@article{3368,
abstract = {Tissue surface tension (TST) is an important mechanical property influencing cell sorting and tissue envelopment. The study by Manning et al. (1) reported on a mathematical model describing TST on the basis of the balance between adhesive and tensile properties of the constituent cells. The model predicts that, in high-adhesion cell aggregates, surface cells will be stretched to maintain the same area of cell–cell contact as interior bulk cells, resulting in an elongated and flattened cell shape. The authors (1) observed flat and elongated cells at the surface of high-adhesion zebrafish germ-layer explants, which they argue are undifferentiated stretched germ-layer progenitor cells, and they use this observation as a validation of their model.},
author = {Krens, Gabriel and Möllmert, Stephanie and Heisenberg, Carl-Philipp J},
journal = {PNAS},
number = {3},
pages = {E9 -- E10},
publisher = {National Academy of Sciences},
title = {{Enveloping cell layer differentiation at the surface of zebrafish germ layer tissue explants}},
doi = {10.1073/pnas.1010767108},
volume = {108},
year = {2011},
}
@article{3370,
abstract = {Supertree methods are widely applied and give rise to new conclusions about phylogenies (e.g., Bininda-Emonds et al. 2007). Although several desiderata for supertree methods exist (Wilkinson, Thorley, et al. 2004), only few of them have been studied in greater detail, examples include shape bias (Wilkinson et al. 2005) or pareto properties (Wilkinson et al. 2007). Here I look more closely at two matrix representation methods, matrix representation with compatibility (MRC) and matrix representation with parsimony (MRP). Different null models of random data are studied and the resulting tree shapes are investigated. Thereby I consider unrooted trees and a bias in tree shape is determined by a tree balance measure. The measure for unrooted trees is a modification of a tree balance measure for rooted trees. I observe that depending on the underlying null model of random data, the methods may resolve conflict in favor of more balanced tree shapes. The analyses refer only to trees with the same taxon set, also known as the consensus setting (e.g., Wilkinson et al. 2007), but I will be able to draw conclusions on how to deal with missing data.},
author = {Kupczok, Anne},
journal = {Systematic Biology},
number = {2},
pages = {218 -- 225},
publisher = {Oxford University Press},
title = {{Consequences of different null models on the tree shape bias of supertree methods}},
doi = {10.1093/sysbio/syq086},
volume = {60},
year = {2011},
}
@article{3375,
abstract = {By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as five loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.},
author = {de Vladar, Harold and Barton, Nicholas H},
journal = {Journal of the Royal Society Interface},
number = {58},
pages = {720 -- 739},
publisher = {Royal Society of London},
title = {{The statistical mechanics of a polygenic character under stabilizing selection mutation and drift}},
doi = {10.1098/rsif.2010.0438},
volume = {8},
year = {2011},
}
@inproceedings{3337,
abstract = {Playing table tennis is a difficult task for robots, especially due to their limitations of acceleration. A key bottleneck is the amount of time needed to reach the desired hitting position and velocity of the racket for returning the incoming ball. Here, it often does not suffice to simply extrapolate the ball's trajectory after the opponent returns it but more information is needed. Humans are able to predict the ball's trajectory based on the opponent's moves and, thus, have a considerable advantage. Hence, we propose to incorporate an anticipation system into robot table tennis players, which enables the robot to react earlier while the opponent is performing the striking movement. Based on visual observation of the opponent's racket movement, the robot can predict the aim of the opponent and adjust its movement generation accordingly. The policies for deciding how and when to react are obtained by reinforcement learning. We conduct experiments with an existing robot player to show that the learned reaction policy can significantly improve the performance of the overall system.},
author = {Wang, Zhikun and Lampert, Christoph and Mülling, Katharina and Schölkopf, Bernhard and Peters, Jan},
location = {San Francisco, USA},
pages = {332 -- 337},
publisher = {IEEE},
title = {{Learning anticipation policies for robot table tennis}},
doi = {10.1109/IROS.2011.6094892},
year = {2011},
}
@inproceedings{3344,
abstract = {Games played on graphs provide the mathematical framework to analyze several important problems in computer science as well as mathematics, such as the synthesis problem of Church, model checking of open reactive systems and many others. On the basis of mode of interaction of the players these games can be classified as follows: (a) turn-based (players make moves in turns); and (b) concurrent (players make moves simultaneously). On the basis of the information available to the players these games can be classified as follows: (a) perfect-information (players have perfect view of the game); and (b) partial-information (players have partial view of the game). In this talk we will consider all these classes of games with reachability objectives, where the goal of one player is to reach a set of target vertices of the graph, and the goal of the opponent player is to prevent the player from reaching the target. We will survey the results for various classes of games, and the results range from linear time decision algorithms to EXPTIME-complete problems to undecidable problems.},
author = {Chatterjee, Krishnendu},
editor = {Delzanno, Giorgo and Potapov, Igor},
location = {Genoa, Italy},
pages = {1 -- 1},
publisher = {Springer},
title = {{Graph games with reachability objectives}},
doi = {10.1007/978-3-642-24288-5_1},
volume = {6945},
year = {2011},
}