@inproceedings{3845,
abstract = {This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurrence and algebraic solving techniques for reasoning about arrays.},
author = {Henzinger, Thomas A and Hottelier, Thibaud and Kovács, Laura and Rybalchenko, Andrey},
location = {Yogyakarta, Indonesia},
pages = {348 -- 356},
publisher = {Springer},
title = {{Aligators for arrays}},
doi = {10.1007/978-3-642-16242-8_25},
volume = {6397},
year = {2010},
}
@inproceedings{3847,
abstract = {The importance of stochasticity within biological systems has been shown repeatedly during the last years and has raised the need for efficient stochastic tools. We present SABRE, a tool for stochastic analysis of biochemical reaction networks. SABRE implements fast adaptive uniformization (FAU), a direct numerical approximation algorithm for computing transient solutions of biochemical reaction networks. Biochemical reactions networks represent biological systems studied at a molecular level and these reactions can be modeled as transitions of a Markov chain. SABRE accepts as input the formalism of guarded commands, which it interprets either as continuous-time or as discrete-time Markov chains. Besides operating in a stochastic mode, SABRE may also perform a deterministic analysis by directly computing a mean-field approximation of the system under study. We illustrate the different functionalities of SABRE by means of biological case studies.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
location = {Williamsburg, USA},
pages = {193 -- 194},
publisher = {IEEE},
title = {{SABRE: A tool for the stochastic analysis of biochemical reaction networks}},
doi = {10.1109/QEST.2010.33},
year = {2010},
}
@inproceedings{3848,
abstract = {We define the robustness of a level set homology class of a function f:XR as the magnitude of a perturbation necessary to kill the class. Casting this notion into a group theoretic framework, we compute the robustness for each class, using a connection to extended persistent homology. The special case X=R3 has ramifications in medical imaging and scientific visualization.},
author = {Bendich, Paul and Edelsbrunner, Herbert and Morozov, Dmitriy and Patel, Amit},
location = {Liverpool, UK},
pages = {1 -- 10},
publisher = {Springer},
title = {{The robustness of level sets}},
doi = {10.1007/978-3-642-15775-2_1},
volume = {6346},
year = {2010},
}
@inproceedings{3849,
abstract = {Using ideas from persistent homology, the robustness of a level set of a real-valued function is defined in terms of the magnitude of the perturbation necessary to kill the classes. Prior work has shown that the homology and robustness information can be read off the extended persistence diagram of the function. This paper extends these results to a non-uniform error model in which perturbations vary in their magnitude across the domain.},
author = {Bendich, Paul and Edelsbrunner, Herbert and Kerber, Michael and Patel, Amit},
location = {Brno, Czech Republic},
pages = {12 -- 23},
publisher = {Springer},
title = {{Persistent homology under non-uniform error}},
doi = {10.1007/978-3-642-15155-2_2},
volume = {6281},
year = {2010},
}
@inproceedings{3850,
abstract = {Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape with a disk of fixed radius? If it does, we also seek a preferably simple solution shape P;P’s offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give a decision algorithm for fixed radius in O(nlogn) time that handles any polygonal shape. For convex shapes, the complexity drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one.},
author = {Berberich, Eric and Halperin, Dan and Kerber, Michael and Pogalnikova, Roza},
location = {Dortmund, Germany},
pages = {12 -- 23},
publisher = {TU Dortmund},
title = {{Polygonal reconstruction from approximate offsets}},
year = {2010},
}
@inproceedings{3851,
abstract = {Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objective. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is polynomially equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP ∩ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Bordeaux, France},
pages = {599 -- 610},
publisher = {Springer},
title = {{Energy parity games}},
doi = {10.1007/978-3-642-14162-1_50},
volume = {6199},
year = {2010},
}
@inproceedings{3852,
abstract = {We introduce two-level discounted games played by two players on a perfect-information stochastic game graph. The upper level game is a discounted game and the lower level game is an undiscounted reachability game. Two-level games model hierarchical and sequential decision making under uncertainty across different time scales. We show the existence of pure memoryless optimal strategies for both players and an ordered field property for such games. We show that if there is only one player (Markov decision processes), then the values can be computed in polynomial time. It follows that whether the value of a player is equal to a given rational constant in two-level discounted games can be decided in NP intersected coNP. We also give an alternate strategy improvement algorithm to compute the value. },
author = {Chatterjee, Krishnendu and Majumdar, Ritankar},
location = {Minori, Italy},
pages = {22 -- 29},
publisher = {EPTCS},
title = {{Discounting in games across time scales}},
doi = {10.4204/EPTCS.25.6},
volume = {25},
year = {2010},
}
@inproceedings{3853,
abstract = {Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Edelsbrunner, Herbert and Henzinger, Thomas A and Rannou, Philippe},
location = {Paris, France},
pages = {269 -- 283},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Mean-payoff automaton expressions}},
doi = {10.1007/978-3-642-15375-4_19},
volume = {6269},
year = {2010},
}
@inproceedings{3854,
abstract = {Graph games of infinite length provide a natural model for open reactive systems: one player (Eve) represents the controller and the other player (Adam) represents the environment. The evolution of the system depends on the decisions of both players. The specification for the system is usually given as an ω-regular language L over paths and Eve’s goal is to ensure that the play belongs to L irrespective of Adam’s behaviour. The classical notion of winning strategies fails to capture several interesting scenarios. For example, strong fairness (Streett) conditions are specified by a number of request-grant pairs and require every pair that is requested infinitely often to be granted infinitely often: Eve might win just by preventing Adam from making any new request, but a “better” strategy would allow Adam to make as many requests as possible and still ensure fairness. To address such questions, we introduce the notion of obliging games, where Eve has to ensure a strong condition Φ, while always allowing Adam to satisfy a weak condition Ψ. We present a linear time reduction of obliging games with two Muller conditions Φ and Ψ to classical Muller games. We consider obliging Streett games and show they are co-NP complete, and show a natural quantitative optimisation problem for obliging Streett games is in FNP. We also show how obliging games can provide new and interesting semantics for multi-player games.},
author = {Chatterjee, Krishnendu and Horn, Florian and Löding, Christof},
location = {Paris, France},
pages = {284 -- 296},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Obliging games}},
doi = {10.1007/978-3-642-15375-4_20},
volume = {6269},
year = {2010},
}
@inproceedings{3855,
abstract = {We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {258 -- 269},
publisher = {Springer},
title = {{Qualitative analysis of partially-observable Markov Decision Processes}},
doi = {10.1007/978-3-642-15155-2_24},
volume = {6281},
year = {2010},
}
@inproceedings{3856,
abstract = {We consider two-player zero-sum games on graphs. These games can be classified on the basis of the information of the players and on the mode of interaction between them. On the basis of information the classification is as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided complete-observation (one player has complete observation); and (c) complete-observation (both players have complete view of the game). On the basis of mode of interaction we have the following classification: (a) concurrent (players interact simultaneously); and (b) turn-based (players interact in turn). The two sources of randomness in these games are randomness in transition function and randomness in strategies. In general, randomized strategies are more powerful than deterministic strategies, and randomness in transitions gives more general classes of games. We present a complete characterization for the classes of games where randomness is not helpful in: (a) the transition function (probabilistic transition can be simulated by deterministic transition); and (b) strategies (pure strategies are as powerful as randomized strategies). As consequence of our characterization we obtain new undecidability results for these games. },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Gimbert, Hugo and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {246 -- 257},
