@article{3384,
abstract = {Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we acquired about six-megapixel images of Okavango Delta of Botswana, a tropical savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture, object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths. This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research in computer vision, psychophysics of perception, and visual neuroscience.},
author = {Tkacik, Gasper and Garrigan, Patrick and Ratliff, Charles and Milcinski, Grega and Klein, Jennifer and Seyfarth, Lucia and Sterling, Peter and Brainard, David and Balasubramanian, Vijay},
journal = {PLoS One},
number = {6},
publisher = {Public Library of Science},
title = {{Natural images from the birthplace of the human eye}},
doi = {10.1371/journal.pone.0020409},
volume = {6},
year = {2011},
}
@article{3389,
abstract = {Kernel canonical correlation analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations that are more closely tied to the underlying process that generates the data and can ignore high-variance noise directions. However, for data where acquisition in one or more modalities is expensive or otherwise limited, KCCA may suffer from small sample effects. We propose to use semi-supervised Laplacian regularization to utilize data that are present in only one modality. This approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned. fMRI data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single and multi-variate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of KCCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.},
author = {Blaschko, Matthew and Shelton, Jacquelyn and Bartels, Andreas and Lampert, Christoph and Gretton, Arthur},
journal = {Pattern Recognition Letters},
number = {11},
pages = {1572 -- 1583},
publisher = {Elsevier},
title = {{Semi supervised kernel canonical correlation analysis with application to human fMRI}},
doi = {10.1016/j.patrec.2011.02.011},
volume = {32},
year = {2011},
}
@article{3391,
abstract = {Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. Here, we discuss aspects of population genetics that have embraced methods from physics: non-equilibrium statistical mechanics, travelling waves and Monte-Carlo methods, among others, have been used to study polygenic evolution, rates of adaptation and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics; for example, by following the distribution of paths taken by a population through time},
author = {de Vladar, Harold and Barton, Nicholas H},
journal = {Trends in Ecology and Evolution},
number = {8},
pages = {424 -- 432},
publisher = {Cell Press},
title = {{The contribution of statistical physics to evolutionary biology}},
doi = {10.1016/j.tree.2011.04.002},
volume = {26},
year = {2011},
}
@article{3396,
abstract = {Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement.},
author = {Stockinger, Petra and Heisenberg, Carl-Philipp J and Maître, Jean-Léon},
journal = {Development},
number = {21},
pages = {4673 -- 4683},
publisher = {Company of Biologists},
title = {{Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube}},
doi = {10.1242/dev.071233},
volume = {138},
year = {2011},
}
@article{3505,
abstract = {Cell migration on two-dimensional (2D) substrates follows entirely different rules than cell migration in three-dimensional (3D) environments. This is especially relevant for leukocytes that are able to migrate in the absence of adhesion receptors within the confined geometry of artificial 3D extracellular matrix scaffolds and within the interstitial space in vivo. Here, we describe in detail a simple and economical protocol to visualize dendritic cell migration in 3D collagen scaffolds along chemotactic gradients. This method can be adapted to other cell types and may serve as a physiologically relevant paradigm for the directed locomotion of most amoeboid cells.},
author = {Sixt, Michael K and Lämmermann, Tim},
journal = {Cell Migration},
pages = {149 -- 165},
publisher = {Springer},
title = {{In vitro analysis of chemotactic leukocyte migration in 3D environments}},
doi = {10.1007/978-1-61779-207-6_11},
volume = {769},
year = {2011},
}
@article{3315,
abstract = {We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are concurrent in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to turn-based (i.e., not concurrent) finite-state (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Prabhu, Vinayak},
journal = {Logical Methods in Computer Science},
number = {4},
publisher = {International Federation of Computational Logic},
title = {{Timed parity games: Complexity and robustness}},
doi = {10.2168/LMCS-7(4:8)2011},
volume = {7},
year = {2011},
}
@article{531,
