access}},
doi = {10.1073/pnas.1921205117},
volume = {117},
year = {2020},
}
@article{7416,
abstract = {Earlier, we demonstrated that transcript levels of METAL TOLERANCE PROTEIN2 (MTP2) and of HEAVY METAL ATPase2 (HMA2) increase strongly in roots of Arabidopsis upon prolonged zinc (Zn) deficiency and respond to shoot physiological Zn status, and not to the local Zn status in roots. This provided evidence for shoot-to-root communication in the acclimation of plants to Zn deficiency. Zn-deficient soils limit both the yield and quality of agricultural crops and can result in clinically relevant nutritional Zn deficiency in human populations. Implementing Zn deficiency during cultivation of the model plant Arabidopsis thaliana on agar-solidified media is difficult because trace element contaminations are present in almost all commercially available agars. Here, we demonstrate root morphological acclimations to Zn deficiency on agar-solidified medium following the effective removal of contaminants. These advancements allow reproducible phenotyping toward understanding fundamental plant responses to deficiencies of Zn and other essential trace elements.},
author = {Sinclair, Scott A and Krämer, U.},
issn = {1559-2324},
journal = {Plant Signaling & Behavior},
number = {1},
publisher = {Informa UK Limited},
title = {{Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation}},
doi = {10.1080/15592324.2019.1687175},
volume = {15},
year = {2020},
}
@article{7417,
abstract = {Previously, we reported that the allelic de-etiolated by zinc (dez) and trichome birefringence (tbr) mutants exhibit photomorphogenic development in the dark, which is enhanced by high Zn. TRICHOME BIREFRINGENCE-LIKE proteins had been implicated in transferring acetyl groups to various hemicelluloses. Pectin O-acetylation levels were lower in dark-grown dez seedlings than in the wild type. We observed Zn-enhanced photomorphogenesis in the dark also in the reduced wall acetylation 2 (rwa2-3) mutant, which exhibits lowered O-acetylation levels of cell wall macromolecules including pectins and xyloglucans, supporting a role for cell wall macromolecule O-acetylation in the photomorphogenic phenotypes of rwa2-3 and dez. Application of very short oligogalacturonides (vsOGs) restored skotomorphogenesis in dark-grown dez and rwa2-3. Here we demonstrate that in dez, O-acetylation of non-pectin cell wall components, notably of xyloglucan, is enhanced. Our results highlight the complexity of cell wall homeostasis and indicate against an influence of xyloglucan O-acetylation on light-dependent seedling development.},
author = {Sinclair, Scott A and Gille, S. and Pauly, M. and Krämer, U.},
issn = {1559-2324},
journal = {Plant Signaling & Behavior},
number = {1},
publisher = {Informa UK Limited},
title = {{Regulation of acetylation of plant cell wall components is complex and responds to external stimuli}},
doi = {10.1080/15592324.2019.1687185},
volume = {15},
year = {2020},
}
@phdthesis{7680,
abstract = {Proteins and their complex dynamic interactions regulate cellular mechanisms from sensing and transducing extracellular signals, to mediating genetic responses, and sustaining or changing cell morphology. To manipulate these protein-protein interactions (PPIs) that govern the behavior and fate of cells, synthetically constructed, genetically encoded tools provide the means to precisely target proteins of interest (POIs), and control their subcellular localization and activity in vitro and in vivo. Ideal synthetic tools react to an orthogonal cue, i.e. a trigger that does not activate any other endogenous process, thereby allowing manipulation of the POI alone.
In optogenetics, naturally occurring photosensory domain from plants, algae and bacteria are re-purposed and genetically fused to POIs. Illumination with light of a specific wavelength triggers a conformational change that can mediate PPIs, such as dimerization or oligomerization. By using light as a trigger, these tools can be activated with high spatial and temporal precision, on subcellular and millisecond scales. Chemogenetic tools consist of protein domains that recognize and bind small molecules. By genetic fusion to POIs, these domains can mediate PPIs upon addition of their specific ligands, which are often synthetically designed to provide highly specific interactions and exhibit good bioavailability.
Most optogenetic tools to mediate PPIs are based on well-studied photoreceptors responding to red, blue or near-UV light, leaving a striking gap in the green band of the visible light spectrum. Among both optogenetic and chemogenetic tools, there is an abundance of methods to induce PPIs, but tools to disrupt them require UV illumination, rely on covalent linkage and subsequent enzymatic cleavage or initially result in protein clustering of unknown stoichiometry.