publisher = {Springer},
title = {{Randomness for free}},
doi = {10.1007/978-3-642-15155-2_23},
volume = {6281},
year = {2010},
}
@inproceedings{3857,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present an almost complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A},
location = {Singapore, Singapore},
pages = {1 -- 16},
publisher = {Springer},
title = {{Probabilistic Automata on infinite words: decidability and undecidability results}},
doi = {10.1007/978-3-642-15643-4_1},
volume = {6252},
year = {2010},
}
@inproceedings{3858,
abstract = {We consider two-player zero-sum games on graphs. On the basis of the information available to the players these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have com- plete view of the game). We survey the complexity results for the problem of de- ciding the winner in various classes of partial-observation games with ω-regular winning conditions specified as parity objectives. We present a reduction from the class of parity objectives that depend on sequence of states of the game to the sub-class of parity objectives that only depend on the sequence of observations. We also establish that partial-observation acyclic games are PSPACE-complete.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Yogyakarta, Indonesia},
pages = {1 -- 14},
publisher = {Springer},
title = {{The complexity of partial-observation parity games}},
doi = {10.1007/978-3-642-16242-8_1},
volume = {6397},
year = {2010},
}
@proceedings{3859,
abstract = {This book constitutes the proceedings of the 8th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2010, held in Klosterneuburg, Austria in September 2010. The 14 papers presented were carefully reviewed and selected from 31 submissions. In addition, the volume contains 3 invited talks and 2 invited tutorials.The aim of FORMATS is to promote the study of fundamental and practical aspects of timed systems, and to bring together researchers from different disciplines that share an interest in the modeling and analysis of timed systems. Typical topics include foundations and semantics, methods and tools, and applications.},
editor = {Chatterjee, Krishnendu and Henzinger, Thomas A},
location = {Klosterneuburg, Austria},
publisher = {Springer},
title = {{Formal modeling and analysis of timed systems}},
doi = {10.1007/978-3-642-15297-9},
volume = {6246},
year = {2010},
}
@inproceedings{3860,
abstract = {In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Generalized mean-payoff and energy games replace individual weights by tuples, and the limit average (resp. running sum) of each coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis of resource-bounded processes with multiple resources. We prove the finite-memory determinacy of generalized energy games and show the inter- reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also improve the computational complexity for solving both classes of games with finite-memory strategies: while the previously best known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the protagonist is NP-complete.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A and Raskin, Jean},
location = {Chennai, India},
pages = {505 -- 516},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Generalized mean-payoff and energy games}},
doi = {10.4230/LIPIcs.FSTTCS.2010.505},
volume = {8},
year = {2010},
}
@article{3861,
abstract = {We introduce strategy logic, a logic that treats strategies in two-player games as explicit first-order objects. The explicit treatment of strategies allows us to specify properties of nonzero-sum games in a simple and natural way. We show that the one-alternation fragment of strategy logic is strong enough to express the existence of Nash equilibria and secure equilibria, and subsumes other logics that were introduced to reason about games, such as ATL, ATL*, and game logic. We show that strategy logic is decidable, by constructing tree automata that recognize sets of strategies. While for the general logic, our decision procedure is nonelementary, for the simple fragment that is used above we show that the complexity is polynomial in the size of the game graph and optimal in the size of the formula (ranging from polynomial to 2EXPTIME depending on the form of the formula).},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Piterman, Nir},
journal = {Information and Computation},
number = {6},
pages = {677 -- 693},
publisher = {Elsevier},
title = {{Strategy logic}},
doi = {10.1016/j.ic.2009.07.004},
volume = {208},
year = {2010},
}
@article{3863,
abstract = {We consider two-player parity games with imperfect information in which strategies rely on observations that provide imperfect information about the history of a play. To solve such games, i.e., to determine the winning regions of players and corresponding winning strategies, one can use the subset construction to build an equivalent perfect-information game. Recently, an algorithm that avoids the inefficient subset construction has been proposed. The algorithm performs a fixed-point computation in a lattice of antichains, thus maintaining a succinct representation of state sets. However, this representation does not allow to recover winning strategies. In this paper, we build on the antichain approach to develop an algorithm for constructing the winning strategies in parity games of imperfect information. One major obstacle in adapting the classical procedure is that the complementation of attractor sets would break the invariant of downward-closedness on which the antichain representation relies. We overcome this difficulty by decomposing problem instances recursively into games with a combination of reachability, safety, and simpler parity conditions. We also report on an experimental implementation of our algorithm: to our knowledge, this is the first implementation of a procedure for solving imperfect-information parity games on graphs.},
author = {Berwanger, Dietmar and Chatterjee, Krishnendu and De Wulf, Martin and Doyen, Laurent and Henzinger, Thomas A},
journal = {Information and Computation},
number = {10},
pages = {1206 -- 1220},
publisher = {Elsevier},
title = {{Strategy construction for parity games with imperfect information}},
doi = {10.1016/j.ic.2009.09.006},
volume = {208},
year = {2010},
}
@inproceedings{3864,
abstract = {Often one has a preference order among the different systems that satisfy a given specification. Under a probabilistic assumption about the possible inputs, such a preference order is naturally expressed by a weighted automaton, which assigns to each word a value, such that a system is preferred if it generates a higher expected value. We solve the following optimal-synthesis problem: given an omega-regular specification, a Markov chain that describes the distribution of inputs, and a weighted automaton that measures how well a system satisfies the given specification tinder the given input assumption, synthesize a system that optimizes the measured value. For safety specifications and measures that are defined by mean-payoff automata, the optimal-synthesis problem amounts to finding a strategy in a Markov decision process (MDP) that is optimal for a long-run average reward objective, which can be done in polynomial time. For general omega-regular specifications, the solution rests on a new, polynomial-time algorithm for computing optimal strategies in MDPs with mean-payoff parity objectives. We present some experimental results showing optimal systems that were automatically generated in this way.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara and Singh, Rohit},
location = {Edinburgh, United Kingdom},
pages = {380 -- 395},
publisher = {Springer},
title = {{Measuring and synthesizing systems in probabilistic environments}},
doi = {10.1007/978-3-642-14295-6_34},
volume = {6174},
year = {2010},
}
@inproceedings{3865,
