@book{3300, abstract = {This book first explores the origins of this idea, grounded in theoretical work on temporal logic and automata. The editors and authors are among the world's leading researchers in this domain, and they contributed 32 chapters representing a thorough view of the development and application of the technique. Topics covered include binary decision diagrams, symbolic model checking, satisfiability modulo theories, partial-order reduction, abstraction, interpolation, concurrency, security protocols, games, probabilistic model checking, and process algebra, and chapters on the transfer of theory to industrial practice, property specification languages for hardware, and verification of real-time systems and hybrid systems. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools.}, author = {Clarke, Edmund M. and Henzinger, Thomas A and Veith, Helmut and Bloem, Roderick}, isbn = {978-3-319-10574-1}, pages = {XLVIII, 1212}, publisher = {Springer Nature}, title = {{Handbook of Model Checking}}, doi = {10.1007/978-3-319-10575-8}, year = {2018}, } @inbook{37, abstract = {Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube.}, author = {Zagórski, Marcin P and Kicheva, Anna}, booktitle = {Morphogen Gradients }, isbn = {978-1-4939-8771-9}, issn = {1064-3745}, pages = {47 -- 63}, publisher = {Springer Nature}, title = {{Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube}}, doi = {10.1007/978-1-4939-8772-6_4}, volume = {1863}, year = {2018}, } @article{305, abstract = {The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.}, author = {Misun, Patrick and Birchler, Axel and Lang, Moritz and Hierlemann, Andreas and Frey, Olivier}, journal = {Methods in Molecular Biology}, pages = {183 -- 202}, publisher = {Springer}, title = {{Fabrication and operation of microfluidic hanging drop networks}}, doi = {10.1007/978-1-4939-7792-5_15}, volume = {1771}, year = {2018}, } @inproceedings{325, abstract = {Probabilistic programs extend classical imperative programs with real-valued random variables and random branching. The most basic liveness property for such programs is the termination property. The qualitative (aka almost-sure) termination problem asks whether a given program program terminates with probability 1. While ranking functions provide a sound and complete method for non-probabilistic programs, the extension of them to probabilistic programs is achieved via ranking supermartingales (RSMs). Although deep theoretical results have been established about RSMs, their application to probabilistic programs with nondeterminism has been limited only to programs of restricted control-flow structure. For non-probabilistic programs, lexicographic ranking functions provide a compositional and practical approach for termination analysis of real-world programs. In this work we introduce lexicographic RSMs and show that they present a sound method for almost-sure termination of probabilistic programs with nondeterminism. We show that lexicographic RSMs provide a tool for compositional reasoning about almost-sure termination, and for probabilistic programs with linear arithmetic they can be synthesized efficiently (in polynomial time). We also show that with additional restrictions even asymptotic bounds on expected termination time can be obtained through lexicographic RSMs. Finally, we present experimental results on benchmarks adapted from previous work to demonstrate the effectiveness of our approach.}, author = {Agrawal, Sheshansh and Chatterjee, Krishnendu and Novotny, Petr}, location = {Los Angeles, CA, USA}, number = {POPL}, publisher = {ACM}, title = {{Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs}}, doi = {10.1145/3158122}, volume = {2}, year = {2018}, } @inbook{408, abstract = {Adventitious roots (AR) are de novo formed roots that emerge from any part of the plant or from callus in tissue culture, except root tissue. The plant tissue origin and the method by which they are induced determine the physiological properties of emerged ARs. Hence, a standard method encompassing all types of AR does not exist. Here we describe a method for the induction and analysis of AR that emerge from the etiolated hypocotyl of dicot plants. The hypocotyl is formed during embryogenesis and shows a determined developmental pattern which usually does not involve AR formation. However, the hypocotyl shows propensity to form de novo roots under specific circumstances such as removal of the root system, high humidity or flooding, or during de-etiolation. The hypocotyl AR emerge from a pericycle-like cell layer surrounding the vascular tissue of the central cylinder, which is reminiscent to the developmental program of lateral roots. Here we propose an easy protocol for in vitro hypocotyl AR induction from etiolated Arabidopsis seedlings.}, author = {Trinh, Hoang and Verstraeten, Inge and Geelen, Danny}, booktitle = {Root Development }, issn = {1064-3745}, pages = {95 -- 102}, publisher = {Springer Nature}, title = {{In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls}}, doi = {10.1007/978-1-4939-7747-5_7}, volume = {1761}, year = {2018}, }