@article{6455, abstract = {During corticogenesis, distinct subtypes of neurons are sequentially born from ventricular zone progenitors. How these cells are molecularly temporally patterned is poorly understood. We used single-cell RNA sequencing at high temporal resolution to trace the lineage of the molecular identities of successive generations of apical progenitors (APs) and their daughter neurons in mouse embryos. We identified a core set of evolutionarily conserved, temporally patterned genes that drive APs from internally driven to more exteroceptive states. We found that the Polycomb repressor complex 2 (PRC2) epigenetically regulates AP temporal progression. Embryonic age–dependent AP molecular states are transmitted to their progeny as successive ground states, onto which essentially conserved early postmitotic differentiation programs are applied, and are complemented by later-occurring environment-dependent signals. Thus, epigenetically regulated temporal molecular birthmarks present in progenitors act in their postmitotic progeny to seed adult neuronal diversity.}, author = {Telley, L and Agirman, G and Prados, J and Amberg, Nicole and Fièvre, S and Oberst, P and Bartolini, G and Vitali, I and Cadilhac, C and Hippenmeyer, Simon and Nguyen, L and Dayer, A and Jabaudon, D}, issn = {1095-9203}, journal = {Science}, number = {6440}, publisher = {AAAS}, title = {{Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex}}, doi = {10.1126/science.aav2522}, volume = {364}, year = {2019}, } @article{6586, abstract = {The bottom-up assembly of colloidal nanocrystals is a versatile methodology to produce composite nanomaterials with precisely tuned electronic properties. Beyond the synthetic control over crystal domain size, shape, crystal phase, and composition, solution-processed nanocrystals allow exquisite surface engineering. This provides additional means to modulate the nanomaterial characteristics and particularly its electronic transport properties. For instance, inorganic surface ligands can be used to tune the type and concentration of majority carriers or to modify the electronic band structure. Herein, we report the thermoelectric properties of SnTe nanocomposites obtained from the consolidation of surface-engineered SnTe nanocrystals into macroscopic pellets. A CdSe-based ligand is selected to (i) converge the light and heavy bands through partial Cd alloying and (ii) generate CdSe nanoinclusions as a secondary phase within the SnTe matrix, thereby reducing the thermal conductivity. These SnTe-CdSe nanocomposites possess thermoelectric figures of merit of up to 1.3 at 850 K, which is, to the best of our knowledge, the highest thermoelectric figure of merit reported for solution-processed SnTe.}, author = {Ibáñez, Maria and Hasler, Roger and Genç, Aziz and Liu, Yu and Kuster, Beatrice and Schuster, Maximilian and Dobrozhan, Oleksandr and Cadavid, Doris and Arbiol, Jordi and Cabot, Andreu and Kovalenko, Maksym V.}, issn = {1520-5126}, journal = {Journal of the American Chemical Society}, number = {20}, pages = {8025--8029}, publisher = {American Chemical Society}, title = {{Ligand-mediated band engineering in bottom-up assembled SnTe nanocomposites for thermoelectric energy conversion}}, doi = {10.1021/jacs.9b01394}, volume = {141}, year = {2019}, } @article{6174, abstract = {We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a “quantum avalanche.” We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent αc=2, and continuously varying exponents in the MBL phase consistent with the KT picture.}, author = {Dumitrescu, Philipp T. and Goremykina, Anna and Parameswaran, Siddharth A. and Serbyn, Maksym and Vasseur, Romain}, issn = {2469-9969}, journal = {Physical Review B}, number = {9}, publisher = {American Physical Society}, title = {{Kosterlitz-Thouless scaling at many-body localization phase transitions}}, doi = {10.1103/physrevb.99.094205}, volume = {99}, year = {2019}, } @article{6366, abstract = {Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures, and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl.}, author = {Bellstaedt, Julia and Trenner, Jana and Lippmann, Rebecca and Poeschl, Yvonne and Zhang, Xixi and Friml, Jiří and Quint, Marcel and Delker, Carolin}, issn = {1532-2548}, journal = {Plant Physiology}, number = {2}, pages = {757--766}, publisher = {ASPB}, title = {{A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls}}, doi = {10.1104/pp.18.01377}, volume = {180}, year = {2019}, } @article{6986, abstract = {Li-Nadler proposed a conjecture about traces of Hecke categories, which implies the semistable part of the Betti geometric Langlands conjecture of Ben-Zvi-Nadler in genus 1. We prove a Weyl group analogue of this conjecture. Our theorem holds in the natural generality of reflection groups in Euclidean or hyperbolic space. As a corollary, we give an expression of the centralizer of a finite order element in a reflection group using homotopy theory. }, author = {Li, Penghui}, issn = {1088-6826}, journal = {Proceedings of the American Mathematical Society}, number = {11}, pages = {4597--4604}, publisher = {AMS}, title = {{A colimit of traces of reflection groups}}, doi = {10.1090/proc/14586}, volume = {147}, year = {2019}, }