abstract = {Software transactional memories (STM) are described in the literature with assumptions of sequentially consistent program execution and atomicity of high level operations like read, write, and abort. However, in a realistic setting, processors use relaxed memory models to optimize hardware performance. Moreover, the atomicity of operations depends on the underlying hardware. This paper presents the first approach to verify STMs under relaxed memory models with atomicity of 32 bit loads and stores, and read-modify-write operations. We describe RML, a simple language for expressing concurrent programs. We develop a semantics of RML parametrized by a relaxed memory model. We then present our tool, FOIL, which takes as input the RML description of an STM algorithm restricted to two threads and two variables, and the description of a memory model, and automatically determines the locations of fences, which if inserted, ensure the correctness of the restricted STM algorithm under the given memory model. We use FOIL to verify DSTM, TL2, and McRT STM under the memory models of sequential consistency, total store order, partial store order, and relaxed memory order for two threads and two variables. Finally, we extend the verification results for DSTM and TL2 to an arbitrary number of threads and variables by manually proving that the structural properties of STMs are satisfied at the hardware level of atomicity under the considered relaxed memory models.},
author = {Guerraoui, Rachid and Henzinger, Thomas A and Singh, Vasu},
journal = {Formal Methods in System Design},
number = {3},
pages = {297 -- 331},
publisher = {Springer},
title = {{Verification of STM on relaxed memory models}},
doi = {10.1007/s10703-011-0131-3},
volume = {39},
year = {2011},
}
@misc{5380,
abstract = {We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respectively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite-precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as powerful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms,that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.},
author = {Chatterjee, Krishnendu},
issn = {2664-1690},
pages = {53},
publisher = {IST Austria},
title = {{Bounded rationality in concurrent parity games}},
doi = {10.15479/AT:IST-2011-0008},
year = {2011},
}
@article{6496,
abstract = {We report the switching behavior of the full bacterial flagellum system that includes the filament and the motor in wild-type Escherichia coli cells. In sorting the motor behavior by the clockwise bias, we find that the distributions of the clockwise (CW) and counterclockwise (CCW) intervals are either exponential or nonexponential with long tails. At low bias, CW intervals are exponentially distributed and CCW intervals exhibit long tails. At intermediate CW bias (0.5) both CW and CCW intervals are mainly exponentially distributed. A simple model suggests that these two distinct switching behaviors are governed by the presence of signaling noise within the chemotaxis network. Low noise yields exponentially distributed intervals, whereas large noise yields nonexponential behavior with long tails. These drastically different motor statistics may play a role in optimizing bacterial behavior for a wide range of environmental conditions.},
author = {Park, Heungwon and Oikonomou, Panos and Guet, Calin C and Cluzel, Philippe},
issn = {0006-3495},
journal = {Biophysical Journal},
number = {10},
pages = {2336--2340},
publisher = {Elsevier BV},
title = {{Noise underlies switching behavior of the bacterial flagellum}},
doi = {10.1016/j.bpj.2011.09.040},
volume = {101},
year = {2011},
}
@inproceedings{3346,
abstract = {We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k reward functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the single-objective case, both randomization and memory are necessary for strategies, and that finite-memory randomized strategies are sufficient. Under the satisfaction objective, in contrast to the single-objective case, infinite memory is necessary for strategies, and that randomized memoryless strategies are sufficient for epsilon-approximation, for all epsilon>;0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of reward functions, for all epsilon>;0. Our results also reveal flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, correct the flaws and obtain improved results.},
author = {Brázdil, Tomáš and Brožek, Václav and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
location = {Toronto, Canada},
publisher = {IEEE},
title = {{Two views on multiple mean payoff objectives in Markov Decision Processes}},
doi = {10.1109/LICS.2011.10},
year = {2011},
}
@article{3353,
abstract = {Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.},
author = {Tripakis, Stavros and Lickly, Ben and Henzinger, Thomas A and Lee, Edward},
journal = {ACM Transactions on Programming Languages and Systems (TOPLAS)},
number = {4},
publisher = {ACM},
title = {{A theory of synchronous relational interfaces}},
doi = {10.1145/1985342.1985345},
volume = {33},
year = {2011},
}
@inproceedings{3264,
