@article{12836, abstract = {Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two-dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high-power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2 to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton-polaritons presents an attractive approach to control optical responses without the need for large magnets or high-intensity optical pump powers.}, author = {Khatoniar, Mandeep and Yama, Nicholas and Ghazaryan, Areg and Guddala, Sriram and Ghaemi, Pouyan and Majumdar, Kausik and Menon, Vinod}, issn = {2195-1071}, journal = {Advanced Optical Materials}, number = {13}, publisher = {Wiley}, title = {{Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities}}, doi = {10.1002/adom.202202631}, volume = {11}, year = {2023}, } @article{12959, abstract = {This paper deals with the large-scale behaviour of dynamical optimal transport on Zd -periodic graphs with general lower semicontinuous and convex energy densities. Our main contribution is a homogenisation result that describes the effective behaviour of the discrete problems in terms of a continuous optimal transport problem. The effective energy density can be explicitly expressed in terms of a cell formula, which is a finite-dimensional convex programming problem that depends non-trivially on the local geometry of the discrete graph and the discrete energy density. Our homogenisation result is derived from a Γ -convergence result for action functionals on curves of measures, which we prove under very mild growth conditions on the energy density. We investigate the cell formula in several cases of interest, including finite-volume discretisations of the Wasserstein distance, where non-trivial limiting behaviour occurs.}, author = {Gladbach, Peter and Kopfer, Eva and Maas, Jan and Portinale, Lorenzo}, issn = {1432-0835}, journal = {Calculus of Variations and Partial Differential Equations}, number = {5}, publisher = {Springer Nature}, title = {{Homogenisation of dynamical optimal transport on periodic graphs}}, doi = {10.1007/s00526-023-02472-z}, volume = {62}, year = {2023}, } @article{12915, abstract = {Cu2–xS and Cu2–xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2–xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5–xTe–Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5–xTe–Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5–xTe nanoparticles effectively inhibits Cu1.5–xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K.}, author = {Xing, Congcong and Zhang, Yu and Xiao, Ke and Han, Xu and Liu, Yu and Nan, Bingfei and Ramon, Maria Garcia and Lim, Khak Ho and Li, Junshan and Arbiol, Jordi and Poudel, Bed and Nozariasbmarz, Amin and Li, Wenjie and Ibáñez, Maria and Cabot, Andreu}, issn = {1936-086X}, journal = {ACS Nano}, number = {9}, pages = {8442--8452}, publisher = {American Chemical Society}, title = {{Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites}}, doi = {10.1021/acsnano.3c00495}, volume = {17}, year = {2023}, } @article{12961, abstract = {Two notes separated by a doubling in frequency sound similar to humans. This “octave equivalence” is critical to perception and production of music and speech and occurs early in human development. Because it also occurs cross-culturally, a biological basis of octave equivalence has been hypothesized. Members of our team previousy suggested four human traits are at the root of this phenomenon: (1) vocal learning, (2) clear octave information in vocal harmonics, (3) differing vocal ranges, and (4) vocalizing together. Using cross-species studies, we can test how relevant these respective traits are, while controlling for enculturation effects and addressing questions of phylogeny. Common marmosets possess forms of three of the four traits, lacking differing vocal ranges. We tested 11 common marmosets by adapting an established head-turning paradigm, creating a parallel test to an important infant study. Unlike human infants, marmosets responded similarly to tones shifted by an octave or other intervals. Because previous studies with the same head-turning paradigm produced differential results to discernable acoustic stimuli in common marmosets, our results suggest that marmosets do not perceive octave equivalence. Our work suggests differing vocal ranges between adults and children and men and women and the way they are used in singing together may be critical to the development of octave equivalence.}, author = {Wagner, Bernhard and Šlipogor, Vedrana and Oh, Jinook and Varga, Marion and Hoeschele, Marisa}, issn = {1467-7687}, journal = {Developmental Science}, number = {5}, publisher = {Wiley}, title = {{A comparison between common marmosets (Callithrix jacchus) and human infants sheds light on traits proposed to be at the root of human octave equivalence}}, doi = {10.1111/desc.13395}, volume = {26}, year = {2023}, } @article{12877, abstract = {We consider billiards obtained by removing from the plane finitely many strictly convex analytic obstacles satisfying the non-eclipse condition. The restriction of the dynamics to the set of non-escaping orbits is conjugated to a subshift, which provides a natural labeling of periodic orbits. We show that under suitable symmetry and genericity assumptions, the Marked Length Spectrum determines the geometry of the billiard table.}, author = {De Simoi, Jacopo and Kaloshin, Vadim and Leguil, Martin}, issn = {1432-1297}, journal = {Inventiones Mathematicae}, pages = {829--901}, publisher = {Springer Nature}, title = {{Marked Length Spectral determination of analytic chaotic billiards with axial symmetries}}, doi = {10.1007/s00222-023-01191-8}, volume = {233}, year = {2023}, }