abstract = {We introduce a technique for debugging multi-threaded C programs and analyzing the impact of source code changes, and its implementation in the prototype tool DIRECT. Our approach uses a combination of source code instrumentation and runtime management. The source code along with a test harness is instrumented to monitor Operating System (OS) and user defined function calls. DIRECT tracks all concurrency control primitives and, optionally, data from the program. DIRECT maintains an abstract global state that combines information from every thread, including the sequence of function calls and concurrency primitives executed. The runtime manager can insert delays, provoking thread inter-leavings that may exhibit bugs that are difficult to reach otherwise. The runtime manager collects an approximation of the reachable state space and uses this approximation to assess the impact of change in a new version of the program.},
author = {Chatterjee, Krishnendu and De Alfaro, Luca and Raman, Vishwanath and Sánchez, César},
editor = {Rosenblum, David and Taenzer, Gabriele},
location = {Paphos, Cyprus},
pages = {293 -- 307},
publisher = {Springer},
title = {{Analyzing the impact of change in multi-threaded programs}},
doi = {10.1007/978-3-642-12029-9_21},
volume = {6013},
year = {2010},
}
@inproceedings{3866,
abstract = {Systems ought to behave reasonably even in circumstances that are not anticipated in their specifications. We propose a definition of robustness for liveness specifications which prescribes, for any number of environment assumptions that are violated, a minimal number of system guarantees that must still be fulfilled. This notion of robustness can be formulated and realized using a Generalized Reactivity formula. We present an algorithm for synthesizing robust systems from such formulas. For the important special case of Generalized Reactivity formulas of rank 1, our algorithm improves the complexity of [PPS06] for large specifications with a small number of assumptions and guarantees.},
author = {Bloem, Roderick and Chatterjee, Krishnendu and Greimel, Karin and Henzinger, Thomas A and Jobstmann, Barbara},
editor = {Touili, Tayssir and Cook, Byron and Jackson, Paul},
location = {Edinburgh, UK},
pages = {410 -- 424},
publisher = {Springer},
title = {{Robustness in the presence of liveness}},
doi = {10.1007/978-3-642-14295-6_36},
volume = {6174},
year = {2010},
}
@article{3867,
abstract = {Weighted automata are nondeterministic automata with numerical weights on transitions. They can define quantitative languages L that assign to each word w a real number L(w). In the case of infinite words, the value of a run is naturally computed as the maximum, limsup, liminf, limit-average, or discounted-sum of the transition weights. The value of a word w is the supremum of the values of the runs over w. We study expressiveness and closure questions about these quantitative languages. We first show that the set of words with value greater than a threshold can be omega-regular for deterministic limit-average and discounted-sum automata, while this set is always omega-regular when the threshold is isolated (i.e., some neighborhood around the threshold contains no word). In the latter case, we prove that the omega-regular language is robust against small perturbations of the transition weights. We next consider automata with transition weights 0 or 1 and show that they are as expressive as general weighted automata in the limit-average case, but not in the discounted-sum case. Third, for quantitative languages L-1 and L-2, we consider the operations max(L-1, L-2), min(L-1, L-2), and 1 - L-1, which generalize the boolean operations on languages, as well as the sum L-1 + L-2. We establish the closure properties of all classes of quantitative languages with respect to these four operations.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
journal = {Logical Methods in Computer Science},
number = {3},
pages = {1 -- 23},
publisher = {International Federation of Computational Logic},
title = {{Expressiveness and closure properties for quantitative languages}},
doi = {10.2168/LMCS-6(3:10)2010},
volume = {6},
year = {2010},
}
@article{3868,
abstract = {Simulation and bisimulation metrics for stochastic systems provide a quantitative generalization of the classical simulation and bisimulation relations. These metrics capture the similarity of states with respect to quantitative specifications written in the quantitative mu-calculus and related probabilistic logics. We first show that the metrics provide a bound for the difference in long-run average and discounted average behavior across states, indicating that the metrics can be used both in system verification, and in performance evaluation. For turn-based games and MDPs, we provide a polynomial-time algorithm for the computation of the one-step metric distance between states. The algorithm is based on linear programming; it improves on the previous known exponential-time algorithm based on a reduction to the theory of reals. We then present PSPACE algorithms for both the decision problem and the problem of approximating the metric distance between two states, matching the best known algorithms for Markov chains. For the bisimulation kernel of the metric our algorithm works in time O(n(4)) for both turn-based games and MDPs; improving the previously best known O(n(9).log(n)) time algorithm for MDPs. For a concurrent game G, we show that computing the exact distance be tween states is at least as hard as computing the value of concurrent reachability games and the square-root-sum problem in computational geometry. We show that checking whether the metric distance is bounded by a rational r, can be done via a reduction to the theory of real closed fields, involving a formula with three quantifier alternations, yielding O(vertical bar G vertical bar(O(vertical bar G vertical bar 5))) time complexity, improving the previously known reduction, which yielded O(vertical bar G vertical bar(O(vertical bar G vertical bar 7))) time complexity. These algorithms can be iterated to approximate the metrics using binary search},
author = {Chatterjee, Krishnendu and De Alfaro, Luca and Majumdar, Ritankar and Raman, Vishwanath},
journal = {Logical Methods in Computer Science},
number = {3},
pages = {1 -- 27},
publisher = {International Federation of Computational Logic},
title = {{Algorithms for game metrics}},
doi = {10.2168/LMCS-6(3:13)2010},
volume = {6},
year = {2010},
}
@article{3901,
abstract = {We are interested in 3-dimensional images given as arrays of voxels with intensity values. Extending these values to acontinuous function, we study the robustness of homology classes in its level and interlevel sets, that is, the amount of perturbationneeded to destroy these classes. The structure of the homology classes and their robustness, over all level and interlevel sets, can bevisualized by a triangular diagram of dots obtained by computing the extended persistence of the function. We give a fast hierarchicalalgorithm using the dual complexes of oct-tree approximations of the function. In addition, we show that for balanced oct-trees, thedual complexes are geometrically realized in $R^3$ and can thus be used to construct level and interlevel sets. We apply these tools tostudy 3-dimensional images of plant root systems.},
author = {Bendich, Paul and Edelsbrunner, Herbert and Kerber, Michael},
journal = {IEEE Transactions of Visualization and Computer Graphics},
number = {6},
pages = {1251 -- 1260},
publisher = {IEEE},
title = {{Computing robustness and persistence for images}},
doi = {10.1109/TVCG.2010.139},
volume = {16},
year = {2010},
}
@phdthesis{3962,
author = {Pflicke, Holger},
publisher = {IST Austria},
title = {{Dendritic cell migration across basement membranes in the skin}},
year = {2010},
}
@article{4134,
abstract = {All species are restricted in their distribution. Currently, ecological models can only explain such limits if patches vary in quality, leading to asymmetrical dispersal, or if genetic variation is too low at the margins for adaptation. However, population genetic models suggest that the increase in genetic variance resulting from dispersal should allow adaptation to almost any ecological gradient. Clearly therefore, these models miss something that prevents evolution in natural populations. We developed an individual-based simulation to explore stochastic effects in these models. At high carrying capacities, our simulations largely agree with deterministic predictions. However, when carrying capacity is low, the population fails to establish for a wide range of parameter values where adaptation was expected from previous models. Stochastic or transient effects appear critical around the boundaries in parameter space between simulation behaviours. Dispersal, gradient steepness, and population density emerge as key factors determining adaptation on an ecological gradient. },
author = {Bridle, Jon and Polechova, Jitka and Kawata, Masakado and Butlin, Roger},
