@inproceedings{3281,
abstract = {We consider the problem of amplifying the "lossiness" of functions. We say that an oracle circuit C*: {0,1} m → {0,1}* amplifies relative lossiness from ℓ/n to L/m if for every function f:{0,1} n → {0,1} n it holds that 1 If f is injective then so is C f. 2 If f has image size of at most 2 n-ℓ, then C f has image size at most 2 m-L. The question is whether such C* exists for L/m ≫ ℓ/n. This problem arises naturally in the context of cryptographic "lossy functions," where the relative lossiness is the key parameter. We show that for every circuit C* that makes at most t queries to f, the relative lossiness of C f is at most L/m ≤ ℓ/n + O(log t)/n. In particular, no black-box method making a polynomial t = poly(n) number of queries can amplify relative lossiness by more than an O(logn)/n additive term. We show that this is tight by giving a simple construction (cascading with some randomization) that achieves such amplification.},
author = {Pietrzak, Krzysztof Z and Rosen, Alon and Segev, Gil},
location = {Taormina, Sicily, Italy},
pages = {458 -- 475},
publisher = {Springer},
title = {{Lossy functions do not amplify well}},
doi = {10.1007/978-3-642-28914-9_26},
volume = {7194},
year = {2012},
}
@inproceedings{3250,
abstract = {The Learning Parity with Noise (LPN) problem has recently found many applications in cryptography as the hardness assumption underlying the constructions of "provably secure" cryptographic schemes like encryption or authentication protocols. Being provably secure means that the scheme comes with a proof showing that the existence of an efficient adversary against the scheme implies that the underlying hardness assumption is wrong. LPN based schemes are appealing for theoretical and practical reasons. On the theoretical side, LPN based schemes offer a very strong security guarantee. The LPN problem is equivalent to the problem of decoding random linear codes, a problem that has been extensively studied in the last half century. The fastest known algorithms run in exponential time and unlike most number-theoretic problems used in cryptography, the LPN problem does not succumb to known quantum algorithms. On the practical side, LPN based schemes are often extremely simple and efficient in terms of code-size as well as time and space requirements. This makes them prime candidates for light-weight devices like RFID tags, which are too weak to implement standard cryptographic primitives like the AES block-cipher. This talk will be a gentle introduction to provable security using simple LPN based schemes as examples. Starting from pseudorandom generators and symmetric key encryption, over secret-key authentication protocols, and, if time admits, touching on recent constructions of public-key identification, commitments and zero-knowledge proofs.},
author = {Pietrzak, Krzysztof Z},
location = {Špindlerův Mlýn, Czech Republic},
pages = {99 -- 114},
publisher = {Springer},
title = {{Cryptography from learning parity with noise}},
doi = {10.1007/978-3-642-27660-6_9},
volume = {7147},
year = {2012},
}
@article{3248,
abstract = {We describe RTblob, a high speed vision system that detects objects in cluttered scenes based on their color and shape at a speed of over 800 frames/s. Because the system is available as open-source software and relies only on off-the-shelf PC hardware components, it can provide the basis for multiple application scenarios. As an illustrative example, we show how RTblob can be used in a robotic table tennis scenario to estimate ball trajectories through 3D space simultaneously from four cameras images at a speed of 200 Hz.},
author = {Lampert, Christoph and Peters, Jan},
journal = {Journal of Real-Time Image Processing},
number = {1},
pages = {31 -- 41},
publisher = {Springer},
title = {{Real-time detection of colored objects in multiple camera streams with off-the-shelf hardware components}},
doi = {10.1007/s11554-010-0168-3},
volume = {7},
year = {2012},
}
@article{3243,
author = {Danowski, Patrick},
journal = {Büchereiperspektiven},
pages = {11},
publisher = {Buchereiverband Österreichs},
title = {{Zwischen Technologie und Information}},
volume = {1/2012},
year = {2012},
}
@inproceedings{2891,
abstract = {Quantitative automata are nondeterministic finite automata with edge weights. They value a
run by some function from the sequence of visited weights to the reals, and value a word by its
minimal/maximal run. They generalize boolean automata, and have gained much attention in
recent years. Unfortunately, important automaton classes, such as sum, discounted-sum, and
limit-average automata, cannot be determinized. Yet, the quantitative setting provides the potential
of approximate determinization. We define approximate determinization with respect to
a distance function, and investigate this potential.
We show that sum automata cannot be determinized approximately with respect to any
distance function. However, restricting to nonnegative weights allows for approximate determinization
with respect to some distance functions.
Discounted-sum automata allow for approximate determinization, as the influence of a word’s
suffix is decaying. However, the naive approach, of unfolding the automaton computations up
to a sufficient level, is shown to be doubly exponential in the discount factor. We provide an
alternative construction that is singly exponential in the discount factor, in the precision, and
in the number of states. We prove matching lower bounds, showing exponential dependency on
each of these three parameters.
Average and limit-average automata are shown to prohibit approximate determinization with
respect to any distance function, and this is the case even for two weights, 0 and 1.},
author = {Boker, Udi and Henzinger, Thomas A},
booktitle = {Leibniz International Proceedings in Informatics},
location = {Hyderabad, India},
pages = {362 -- 373},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Approximate determinization of quantitative automata}},
doi = {10.4230/LIPIcs.FSTTCS.2012.362},
volume = {18},
year = {2012},
}