@article{14931, abstract = {We prove an upper bound on the ground state energy of the dilute spin-polarized Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive interactions. One of the main ingredients in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin et al. (1971) [15].}, author = {Lauritsen, Asbjørn Bækgaard and Seiringer, Robert}, issn = {1096--0783}, journal = {Journal of Functional Analysis}, number = {7}, publisher = {Elsevier}, title = {{Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion}}, doi = {10.1016/j.jfa.2024.110320}, volume = {286}, year = {2024}, } @inbook{12428, abstract = {The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.}, author = {Hannezo, Edouard B and Scheele, Colinda L.G.J.}, booktitle = {Cell Migration in Three Dimensions}, editor = {Margadant, Coert}, isbn = {9781071628867}, issn = {1940-6029}, pages = {183--205}, publisher = {Springer Nature}, title = {{A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland}}, doi = {10.1007/978-1-0716-2887-4_12}, volume = {2608}, year = {2023}, } @article{12534, abstract = {Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics.}, author = {Ghazaryan, Areg and Cappellaro, Alberto and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Dissipative dynamics of an impurity with spin-orbit coupling}}, doi = {10.1103/physrevresearch.5.013029}, volume = {5}, year = {2023}, } @article{12158, abstract = {Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.}, author = {Zeller, Peter and Yeung, Jake and Viñas Gaza, Helena and de Barbanson, Buys Anton and Bhardwaj, Vivek and Florescu, Maria and van der Linden, Reinier and van Oudenaarden, Alexander}, issn = {1546-1718}, journal = {Nature Genetics}, keywords = {Genetics}, pages = {333--345}, publisher = {Springer Nature}, title = {{Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis}}, doi = {10.1038/s41588-022-01260-3}, volume = {55}, year = {2023}, } @inproceedings{12676, abstract = {Turn-based stochastic games (aka simple stochastic games) are two-player zero-sum games played on directed graphs with probabilistic transitions. The goal of player-max is to maximize the probability to reach a target state against the adversarial player-min. These games lie in NP ∩ coNP and are among the rare combinatorial problems that belong to this complexity class for which the existence of polynomial-time algorithm is a major open question. While randomized sub-exponential time algorithm exists, all known deterministic algorithms require exponential time in the worst-case. An important open question has been whether faster algorithms can be obtained parametrized by the treewidth of the game graph. Even deterministic sub-exponential time algorithm for constant treewidth turn-based stochastic games has remain elusive. In this work our main result is a deterministic algorithm to solve turn-based stochastic games that, given a game with n states, treewidth at most t, and the bit-complexity of the probabilistic transition function log D, has running time O ((tn2 log D)t log n). In particular, our algorithm is quasi-polynomial time for games with constant or poly-logarithmic treewidth.}, author = {Chatterjee, Krishnendu and Meggendorfer, Tobias and Saona Urmeneta, Raimundo J and Svoboda, Jakub}, booktitle = {Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {9781611977554}, location = {Florence, Italy}, pages = {4590--4605}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Faster algorithm for turn-based stochastic games with bounded treewidth}}, doi = {10.1137/1.9781611977554.ch173}, year = {2023}, }