journal = {Ecology Letters},
number = {4},
pages = {485 -- 494},
publisher = {Wiley-Blackwell},
title = {{Why is adaptation prevented at ecological margins? New insights from individual-based simulations}},
doi = {10.1111/j.1461-0248.2010.01442.x},
volume = {13},
year = {2010},
}
@article{4157,
abstract = {Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.},
author = {Papusheva, Ekaterina and Heisenberg, Carl-Philipp J},
journal = {EMBO Journal},
number = {16},
pages = {2753 -- 2768},
publisher = {Wiley-Blackwell},
title = {{Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis}},
doi = {10.1038/emboj.2010.182},
volume = {29},
year = {2010},
}
@article{4243,
abstract = {We investigate a new model for populations evolving in a spatial continuum. This model can be thought of as a spatial version of the Lambda-Fleming-Viot process. It explicitly incorporates both small scale reproduction events and large scale extinction-recolonisation events. The lineages ancestral to a sample from a population evolving according to this model can be described in terms of a spatial version of the Lambda-coalescent. Using a technique of Evans (1997), we prove existence and uniqueness in law for the model. We then investigate the asymptotic behaviour of the genealogy of a finite number of individuals sampled uniformly at random (or more generally `far enough apart') from a two-dimensional torus of sidelength L as L tends to infinity. Under appropriate conditions (and on a suitable timescale) we can obtain as limiting genealogical processes a Kingman coalescent, a more general Lambda-coalescent or a system of coalescing Brownian motions (with a non-local coalescence mechanism).},
author = {Barton, Nicholas H and Etheridge, Alison and Véber, Amandine},
journal = {Electronic Journal of Probability},
number = {7},
pages = {162 -- 216},
publisher = {Institute of Mathematical Statistics},
title = {{A new model for evolution in a spatial continuum}},
doi = {10.1214/EJP.v15-741},
volume = {15},
year = {2010},
}
@inbook{4339,
abstract = {Mit diesem Buch möchten wir einen Überblick der aktuellen Diskussion zum Thema Bibliothek 2.0 geben und den Stand der tatsächlichen Umsetzung der Web 2.0-Ansätze in deutschsprachigen Bibliotheken beleuchten. An dieser Stelle ist die Frage erlaubt, warum es zu einer Zeit, in der es bereits die ersten "Web 3.0"- Konferenzen gibt, eines Handbuches der Bibliothek 2.0 noch bedarf. Und warum es überhaupt ein deutschsprachiges Handbuch zur Bibliothek 2.0 braucht, wo es doch bereits verschiedenste Publikationen zu diesem Thema aus anderen Ländern, insbesondere des angloamerikanischen Raums gibt. Ist dazu nicht bereits alles gesagt?},
author = {Bergmann, Julia and Danowski, Patrick},
booktitle = {Handbuch Bibliothek 2.0},
editor = {Bergmann, Julia and Danowski, Patrick},
pages = {5 -- 20},
publisher = {De Gruyter},
title = {{Ist Bibliothek 2.0 überhaupt noch relevant? – Eine Einleitung in das Handbuch}},
doi = {10.1515/9783110232103},
year = {2010},
}
@book{4346,
abstract = {With the term "Library 2.0" the editors mean an institution which applies the principles of the Web 2.0 such as openness, re-use, collaboration and interaction in the entire organization. Libraries are extending their service offerings and work processes to include the potential of Web 2.0 technologies. This changes the job description and self-image of librarians. The collective volume offers a complete overview of the topic Library 2.0 and the current state of developments from a technological, sociological, information theoretical and practice-oriented perspective.},
author = {Danowski, Patrick and Bergmann, Julia},
publisher = {De Gruyter},
title = {{Handbuch Bibliothek 2.0}},
year = {2010},
}
@inproceedings{4362,
abstract = {Software transactional memories (STMs) promise simple and efficient concurrent programming. Several correctness properties have been proposed for STMs. Based on a bounded conflict graph algorithm for verifying correctness of STMs, we develop TRACER, a tool for runtime verification of STM implementations. The novelty of TRACER lies in the way it combines coarse and precise runtime analyses to guarantee sound and complete verification in an efficient manner. We implement TRACER in the TL2 STM implementation. We evaluate the performance of TRACER on STAMP benchmarks. While a precise runtime verification technique based on conflict graphs results in an average slowdown of 60x, the two-level approach of TRACER performs complete verification with an average slowdown of around 25x across different benchmarks.},
author = {Singh, Vasu},
editor = {Sokolsky, Oleg and Rosu, Grigore and Tilmann, Nikolai and Barringer, Howard and Falcone, Ylies and Finkbeiner, Bernd and Havelund, Klaus and Lee, Insup and Pace, Gordon},
location = {St. Julians, Malta},
pages = {421 -- 435},
publisher = {Springer},
title = {{Runtime verification for software transactional memories}},
doi = {10.1007/978-3-642-16612-9_32},
volume = {6418},
year = {2010},
}
@inproceedings{4369,
abstract = {In this paper we propose a novel technique for constructing timed automata from properties expressed in the logic mtl, under bounded-variability assumptions. We handle full mtl and include all future operators. Our construction is based on separation of the continuous time monitoring of the input sequence and discrete predictions regarding the future. The separation of the continuous from the discrete allows us to determinize our automata in an exponential construction that does not increase the number of clocks. This leads to a doubly exponential construction from mtl to deterministic timed automata, compared with triply exponential using existing approaches. We offer an alternative to the existing approach to linear real-time model checking, which has never been implemented. It further offers a unified framework for model checking, runtime monitoring, and synthesis, in an approach that can reuse tools, implementations, and insights from the discrete setting.},
author = {Nickovic, Dejan and Piterman, Nir},
editor = {Henzinger, Thomas A. and Chatterjee, Krishnendu},
location = {Klosterneuburg, Austria},
pages = {152 -- 167},
publisher = {Springer},
title = {{From MTL to deterministic timed automata}},
doi = {10.1007/978-3-642-15297-9_13},
volume = {6246},
year = {2010},
}
@inproceedings{4378,
abstract = {Techniques such as verification condition generation, predicate abstraction, and expressive type systems reduce software verification to proving formulas in expressive logics. Programs and their specifications often make use of data structures such as sets, multisets, algebraic data types, or graphs. Consequently, formulas generated from verification also involve such data structures. To automate the proofs of such formulas we propose a logic (a “calculus”) of such data structures. We build the calculus by starting from decidable logics of individual data structures, and connecting them through functions and sets, in ways that go beyond the frameworks such as Nelson-Oppen. The result are new decidable logics that can simultaneously specify properties of different kinds of data structures and overcome the limitations of the individual logics. Several of our decidable logics include abstraction functions that map a data structure into its more abstract view (a tree into a multiset, a multiset into a set), into a numerical quantity (the size or the height), or into the truth value of a candidate data structure invariant (sortedness, or the heap property). For algebraic data types, we identify an asymptotic many-to-one condition on the abstraction function that guarantees the existence of a decision procedure. In addition to the combination based on abstraction functions, we can combine multiple data structure theories if they all reduce to the same data structure logic. As an instance of this approach, we describe a decidable logic whose formulas are propositional combinations of formulas in: weak monadic second-order logic of two successors, two-variable logic with counting, multiset algebra with Presburger arithmetic, the Bernays-Schönfinkel-Ramsey class of first-order logic, and the logic of algebraic data types with the set content function. The subformulas in this combination can share common variables that refer to sets of objects along with the common set algebra operations. Such sound and complete combination is possible because the relations on sets definable in the component logics are all expressible in Boolean Algebra with Presburger Arithmetic. Presburger arithmetic and its new extensions play an important role in our decidability results. In several cases, when we combine logics that belong to NP, we can prove the satisfiability for the combined logic is still in NP.},