This work describes how the recently structurally and photochemically characterized green-light responsive cobalamin-binding domains (CBDs) from bacterial transcription factors were re-purposed to function as a green-light responsive optogenetic tool. In contrast to previously engineered optogenetic tools, CBDs do not induce PPI, but rather confer a PPI already upon expression, which can be rapidly disrupted by illumination. This was employed to mimic inhibition of constitutive activity of a growth factor receptor, and successfully implement for cell signalling in mammalian cells and in vivo to rescue development in zebrafish. This work further describes the development and application of a chemically induced de-dimerizer (CDD) based on a recently identified and structurally described bacterial oxyreductase. CDD forms a dimer upon expression in absence of its cofactor, the flavin derivative F420. Safety and of domain expression and ligand exposure are demonstrated in vitro and in vivo in zebrafish. The system is further applied to inhibit cell signalling output from a chimeric receptor upon F420 treatment.
CBDs and CDD expand the repertoire of synthetic tools by providing novel mechanisms of mediating PPIs, and by recognizing previously not utilized cues. In the future, they can readily be combined with existing synthetic tools to functionally manipulate PPIs in vitro and in vivo.},
author = {Kainrath, Stephanie},
issn = {2663-337X},
pages = {98},
publisher = {IST Austria},
title = {{Synthetic tools for optogenetic and chemogenetic inhibition of cellular signals}},
doi = {10.15479/AT:ISTA:7680},
year = {2020},
}
@phdthesis{7944,
abstract = {This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.
For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.
In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.},
author = {Masárová, Zuzana},
isbn = {978-3-99078-005-3},
issn = {2663-337X},
keywords = {reconfiguration, reconfiguration graph, triangulations, flip, constrained triangulations, shellability, piecewise-linear balls, token swapping, trees, coloured weighted token swapping},
pages = {160},
publisher = {IST Austria},
title = {{Reconfiguration problems}},
doi = {10.15479/AT:ISTA:7944},
year = {2020},
}
@article{6185,
abstract = {For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).},
author = {Erdös, László and Krüger, Torben H and Schröder, Dominik J},
issn = {1432-0916},
journal = {Communications in Mathematical Physics},
pages = {50},
publisher = {Springer Nature},
title = {{Cusp universality for random matrices I: Local law and the complex hermitian case}},
doi = {10.1007/s00220-019-03657-4},
year = {2020},
}
@article{6358,
abstract = {We study dynamical optimal transport metrics between density matricesassociated to symmetric Dirichlet forms on finite-dimensional C∗-algebras. Our settingcovers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein–Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, andspectral gap estimates.},
author = {Carlen, Eric A. and Maas, Jan},
issn = {15729613},
journal = {Journal of Statistical Physics},
number = {2},
pages = {319--378},
publisher = {Springer Nature},
title = {{Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems}},
doi = {10.1007/s10955-019-02434-w},
volume = {178},
year = {2020},
}
@phdthesis{7258,
abstract = {Many flows encountered in nature and applications are characterized by a chaotic motion known as turbulence. Turbulent flows generate intense friction with pipe walls and are responsible for considerable amounts of energy losses at world scale. The nature of turbulent friction and techniques aimed at reducing it have been subject of extensive research over the last century, but no definite answer has been found yet. In this thesis we show that in pipes at moderate turbulent Reynolds numbers friction is better described by the power law first introduced by Blasius and not by the Prandtl–von Kármán formula. At higher Reynolds numbers, large scale motions gradually become more important in the flow and can be related to the change in scaling of friction. Next, we present a series of new techniques that can relaminarize turbulence by suppressing a key mechanism that regenerates it at walls, the lift–up effect. In addition, we investigate the process of turbulence decay in several experiments and discuss the drag reduction potential. Finally, we examine the behavior of friction under pulsating conditions inspired by the human heart cycle and we show that under such circumstances turbulent friction can be reduced to produce energy savings.},
author = {Scarselli, Davide},
issn = {2663-337X},
pages = {174},
publisher = {IST Austria},
title = {{New approaches to reduce friction in turbulent pipe flow}},
doi = {10.15479/AT:ISTA:7258},
year = {2020},
}
@article{6563,
abstract = {This paper presents two algorithms. The first decides the existence of a pointed homotopy between given simplicial maps 𝑓,𝑔:𝑋→𝑌, and the second computes the group [𝛴𝑋,𝑌]∗ of pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed simply connected. More generally, these algorithms work relative to 𝐴⊆𝑋.},
author = {Filakovský, Marek and Vokřínek, Lukas},
issn = {16153383},
journal = {Foundations of Computational Mathematics},
pages = {311--330},
publisher = {Springer Nature},
title = {{Are two given maps homotopic? An algorithmic viewpoint}},
doi = {10.1007/s10208-019-09419-x},
volume = {20},
year = {2020},
}
@article{6593,
abstract = {We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.},
author = {Shehu, Yekini and Li, Xiao-Huan and Dong, Qiao-Li},
issn = {1017-1398},
journal = {Numerical Algorithms},
pages = {365--388},
publisher = {Springer Nature},
title = {{An efficient projection-type method for monotone variational inequalities in Hilbert spaces}},
doi = {10.1007/s11075-019-00758-y},
volume = {84},
year = {2020},
}
@article{6649,
abstract = {While Hartree–Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree–Fock state given by plane waves and introduce collective particle–hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann–Brueckner–type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
},
author = {Benedikter, Niels P and Nam, Phan Thành and Porta, Marcello and Schlein, Benjamin and Seiringer, Robert},
issn = {1432-0916},
journal = {Communications in Mathematical Physics},
pages = {2097–2150},
publisher = {Springer Nature},
title = {{Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime}},
doi = {10.1007/s00220-019-03505-5},
volume = {374},
year = {2020},
}
@phdthesis{8032,
abstract = {Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.”
