@misc{9726, abstract = {A detailed description of the two stochastic models, table of parameters, supplementary data for Figures 4 and 5, parameter dependence of the results, and an analysis on motors with different force–velocity functions (PDF)}, author = {Ucar, Mehmet C and Lipowsky, Reinhard}, publisher = {American Chemical Society }, title = {{Supplementary information - Collective force generation by molecular motors is determined by strain-induced unbinding}}, doi = {10.1021/acs.nanolett.9b04445.s001}, year = {2019}, } @article{6671, abstract = {In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.}, author = {Boissonnat, Jean-Daniel and Lieutier, André and Wintraecken, Mathijs}, issn = {2367-1734}, journal = {Journal of Applied and Computational Topology}, number = {1-2}, pages = {29–58}, publisher = {Springer Nature}, title = {{The reach, metric distortion, geodesic convexity and the variation of tangent spaces}}, doi = {10.1007/s41468-019-00029-8}, volume = {3}, year = {2019}, } @article{301, abstract = {A representation formula for solutions of stochastic partial differential equations with Dirichlet boundary conditions is proved. The scope of our setting is wide enough to cover the general situation when the backward characteristics that appear in the usual formulation are not even defined in the Itô sense.}, author = {Gerencser, Mate and Gyöngy, István}, journal = {Stochastic Processes and their Applications}, number = {3}, pages = {995--1012}, publisher = {Elsevier}, title = {{A Feynman–Kac formula for stochastic Dirichlet problems}}, doi = {10.1016/j.spa.2018.04.003}, volume = {129}, year = {2019}, } @article{80, abstract = {We consider an interacting, dilute Bose gas trapped in a harmonic potential at a positive temperature. The system is analyzed in a combination of a thermodynamic and a Gross–Pitaevskii (GP) limit where the trap frequency ω, the temperature T, and the particle number N are related by N∼ (T/ ω) 3→ ∞ while the scattering length is so small that the interaction energy per particle around the center of the trap is of the same order of magnitude as the spectral gap in the trap. We prove that the difference between the canonical free energy of the interacting gas and the one of the noninteracting system can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein condensation in the following sense: The one-particle density matrix of any approximate minimizer of the canonical free energy functional is to leading order given by that of the noninteracting gas but with the free condensate wavefunction replaced by the GP minimizer.}, author = {Deuchert, Andreas and Seiringer, Robert and Yngvason, Jakob}, journal = {Communications in Mathematical Physics}, number = {2}, pages = {723--776}, publisher = {Springer}, title = {{Bose–Einstein condensation in a dilute, trapped gas at positive temperature}}, doi = {10.1007/s00220-018-3239-0}, volume = {368}, year = {2019}, } @article{5911, abstract = {Empirical data suggest that inversions in many species contain genes important for intraspecific divergence and speciation, yet mechanisms of evolution remain unclear. While genes inside an inversion are tightly linked, inversions are not static but evolve separately from the rest of the genome by new mutations, recombination within arrangements, and gene flux between arrangements. Inversion polymorphisms are maintained by different processes, for example, divergent or balancing selection, or a mix of multiple processes. Moreover, the relative roles of selection, drift, mutation, and recombination will change over the lifetime of an inversion and within its area of distribution. We believe inversions are central to the evolution of many species, but we need many more data and new models to understand the complex mechanisms involved.}, author = {Faria, Rui and Johannesson, Kerstin and Butlin, Roger K. and Westram, Anja M}, issn = {01695347}, journal = {Trends in Ecology and Evolution}, number = {3}, pages = {239--248}, publisher = {Elsevier}, title = {{Evolving inversions}}, doi = {10.1016/j.tree.2018.12.005}, volume = {34}, year = {2019}, }