@article{12349, abstract = {Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. We show experimentally that, in agreement with our predictions, receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types.}, author = {Gupta, Divyansh and Mlynarski, Wiktor F and Sumser, Anton L and Symonova, Olga and Svaton, Jan and Jösch, Maximilian A}, issn = {1546-1726}, journal = {Nature Neuroscience}, pages = {606--614}, publisher = {Springer Nature}, title = {{Panoramic visual statistics shape retina-wide organization of receptive fields}}, doi = {10.1038/s41593-023-01280-0}, volume = {26}, year = {2023}, } @misc{12370, abstract = {Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. We show experimentally that, in agreement with our predictions, receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types. }, author = {Gupta, Divyansh and Sumser, Anton L and Jösch, Maximilian A}, publisher = {Institute of Science and Technology Austria}, title = {{Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields}}, doi = {10.15479/AT:ISTA:12370}, year = {2023}, } @article{12829, abstract = {The deployment of direct formate fuel cells (DFFCs) relies on the development of active and stable catalysts for the formate oxidation reaction (FOR). Palladium, providing effective full oxidation of formate to CO2, has been widely used as FOR catalyst, but it suffers from low stability, moderate activity, and high cost. Herein, we detail a colloidal synthesis route for the incorporation of P on Pd2Sn nanoparticles. These nanoparticles are dispersed on carbon black and the obtained composite is used as electrocatalytic material for the FOR. The Pd2Sn0.8P-based electrodes present outstanding catalytic activities with record mass current densities up to 10.0 A mgPd-1, well above those of Pd1.6Sn/C reference electrode. These high current densities are further enhanced by increasing the temperature from 25 °C to 40 °C. The Pd2Sn0.8P electrode also allows for slowing down the rapid current decay that generally happens during operation and can be rapidly re-activated through potential cycling. The excellent catalytic performance obtained is rationalized using density functional theory (DFT) calculations.}, author = {Montaña-Mora, Guillem and Qi, Xueqiang and Wang, Xiang and Chacón-Borrero, Jesus and Martinez-Alanis, Paulina R. and Yu, Xiaoting and Li, Junshan and Xue, Qian and Arbiol, Jordi and Ibáñez, Maria and Cabot, Andreu}, issn = {1572-6657}, journal = {Journal of Electroanalytical Chemistry}, publisher = {Elsevier}, title = {{Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction}}, doi = {10.1016/j.jelechem.2023.117369}, volume = {936}, year = {2023}, } @article{12764, abstract = {We study a new discretization of the Gaussian curvature for polyhedral surfaces. This discrete Gaussian curvature is defined on each conical singularity of a polyhedral surface as the quotient of the angle defect and the area of the Voronoi cell corresponding to the singularity. We divide polyhedral surfaces into discrete conformal classes using a generalization of discrete conformal equivalence pioneered by Feng Luo. We subsequently show that, in every discrete conformal class, there exists a polyhedral surface with constant discrete Gaussian curvature. We also provide explicit examples to demonstrate that this surface is in general not unique.}, author = {Kourimska, Hana}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {123--153}, publisher = {Springer Nature}, title = {{Discrete yamabe problem for polyhedral surfaces}}, doi = {10.1007/s00454-023-00484-2}, volume = {70}, year = {2023}, } @phdthesis{13331, abstract = {The extension of extremal combinatorics to the setting of exterior algebra is a work in progress that gained attention recently. In this thesis, we study the combinatorial structure of exterior algebra by introducing a dictionary that translates the notions from the set systems into the framework of exterior algebra. We show both generalizations of celebrated Erdös--Ko--Rado theorem and Hilton--Milner theorem to the setting of exterior algebra in the simplest non-trivial case of two-forms. }, author = {Köse, Seyda}, issn = {2791-4585}, pages = {26}, publisher = {Institute of Science and Technology Austria}, title = {{Exterior algebra and combinatorics}}, doi = {10.15479/at:ista:13331}, year = {2023}, }