In this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus.},
author = {Huszár, Kristóf},
isbn = {978-3-99078-006-0},
issn = {2663-337X},
pages = {xviii+120},
publisher = {IST Austria},
title = {{Combinatorial width parameters for 3-dimensional manifolds}},
doi = {10.15479/AT:ISTA:8032},
year = {2020},
}
@phdthesis{7460,
abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications.
For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.},
author = {Ölsböck, Katharina},
issn = {2663-337X},
keywords = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry},
pages = {155},
publisher = {IST Austria},
title = {{The hole system of triangulated shapes}},
doi = {10.15479/AT:ISTA:7460},
year = {2020},
}
@phdthesis{7896,
abstract = {A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems
like computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.
Almost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.
However, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic
problem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.
Our main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions. },
author = {Kamath Hosdurg, Chethan},
issn = {2663-337X},
pages = {126},
publisher = {IST Austria},
title = {{On the average-case hardness of total search problems}},
doi = {10.15479/AT:ISTA:7896},
year = {2020},
}
@article{6761,
abstract = {In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.},
author = {Avni, Guy and Henzinger, Thomas A and Kupferman, Orna},
issn = {03043975},
journal = {Theoretical Computer Science},
pages = {42--55},
publisher = {Elsevier},
title = {{Dynamic resource allocation games}},
doi = {10.1016/j.tcs.2019.06.031},
volume = {807},
year = {2020},
}
@article{6796,
abstract = {Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.},
author = {Stella, Federico and Urdapilleta, Eugenio and Luo, Yifan and Treves, Alessandro},
issn = {10981063},
journal = {Hippocampus},
number = {4},
pages = {302--313},
publisher = {Wiley},
title = {{Partial coherence and frustration in self-organizing spherical grids}},
doi = {10.1002/hipo.23144},
volume = {30},
year = {2020},
}
@article{6808,
abstract = {Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.},
author = {Jahr, Wiebke and Velicky, Philipp and Danzl, Johann G},
issn = {1046-2023},
journal = {Methods},
number = {3},
pages = {27--41},
publisher = {Elsevier},
title = {{Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens}},
doi = {10.1016/j.ymeth.2019.07.019},
volume = {174},
year = {2020},
}
@article{6918,
abstract = {We consider the classic problem of Network Reliability. A network is given together with a source vertex, one or more target vertices, and probabilities assigned to each of the edges. Each edge of the network is operable with its associated probability and the problem is to determine the probability of having at least one source-to-target path that is entirely composed of operable edges. This problem is known to be NP-hard.