author = {Kuncak, Viktor and Piskac, Ruzica and Suter, Philippe and Wies, Thomas},
editor = {Barthe, Gilles and Hermenegildo, Manuel},
location = {Madrid, Spain},
pages = {26 -- 44},
publisher = {Springer},
title = {{Building a calculus of data structures}},
doi = {10.1007/978-3-642-11319-2_6},
volume = {5944},
year = {2010},
}
@inproceedings{4380,
abstract = {Cloud computing is an emerging paradigm aimed to offer users pay-per-use computing resources, while leaving the burden of managing the computing infrastructure to the cloud provider. We present a new programming and pricing model that gives the cloud user the flexibility of trading execution speed and price on a per-job basis. We discuss the scheduling and resource management challenges for the cloud provider that arise in the implementation of this model. We argue that techniques from real-time and embedded software can be useful in this context.},
author = {Henzinger, Thomas A and Tomar, Anmol and Singh, Vasu and Wies, Thomas and Zufferey, Damien},
location = {Arizona, USA},
pages = {1 -- 8},
publisher = {ACM},
title = {{A marketplace for cloud resources}},
doi = {10.1145/1879021.1879022},
year = {2010},
}
@inproceedings{4381,
abstract = {Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We claim that, in order to realize the full potential of cloud computing, the user must be presented with a pricing model that offers flexibility at the requirements level, such as a choice between different degrees of execution speed and the cloud provider must be presented with a programming model that offers flexibility at the execution level, such as a choice between different scheduling policies. In such a flexible framework, with each job, the user purchases a virtual computer with the desired speed and cost characteristics, and the cloud provider can optimize the utilization of resources across a stream of jobs from different users. We designed a flexible framework to test our hypothesis, which is called FlexPRICE (Flexible Provisioning of Resources in a Cloud Environment) and works as follows. A user presents a job to the cloud. The cloud finds different schedules to execute the job and presents a set of quotes to the user in terms of price and duration for the execution. The user then chooses a particular quote and the cloud is obliged to execute the job according to the chosen quote. FlexPRICE thus hides the complexity of the actual scheduling decisions from the user, but still provides enough flexibility to meet the users actual demands. We implemented FlexPRICE in a simulator called PRICES that allows us to experiment with our framework. We observe that FlexPRICE provides a wide range of execution options-from fast and expensive to slow and cheap-- for the whole spectrum of data-intensive and computation-intensive jobs. We also observe that the set of quotes computed by FlexPRICE do not vary as the number of simultaneous jobs increases.},
author = {Henzinger, Thomas A and Tomar, Anmol and Singh, Vasu and Wies, Thomas and Zufferey, Damien},
location = {Miami, USA},
pages = {83 -- 90},
publisher = {IEEE},
title = {{FlexPRICE: Flexible provisioning of resources in a cloud environment}},
doi = {10.1109/CLOUD.2010.71},
year = {2010},
}
@inproceedings{4382,
abstract = {Transactional memory (TM) has shown potential to simplify the task of writing concurrent programs. Inspired by classical work on databases, formal definitions of the semantics of TM executions have been proposed. Many of these definitions assumed that accesses to shared data are solely performed through transactions. In practice, due to legacy code and concurrency libraries, transactions in a TM have to share data with non-transactional operations. The semantics of such interaction, while widely discussed by practitioners, lacks a clear formal specification. Those interactions can vary, sometimes in subtle ways, between TM implementations and underlying memory models. We propose a correctness condition for TMs, parametrized opacity, to formally capture the now folklore notion of strong atomicity by stipulating the two following intuitive requirements: first, every transaction appears as if it is executed instantaneously with respect to other transactions and non-transactional operations, and second, non-transactional operations conform to the given underlying memory model. We investigate the inherent cost of implementing parametrized opacity. We first prove that parametrized opacity requires either instrumenting non-transactional operations (for most memory models) or writing to memory by transactions using potentially expensive read-modify-write instructions (such as compare-and-swap). Then, we show that for a class of practical relaxed memory models, parametrized opacity can indeed be implemented with constant-time instrumentation of non-transactional writes and no instrumentation of non-transactional reads. We show that, in practice, parametrizing the notion of correctness allows developing more efficient TM implementations.},
author = {Guerraoui, Rachid and Henzinger, Thomas A and Kapalka, Michal and Singh, Vasu},
location = {Santorini, Greece},
pages = {263 -- 272},
publisher = {ACM},
title = {{Transactions in the jungle}},
doi = {10.1145/1810479.1810529},
year = {2010},
}
@inproceedings{4388,
abstract = {GIST is a tool that (a) solves the qualitative analysis problem of turn-based probabilistic games with ω-regular objectives; and (b) synthesizes reasonable environment assumptions for synthesis of unrealizable specifications. Our tool provides the first and efficient implementations of several reduction-based techniques to solve turn-based probabilistic games, and uses the analysis of turn-based probabilistic games for synthesizing environment assumptions for unrealizable specifications.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara and Radhakrishna, Arjun},
location = {Edinburgh, UK},
pages = {665 -- 669},
publisher = {Springer},
title = {{GIST: A solver for probabilistic games}},
doi = {10.1007/978-3-642-14295-6_57},
volume = {6174},
year = {2010},
}
@inproceedings{4389,
abstract = {Digital components play a central role in the design of complex embedded systems. These components are interconnected with other, possibly analog, devices and the physical environment. This environment cannot be entirely captured and can provide inaccurate input data to the component. It is thus important for digital components to have a robust behavior, i.e. the presence of a small change in the input sequences should not result in a drastic change in the output sequences. In this paper, we study a notion of robustness for sequential circuits. However, since sequential circuits may have parts that are naturally discontinuous (e.g., digital controllers with switching behavior), we need a flexible framework that accommodates this fact and leaves discontinuous parts of the circuit out from the robustness analysis. As a consequence, we consider sequential circuits that have their input variables partitioned into two disjoint sets: control and disturbance variables. Our contributions are (1) a definition of robustness for sequential circuits as a form of continuity with respect to disturbance variables, (2) the characterization of the exact class of sequential circuits that are robust according to our definition, (3) an algorithm to decide whether a sequential circuit is robust or not.},
author = {Doyen, Laurent and Henzinger, Thomas A and Legay, Axel and Nickovic, Dejan},
pages = {77 -- 84},
publisher = {IEEE},
title = {{Robustness of sequential circuits}},
doi = {10.1109/ACSD.2010.26},
year = {2010},
}
@inproceedings{4390,
abstract = {Concurrent data structures with fine-grained synchronization are notoriously difficult to implement correctly. The difficulty of reasoning about these implementations does not stem from the number of variables or the program size, but rather from the large number of possible interleavings. These implementations are therefore prime candidates for model checking. We introduce an algorithm for verifying linearizability of singly-linked heap-based concurrent data structures. We consider a model consisting of an unbounded heap where each vertex stores an element from an unbounded data domain, with a restricted set of operations for testing and updating pointers and data elements. Our main result is that linearizability is decidable for programs that invoke a fixed number of methods, possibly in parallel. This decidable fragment covers many of the common implementation techniques — fine-grained locking, lazy synchronization, and lock-free synchronization. We also show how the technique can be used to verify optimistic implementations with the help of programmer annotations. We developed a verification tool CoLT and evaluated it on a representative sample of Java implementations of the concurrent set data structure. The tool verified linearizability of a number of implementations, found a known error in a lock-free implementation and proved that the corrected version is linearizable.},
