@article{7932,
abstract = {Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer.},
author = {Xu, Duo and Varshney, Atul and Ma, Xingyu and Song, Baofang and Riedl, Michael and Avila, Marc and Hof, Björn},
issn = {10916490},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = {21},
pages = {11233--11239},
publisher = {National Academy of Sciences},
title = {{Nonlinear hydrodynamic instability and turbulence in pulsatile flow}},
doi = {10.1073/pnas.1913716117},
volume = {117},
year = {2020},
}
@article{7933,
abstract = {We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance.},
author = {Maslov, Mikhail and Lemeshko, Mikhail and Yakaboylu, Enderalp},
issn = {24699969},
journal = {Physical Review B},
number = {18},
publisher = {American Physical Society},
title = {{Synthetic spin-orbit coupling mediated by a bosonic environment}},
doi = {10.1103/PhysRevB.101.184104},
volume = {101},
year = {2020},
}
@article{7939,
abstract = {We design fast deterministic algorithms for distance computation in the Congested Clique model. Our key contributions include:
A (2+ϵ)-approximation for all-pairs shortest paths in O(log2n/ϵ) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model.
A (1+ϵ)-approximation for multi-source shortest paths from O(n−−√) sources in O(log2n/ϵ) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size.
Our main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in O~(n1/6) rounds. },
author = {Censor-Hillel, Keren and Dory, Michal and Korhonen, Janne and Leitersdorf, Dean},
issn = {14320452},
journal = {Distributed Computing},
publisher = {Springer Nature},
title = {{Fast approximate shortest paths in the congested clique}},
doi = {10.1007/s00446-020-00380-5},
year = {2020},
}
@article{7940,
abstract = {We prove that the Yangian associated to an untwisted symmetric affine Kac–Moody Lie algebra is isomorphic to the Drinfeld double of a shuffle algebra. The latter is constructed in [YZ14] as an algebraic formalism of cohomological Hall algebras. As a consequence, we obtain the Poincare–Birkhoff–Witt (PBW) theorem for this class of affine Yangians. Another independent proof of the PBW theorem is given recently by Guay, Regelskis, and Wendlandt [GRW18].},
author = {Yang, Yaping and Zhao, Gufang},
issn = {1531586X},
journal = {Transformation Groups},
publisher = {Springer Nature},
title = {{The PBW theorem for affine Yangians}},
doi = {10.1007/s00031-020-09572-6},
year = {2020},
}
@inbook{7941,
abstract = {Expansion microscopy is a recently developed super-resolution imaging technique, which provides an alternative to optics-based methods such as deterministic approaches (e.g. STED) or stochastic approaches (e.g. PALM/STORM). The idea behind expansion microscopy is to embed the biological sample in a swellable gel, and then to expand it isotropically, thereby increasing the distance between the fluorophores. This approach breaks the diffraction barrier by simply separating the emission point-spread-functions of the fluorophores. The resolution attainable in expansion microscopy is thus directly dependent on the separation that can be achieved, i.e. on the expansion factor. The original implementation of the technique achieved an expansion factor of fourfold, for a resolution of 70–80 nm. The subsequently developed X10 method achieves an expansion factor of 10-fold, for a resolution of 25–30 nm. This technique can be implemented with minimal technical requirements on any standard fluorescence microscope, and is more easily applied for multi-color imaging than either deterministic or stochastic super-resolution approaches. This renders X10 expansion microscopy a highly promising tool for new biological discoveries, as discussed here, and as demonstrated by several recent applications.},
author = {Truckenbrodt, Sven M and Rizzoli, Silvio O.},
booktitle = {Methods in Cell Biology},
issn = {0091679X},
publisher = {Elsevier},
title = {{Simple multi-color super-resolution by X10 microscopy}},
doi = {10.1016/bs.mcb.2020.04.016},
year = {2020},
}