We provide a novel scalable algorithm to solve the Network Reliability problem when the treewidth of the underlying network is small. We also show our algorithm’s applicability for real-world transit networks that have small treewidth, including the metro networks of major cities, such as London and Tokyo. Our algorithm leverages tree decompositions to shrink the original graph into much smaller graphs, for which reliability can be efficiently and exactly computed using a brute force method. To the best of our knowledge, this is the first exact algorithm for Network Reliability that can scale to handle real-world instances of the problem.},
author = {Goharshady, Amir Kafshdar and Mohammadi, Fatemeh},
issn = {09518320},
journal = {Reliability Engineering and System Safety},
publisher = {Elsevier},
title = {{An efficient algorithm for computing network reliability in small treewidth}},
doi = {10.1016/j.ress.2019.106665},
volume = {193},
year = {2020},
}
@article{6997,
author = {Zhang, Yuzhou and Friml, Jiří},
issn = {1469-8137},
journal = {New Phytologist},
number = {3},
pages = {1049--1052},
publisher = {Wiley},
title = {{Auxin guides roots to avoid obstacles during gravitropic growth}},
doi = {10.1111/nph.16203},
volume = {225},
year = {2020},
}
@article{7142,
abstract = {The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin.},
author = {Gallei, Michelle C and Luschnig, C and Friml, Jiří},
issn = {1879-0356},
journal = {Current Opinion in Plant Biology},
pages = {43--49},
publisher = {Elsevier},
title = {{Auxin signalling in growth: Schrödinger's cat out of the bag}},
doi = {10.1016/j.pbi.2019.10.003},
volume = {53},
year = {2020},
}
@article{7149,
abstract = {In recent years, many genes have been associated with chromatinopathies classified as “Cornelia de Lange Syndrome‐like.” It is known that the phenotype of these patients becomes less recognizable, overlapping to features characteristic of other syndromes caused by genetic variants affecting different regulators of chromatin structure and function. Therefore, Cornelia de Lange syndrome diagnosis might be arduous due to the seldom discordance between unexpected molecular diagnosis and clinical evaluation. Here, we review the molecular features of Cornelia de Lange syndrome, supporting the hypothesis that “CdLS‐like syndromes” are part of a larger “rare disease family” sharing multiple clinical features and common disrupted molecular pathways.},
author = {Avagliano, Laura and Parenti, Ilaria and Grazioli, Paolo and Di Fede, Elisabetta and Parodi, Chiara and Mariani, Milena and Kaiser, Frank J. and Selicorni, Angelo and Gervasini, Cristina and Massa, Valentina},
issn = {1399-0004},
journal = {Clinical Genetics},
number = {1},
pages = {3--11},
publisher = {Wiley},
title = {{Chromatinopathies: A focus on Cornelia de Lange syndrome}},
doi = {10.1111/cge.13674},
volume = {97},
year = {2020},
}
@article{7166,
abstract = {In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.},
author = {Ucar, Mehmet C and Lipowsky, Reinhard},
issn = {1530-6992},
journal = {Nano Letters},
number = {1},
pages = {669--676},
publisher = {ACS},
title = {{Collective force generation by molecular motors is determined by strain-induced unbinding}},
doi = {10.1021/acs.nanolett.9b04445},
volume = {20},
year = {2020},
}
@article{7204,
abstract = {Plant root architecture dynamically adapts to various environmental conditions, such as salt‐containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor‐protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs‐protein phosphatase 2C (PP2C) mechanism is identified. The PYLs‐PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase‐mediated phosphorylation of PIN‐FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross‐talk between the stress hormone ABA and the versatile developmental regulator auxin.},
author = {Li, Yang and Wang, Yaping and Tan, Shutang and Li, Zhen and Yuan, Zhi and Glanc, Matous and Domjan, David and Wang, Kai and Xuan, Wei and Guo, Yan and Gong, Zhizhong and Friml, Jiří and Zhang, Jing},
issn = {2198-3844},
journal = {Advanced Science},
number = {3},
publisher = {Wiley},
title = {{Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex}},
doi = {10.1002/advs.201901455},
volume = {7},
year = {2020},
}
@article{7212,
abstract = {The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process.},
author = {Tkadlec, Josef and Pavlogiannis, Andreas and Chatterjee, Krishnendu and Nowak, Martin A.},
issn = {15537358},
journal = {PLoS computational biology},
publisher = {PLoS},
title = {{Limits on amplifiers of natural selection under death-Birth updating}},
doi = {10.1371/journal.pcbi.1007494},
volume = {16},
year = {2020},
}
@article{7219,
abstract = {Root system architecture (RSA), governed by the phytohormone auxin, endows plants with an adaptive advantage in particular environments. Using geographically representative arabidopsis (Arabidopsis thaliana) accessions as a resource for GWA mapping, Waidmann et al. and Ogura et al. recently identified two novel components involved in modulating auxin-mediated RSA and conferring plant fitness in particular habitats.},
author = {Xiao, Guanghui and Zhang, Yuzhou},
issn = {13601385},
journal = {Trends in Plant Science},
number = {2},
pages = {121--123},
publisher = {Elsevier},
title = {{Adaptive growth: Shaping auxin-mediated root system architecture}},
doi = {10.1016/j.tplants.2019.12.001},
volume = {25},
year = {2020},
}
@article{7224,
abstract = {Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.},
author = {Rybicki, Joel and Abrego, Nerea and Ovaskainen, Otso},
issn = {1461-023X},
journal = {Ecology Letters},
number = {3},
pages = {506--517},
publisher = {Wiley},
title = {{Habitat fragmentation and species diversity in competitive communities}},
doi = {10.1111/ele.13450},
volume = {23},
year = {2020},
}