author = {Cerny, Pavol and Radhakrishna, Arjun and Zufferey, Damien and Chaudhuri, Swarat and Alur, Rajeev},
location = {Edinburgh, UK},
pages = {465 -- 479},
publisher = {Springer},
title = {{Model checking of linearizability of concurrent list implementations}},
doi = {10.1007/978-3-642-14295-6_41},
volume = {6174},
year = {2010},
}
@inbook{4392,
abstract = {While a boolean notion of correctness is given by a preorder on systems and properties, a quantitative notion of correctness is defined by a distance function on systems and properties, where the distance between a system and a property provides a measure of “fit” or “desirability.” In this article, we explore several ways how the simulation preorder can be generalized to a distance function. This is done by equipping the classical simulation game between a system and a property with quantitative objectives. In particular, for systems that satisfy a property, a quantitative simulation game can measure the “robustness” of the satisfaction, that is, how much the system can deviate from its nominal behavior while still satisfying the property. For systems that violate a property, a quantitative simulation game can measure the “seriousness” of the violation, that is, how much the property has to be modified so that it is satisfied by the system. These distances can be computed in polynomial time, since the computation reduces to the value problem in limit average games with constant weights. Finally, we demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes. },
author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun},
booktitle = {Time For Verification: Essays in Memory of Amir Pnueli},
editor = {Manna, Zohar and Peled, Doron},
pages = {42 -- 60},
publisher = {Springer},
title = {{Quantitative Simulation Games}},
doi = {10.1007/978-3-642-13754-9_3},
volume = {6200},
year = {2010},
}
@inproceedings{4393,
abstract = {Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.},
author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun},
location = {Paris, France},
pages = {235 -- 268},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Simulation distances}},
doi = {10.1007/978-3-642-15375-4_18},
volume = {6269},
year = {2010},
}
@inproceedings{4396,
abstract = {Shape analysis is a promising technique to prove program properties about recursive data structures. The challenge is to automatically determine the data-structure type, and to supply the shape analysis with the necessary information about the data structure. We present a stepwise approach to the selection of instrumentation predicates for a TVLA-based shape analysis, which takes us a step closer towards the fully automatic verification of data structures. The approach uses two techniques to guide the refinement of shape abstractions: (1) during program exploration, an explicit heap analysis collects sample instances of the heap structures, which are used to identify the data structures that are manipulated by the program; and (2) during abstraction refinement along an infeasible error path, we consider different possible heap abstractions and choose the coarsest one that eliminates the infeasible path. We have implemented this combined approach for automatic shape refinement as an extension of the software model checker BLAST. Example programs from a data-structure library that manipulate doubly-linked lists and trees were successfully verified by our tool.},
author = {Beyer, Dirk and Henzinger, Thomas A and Théoduloz, Grégory and Zufferey, Damien},
editor = {Rosenblum, David and Taenzer, Gabriele},
location = {Paphos, Cyprus},
pages = {263 -- 277},
publisher = {Springer},
title = {{Shape refinement through explicit heap analysis}},
doi = {10.1007/978-3-642-12029-9_19},
volume = {6013},
year = {2010},
}
@article{3303,
abstract = {Biological traits result in part from interactions between different genetic loci. This can lead to sign epistasis, in which a beneficial adaptation involves a combination of individually deleterious or neutral mutations; in this case, a population must cross a “fitness valley” to adapt. Recombination can assist this process by combining mutations from different individuals or retard it by breaking up the adaptive combination. Here, we analyze the simplest fitness valley, in which an adaptation requires one mutation at each of two loci to provide a fitness benefit. We present a theoretical analysis of the effect of recombination on the valley-crossing process across the full spectrum of possible parameter regimes. We find that low recombination rates can speed up valley crossing relative to the asexual case, while higher recombination rates slow down valley crossing, with the transition between the two regimes occurring when the recombination rate between the loci is approximately equal to the selective advantage provided by the adaptation. In large populations, if the recombination rate is high and selection against single mutants is substantial, the time to cross the valley grows exponentially with population size, effectively meaning that the population cannot acquire the adaptation. Recombination at the optimal (low) rate can reduce the valley-crossing time by up to several orders of magnitude relative to that in an asexual population. },
author = {Weissman, Daniel and Feldman, Marcus and Fisher, Daniel},
journal = {Genetics},
number = {4},
pages = {1389 -- 1410},
publisher = {Genetics Society of America},
title = {{The rate of fitness-valley crossing in sexual populations}},
doi = {10.1534/genetics.110.123240},
volume = {186},
year = {2010},
}
@article{3604,
abstract = {We investigated temporal changes in hybridization and introgression between native red deer (Cervus elaphus) and invasive Japanese sika (Cervus nippon) on the Kintyre Peninsula, Scotland, over 15 years, through analysis of 1513 samples of deer at 20 microsatellite loci and a mtDNA marker. We found no evidence that either the proportion of recent hybrids, or the levels of introgression had changed over the study period. Nevertheless, in one population where the two species have been in contact since ∼1970, 44% of individuals sampled during the study were hybrids. This suggests that hybridization between these species can proceed fairly rapidly. By analysing the number of alleles that have introgressed from polymorphic red deer into the genetically homogenous sika population, we reconstructed the haplotypes of red deer alleles introduced by backcrossing. Five separate hybridization events could account for all the recently hybridized sika-like individuals found across a large section of the Peninsula. Although we demonstrate that low rates of F1 hybridization can lead to substantial introgression, the progress of hybridization and introgression appears to be unpredictable over the short timescales.},
author = {Senn, Helen and Goodman, Simon and Swanson, Graeme and Barton, Nicholas H and Pemberton, Josephine},
journal = {Molecular Ecology},
number = {5},
pages = {910 -- 924},
publisher = {Wiley-Blackwell},
title = {{Investigating temporal changes in hybridisation and introgression between invasive sika (Cervus nippon) and native red deer (Cervus elaphus) on the Kintyre Peninsula, Scotland}},
doi = {10.1111/j.1365-294X.2009.04497.x},
volume = {19},
year = {2010},
}
@inproceedings{4361,
abstract = {Depth-bounded processes form the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. In this paper we develop an adequate domain of limits for the well-structured transition systems that are induced by depth-bounded processes. An immediate consequence of our result is that there exists a forward algorithm that decides the covering problem for this class. Unlike backward algorithms, the forward algorithm terminates even if the depth of the process is not known a priori. More importantly, our result suggests a whole spectrum of forward algorithms that enable the effective verification of a large class of mobile systems.},
author = {Wies, Thomas and Zufferey, Damien and Henzinger, Thomas A},
editor = {Ong, Luke},
location = {Paphos, Cyprus},
pages = {94 -- 108},
publisher = {Springer},