abstract = {Verification of programs with procedures, multi-threaded programs, and higher-order functional programs can be effectively au- tomated using abstraction and refinement schemes that rely on spurious counterexamples for abstraction discovery. The analysis of counterexam- ples can be automated by a series of interpolation queries, or, alterna- tively, as a constraint solving query expressed by a set of recursion free Horn clauses. (A set of interpolation queries can be formulated as a single constraint over Horn clauses with linear dependency structure between the unknown relations.) In this paper we present an algorithm for solving recursion free Horn clauses over a combined theory of linear real/rational arithmetic and uninterpreted functions. Our algorithm performs resolu- tion to deal with the clausal structure and relies on partial solutions to deal with (non-local) instances of functionality axioms.},
author = {Gupta, Ashutosh and Popeea, Corneliu and Rybalchenko, Andrey},
editor = {Yang, Hongseok},
location = {Kenting, Taiwan},
pages = {188 -- 203},
publisher = {Springer},
title = {{Solving recursion-free Horn clauses over LI+UIF}},
doi = {10.1007/978-3-642-25318-8_16},
volume = {7078},
year = {2011},
}
@inproceedings{3360,
abstract = {A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, which values a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by lambda^i, where the discount factor lambda is a fixed rational number greater than 1. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, which reflects the assumption that earlier weights are more important than later weights. Determinizing automata is often essential, for example, in formal verification, where there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum automata are, in general, not determinizable: it is currently known that for every rational discount factor 1 < lambda < 2, there is an NDA with lambda (denoted lambda-NDA) that cannot be determinized. We provide positive news, showing that every NDA with an integral factor is determinizable. We also complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: we show that for every non-integral rational factor lambda, there is a nondeterminizable lambda-NDA. Finally, we prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. This shows that for integral discount factors, the class of NDAs forms an attractive specification formalism in quantitative formal verification. All our results hold equally for automata over finite words and for automata over infinite words. },
author = {Boker, Udi and Henzinger, Thomas A},
location = {Bergen, Norway},
pages = {82 -- 96},
publisher = {Springer},
title = {{Determinizing discounted-sum automata}},
doi = {10.4230/LIPIcs.CSL.2011.82},
volume = {12},
year = {2011},
}
@misc{5385,
abstract = {There is recently a significant effort to add quantitative objectives to formal verification and synthesis. We introduce and investigate the extension of temporal logics with quantitative atomic assertions, aiming for a general and flexible framework for quantitative-oriented specifications. In the heart of quantitative objectives lies the accumulation of values along a computation. It is either the accumulated summation, as with the energy objectives, or the accumulated average, as with the mean-payoff objectives. We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and Avg(v) ≥ c, where v is a numeric variable of the system, c is a constant rational number, and Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the computation up to the current point of time. We also allow the path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to the average value along an entire computation. We study the border of decidability for extensions of various temporal logics. In particular, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities by prefix-accumulation assertions and extending LTL with path-accumulation assertions, result in temporal logics whose model-checking problem is decidable. The extended logics allow to significantly extend the currently known energy and mean-payoff objectives. Moreover, the prefix-accumulation assertions may be refined with “controlled-accumulation”, allowing, for example, to specify constraints on the average waiting time between a request and a grant. On the negative side, we show that the fragment we point to is, in a sense, the maximal logic whose extension with prefix-accumulation assertions permits a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, and in particular CTL and LTL, makes the problem undecidable.},
author = {Boker, Udi and Chatterjee, Krishnendu and Henzinger, Thomas A and Kupferman, Orna},
issn = {2664-1690},
pages = {14},
publisher = {IST Austria},
title = {{Temporal specifications with accumulative values}},
doi = {10.15479/AT:IST-2011-0003},
year = {2011},
}
@inbook{3311,