title = {{Forward analysis of depth-bounded processes}},
doi = {10.1007/978-3-642-12032-9_8},
volume = {6014},
year = {2010},
}
@misc{5392,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs of [GO09] and present a precise characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems.},
author = {Chatterjee, Krishnendu},
issn = {2664-1690},
pages = {17},
publisher = {IST Austria},
title = {{Probabilistic automata on infinite words: Decidability and undecidability results}},
doi = {10.15479/AT:IST-2009-0004},
year = {2009},
}
@misc{5393,
abstract = {Gist is a tool that (a) solves the qualitative analysis problem of turn-based probabilistic games with ω-regular objectives; and (b) synthesizes reasonable environment assumptions for synthesis of unrealizable specifications. Our tool provides efficient implementations of several reduction based techniques to solve turn-based probabilistic games, and uses the analysis of turn-based probabilistic games for synthesizing environment assumptions for unrealizable specifications.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara and Radhakrishna, Arjun},
issn = {2664-1690},
pages = {12},
publisher = {IST Austria},
title = {{Gist: A solver for probabilistic games}},
doi = {10.15479/AT:IST-2009-0003},
year = {2009},
}
@misc{5394,
abstract = {We consider two-player games played on graphs with request-response and finitary Streett objectives. We show these games are PSPACE-hard, improving the previous known NP-hardness. We also improve the lower bounds on memory required by the winning strategies for the players.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Horn, Florian},
issn = {2664-1690},
pages = {11},
publisher = {IST Austria},
title = {{Improved lower bounds for request-response and finitary Streett games}},
doi = {10.15479/AT:IST-2009-0002},
year = {2009},
}
@misc{5395,
abstract = {We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observa- tions. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis of POMDPs with parity objectives (a canonical form to express omega-regular objectives) and its subclasses. Our contribution consists in establishing several upper and lower bounds that were not known in literature. Second, we present optimal bounds (matching upper and lower bounds) on the memory required by pure and randomized observation-based strategies for the qualitative analysis of POMDPs with parity objectives and its subclasses.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{Qualitative analysis of partially-observable Markov decision processes}},
doi = {10.15479/AT:IST-2009-0001},
year = {2009},
}
@article{3775,
abstract = {There is a close analogy between statistical thermodynamics and the evolution of allele frequencies under mutation, selection and random drift. Wright's formula for the stationary distribution of allele frequencies is analogous to the Boltzmann distribution in statistical physics. Population size, 2N, plays the role of the inverse temperature, 1/kT, and determines the magnitude of random fluctuations. Log mean fitness, View the MathML source, tends to increase under selection, and is analogous to a (negative) energy; a potential function, U, increases under mutation in a similar way. An entropy, SH, can be defined which measures the deviation from the distribution of allele frequencies expected under random drift alone; the sum View the MathML source gives a free fitness that increases as the population evolves towards its stationary distribution. Usually, we observe the distribution of a few quantitative traits that depend on the frequencies of very many alleles. The mean and variance of such traits are analogous to observable quantities in statistical thermodynamics. Thus, we can define an entropy, SΩ, which measures the volume of allele frequency space that is consistent with the observed trait distribution. The stationary distribution of the traits is View the MathML source; this applies with arbitrary epistasis and dominance. The entropies SΩ, SH are distinct, but converge when there are so many alleles that traits fluctuate close to their expectations. Populations tend to evolve towards states that can be realised in many ways (i.e., large SΩ), which may lead to a substantial drop below the adaptive peak; we illustrate this point with a simple model of genetic redundancy. This analogy with statistical thermodynamics brings together previous ideas in a general framework, and justifies a maximum entropy approximation to the dynamics of quantitative traits.},
author = {Barton, Nicholas H and Coe, Jason},
journal = {Journal of Theoretical Biology},
number = {2},
pages = {317 -- 324},
publisher = {Elsevier},
title = {{On the application of statistical physics to evolutionary biology}},
doi = {10.1016/j.jtbi.2009.03.019},
volume = {259},
year = {2009},
}
@article{3780,
abstract = {Why are sinistral snails so rare? Two main hypotheses are that selection acts against the establishment of new coiling morphs, because dextral and sinistral snails have trouble mating, or else a developmental constraint prevents the establishment of sinistrals. We therefore used an isolate of the snail Lymnaea stagnalis, in which sinistrals are rare, and populations of Partula suturalis, in which sinistrals are common, as well as a mathematical model, to understand the circumstances by which new morphs evolve. The main finding is that the sinistral genotype is associated with reduced egg viability in L. stagnalis, but in P. suturalis individuals of sinistral and dextral genotype appear equally fecund, implying a lack of a constraint. As positive frequency-dependent selection against the rare chiral morph in P. suturalis also operates over a narrow range (< 3%), the results suggest a model for chiral evolution in snails in which weak positive frequency-dependent selection may be overcome by a negative frequency-dependent selection, such as reproductive character displacement. In snails, there is not always a developmental constraint. As the direction of cleavage, and thus the directional asymmetry of the entire body, does not generally vary in other Spiralia (annelids, echiurans, vestimentiferans, sipunculids and nemerteans), it remains an open question as to whether this is because of a constraint and/or because most taxa do not have a conspicuous external asymmetry (like a shell) upon which selection can act.},
author = {Davison, Angus and Barton, Nicholas H and Clarke, Bryan},
journal = {Journal of Evolutionary Biology},
number = {8},
pages = {1624 -- 1635},
publisher = {Wiley},
title = {{The effect of chirality phenotype and genotype on the fecundity and viability of Partula suturalis and Lymnaea stagnalis: Implications for the evolution of sinistral snails}},
doi = {10.1111/j.1420-9101.2009.01770.x},
volume = {22},
year = {2009},
}
@inproceedings{3837,
abstract = {In this paper we extend the work of Alfaro, Henzinger et al. on interface theories for component-based design. Existing interface theories often fail to capture functional relations between the inputs and outputs of an interface. For example, a simple synchronous interface that takes as input a number n ≥ 0 and returns, at the same time, as output n + 1, cannot be expressed in existing theories. In this paper we provide a theory of relational interfaces, where such input-output relations can be captured. Our theory supports synchronous interfaces, both stateless and stateful. It includes explicit notions of environments and pluggability, and satisfies fundamental properties such as preservation of refinement by composition, and characterization of pluggability by refinement. We achieve these properties by making reasonable restrictions on feedback loops in interface compositions.},
author = {Tripakis, Stavros and Lickly, Ben and Henzinger, Thomas A and Lee, Edward},
booktitle = {EMSOFT '09 Proceedings of the seventh ACM international conference on Embedded software},
location = {Grenoble, France},
pages = {67 -- 76},
publisher = {ACM},
title = {{On relational interfaces}},
doi = {10.1145/1629335.1629346},
year = {2009},
}
@inproceedings{3841,
abstract = {We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model. },
author = {Henzinger, Thomas A and Jobstmann, Barbara and Wolf, Verena},
location = {Palaiseau, France},
pages = {3 -- 23},
publisher = {Springer},
title = {{Formalisms for specifying Markovian population models}},
doi = {10.1007/978-3-642-04420-5_2},
volume = {5797},
year = {2009},
}
@inproceedings{3843,
abstract = {Within systems biology there is an increasing interest in the stochastic behavior of biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous- time Markov chain (CTMC).