abstract = {Alpha shapes have been conceived in 1981 as an attempt to define the shape of a finite set of point in the plane. Since then, connections to diverse areas in the sciences and engineering have developed, including to pattern recognition, digital shape sampling and processing, and structural molecular biology. This survey begins with a historical account and discusses geometric, algorithmic, topological, and combinatorial aspects of alpha shapes in this sequence.},
author = {Herbert Edelsbrunner},
booktitle = {Tessellations in the Sciences},
publisher = {Springer},
title = {{Alpha shapes - a survey}},
year = {2011},
}
@inproceedings{3330,
abstract = {We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.},
author = {Kerber, Michael and Sagraloff, Michael},
location = {California, USA},
pages = {209 -- 216},
publisher = {Springer},
title = {{Root refinement for real polynomials}},
doi = {10.1145/1993886.1993920 },
year = {2011},
}
@inbook{3335,
abstract = {We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.},
author = {Van De Weygaert, Rien and Vegter, Gert and Edelsbrunner, Herbert and Jones, Bernard and Pranav, Pratyush and Park, Changbom and Hellwing, Wojciech and Eldering, Bob and Kruithof, Nico and Bos, Patrick and Hidding, Johan and Feldbrugge, Job and Ten Have, Eline and Van Engelen, Matti and Caroli, Manuel and Teillaud, Monique},
booktitle = {Transactions on Computational Science XIV},
editor = {Gavrilova, Marina and Tan, Kenneth and Mostafavi, Mir},
pages = {60 -- 101},
publisher = {Springer},
title = {{Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web}},
doi = {10.1007/978-3-642-25249-5_3},
volume = {6970},
year = {2011},
}
@inproceedings{3328,
abstract = {We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL.},
author = {Berberich, Eric and Hemmer, Michael and Kerber, Michael},
location = {Paris, France},
pages = {179 -- 186},
publisher = {ACM},
title = {{A generic algebraic kernel for non linear geometric applications}},
doi = {10.1145/1998196.1998224},
year = {2011},
}
@article{3784,
abstract = {Advanced stages of Scyllarus phyllosoma larvae were collected by demersal trawling during fishery research surveys in the western Mediterranean Sea in 2003–2005. Nucleotide sequence analysis of the mitochondrial 16S rDNA gene allowed the final-stage phyllosoma of Scyllarus arctus to be identified among these larvae. Its morphology is described and illustrated. This constitutes the second complete description of a Scyllaridae phyllosoma with its specific identity being validated by molecular techniques (the first was S. pygmaeus). These results also solved a long lasting taxonomic anomaly of several species assigned to the ancient genus Phyllosoma Leach, 1814. Detailed examination indicated that the final-stage phyllosoma of S. arctus shows closer affinities with the American scyllarid Scyllarus depressus or with the Australian Scyllarus sp. b (sensu Phillips et al., 1981) than to its sympatric species S. pygmaeus.},
author = {Palero, Ferran and Guerao, Guillermo and Clark, Paul and Abello, Pere},
journal = {Journal of the Marine Biological Association of the United Kingdom},
number = {2},
pages = {485 -- 492},
publisher = {Cambridge University Press},
title = {{Scyllarus arctus (Crustacea: Decapoda: Scyllaridae) final stage phyllosoma identified by DNA analysis, with morphological description}},
doi = {10.1017/S0025315410000287},
volume = {91},
year = {2011},
}
@inbook{3791,
abstract = {During the development of multicellular organisms, cell fate specification is followed by the sorting of different cell types into distinct domains from where the different tissues and organs are formed. Cell sorting involves both the segregation of a mixed population of cells with different fates and properties into distinct domains, and the active maintenance of their segregated state. Because of its biological importance and apparent resemblance to fluid segregation in physics, cell sorting was extensively studied by both biologists and physicists over the last decades. Different theories were developed that try to explain cell sorting on the basis of the physical properties of the constituent cells. However, only recently the molecular and cellular mechanisms that control the physical properties driving cell sorting, have begun to be unraveled. In this review, we will provide an overview of different cell-sorting processes in development and discuss how these processes can be explained by the different sorting theories, and how these theories in turn can be connected to the molecular and cellular mechanisms driving these processes.},
author = {Krens, Gabriel and Heisenberg, Carl-Philipp J},
booktitle = {Current Topics in Developmental Biology},
editor = {Labouesse, Michel},
pages = {189 -- 213},
publisher = {Elsevier},
title = {{Cell sorting in development}},
doi = {10.1016/B978-0-12-385065-2.00006-2},
volume = {95},
year = {2011},
}