Standard Uniformization (SU) is an efficient method for the transient analysis of CTMCs. For systems with very different time scales, such as biochemical reaction networks, SU is computationally expensive. In these cases, a variant of SU, called adaptive uniformization (AU), is known to reduce the large number of iterations needed by SU. The additional difficulty of AU is that it requires the solution of a birth process.
In this paper we present an on-the-fly variant of AU, where we improve the original algorithm for AU at the cost of a small approximation error. By means of several examples, we show that our approach is particularly well-suited for biochemical reaction networks.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
location = {Trento, Italy},
number = {6},
pages = {118 -- 127},
publisher = {IEEE},
title = {{Fast adaptive uniformization of the chemical master equation}},
doi = {10.1109/HiBi.2009.23},
volume = {4},
year = {2009},
}
@inproceedings{3844,
abstract = {The Hierarchical Timing Language (HTL) is a real-time coordination language for distributed control systems. HTL programs must be checked for well-formedness, race freedom, transmission safety (schedulability of inter-host communication), and time safety (schedulability of host computation). We present a modular abstract syntax and semantics for HTL, modular checks of well-formedness, race freedom, and transmission safety, and modular code distribution. Our contributions here complement previous results on HTL time safety and modular code generation. Modularity in HTL can be utilized in easy program composition as well as fast program analysis and code generation, but also in so-called runtime patching, where program components may be modified at runtime.},
author = {Henzinger, Thomas A and Kirsch, Christoph and Marques, Eduardo and Sokolova, Ana},
location = {Washington, DC, United States},
pages = {171 -- 180},
publisher = {IEEE},
title = {{Distributed, modular HTL}},
doi = {10.1109/RTSS.2009.9},
year = {2009},
}
@article{3870,
abstract = {Games on graphs with omega-regular objectives provide a model for the control and synthesis of reactive systems. Every omega-regular objective can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens “eventually.” Two main strengths of the classical, infinite-limit formulation of liveness are robustness (independence from the granularity of transitions) and simplicity (abstraction of complicated time bounds). However, the classical liveness formulation suffers from the drawback that the time until something good happens may be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this drawback, while still retaining robustness and simplicity. Finitary liveness requires that there exists an unknown, fixed bound b such that something good happens within b transitions. While for one-shot liveness (reachability) objectives, classical and finitary liveness coincide, for repeated liveness (Buchi) objectives, the finitary formulation is strictly stronger. In this work we study games with finitary parity and Streett objectives. We prove the determinacy of these games, present algorithms for solving these games, and characterize the memory requirements of winning strategies. We show that finitary parity games can be solved in polynomial time, which is not known for infinitary parity games. For finitary Streett games, we give an EXPTIME algorithm and show that the problem is NP-hard. Our algorithms can be used, for example, for synthesizing controllers that do not let the response time of a system increase without bound.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Horn, Florian},
journal = {ACM Transactions on Computational Logic (TOCL)},
number = {1},
publisher = {ACM},
title = {{Finitary winning in omega-regular games}},
doi = {10.1145/1614431.1614432},
volume = {11},
year = {2009},
}
@inproceedings{3871,
abstract = {Nondeterministic weighted automata are finite automata with numerical weights oil transitions. They define quantitative languages 1, that assign to each word v; a real number L(w). The value of ail infinite word w is computed as the maximal value of all runs over w, and the value of a run as the supremum, limsup liminf, limit average, or discounted sum of the transition weights. We introduce probabilistic weighted antomata, in which the transitions are chosen in a randomized (rather than nondeterministic) fashion. Under almost-sure semantics (resp. positive semantics), the value of a word v) is the largest real v such that the runs over w have value at least v with probability I (resp. positive probability). We study the classical questions of automata theory for probabilistic weighted automata: emptiness and universality, expressiveness, and closure under various operations oil languages. For quantitative languages, emptiness university axe defined as whether the value of some (resp. every) word exceeds a given threshold. We prove some, of these questions to he decidable, and others undecidable. Regarding expressive power, we show that probabilities allow its to define a wide variety of new classes of quantitative languages except for discounted-sum automata, where probabilistic choice is no more expressive than nondeterminism. Finally we live ail almost complete picture of the closure of various classes of probabilistic weighted automata for the following, provide, is operations oil quantitative languages: maximum, sum. and numerical complement.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Bologna, Italy},
pages = {244 -- 258},
publisher = {Springer},
title = {{Probabilistic weighted automata}},
doi = {10.1007/978-3-642-04081-8_17},
volume = {5710},
year = {2009},
}
@inproceedings{3968,
abstract = {We describe an algorithm for segmenting three-dimensional medical imaging data modeled as a continuous function on a 3-manifold. It is related to watershed algorithms developed in image processing but is closer to its mathematical roots, which are Morse theory and homological algebra. It allows for the implicit treatment of an underlying mesh, thus combining the structural integrity of its mathematical foundations with the computational efficiency of image processing.},
author = {Edelsbrunner, Herbert and Harer, John},
location = {Zermatt, Switzerland},
pages = {36 -- 50},
publisher = {Springer},
title = {{The persistent Morse complex segmentation of a 3-manifold}},
doi = {10.1007/978-3-642-10470-1_4},
volume = {5903},
year = {2009},
}
@article{4136,
abstract = {Populations living in a spatially and temporally changing environment can adapt to the changing optimum and/or migrate toward favorable habitats. Here we extend previous analyses with a static optimum to allow the environment to vary in time as well as in space. The model follows both population dynamics and the trait mean under stabilizing selection, and the outcomes can be understood by comparing the loads due to genetic variance, dispersal, and temporal change. With fixed genetic variance, we obtain two regimes: (1) adaptation that is uniform along the environmental gradient and that responds to the moving optimum as expected for panmictic populations and when the spatial gradient is sufficiently steep, and (2) a population with limited range that adapts more slowly than the environmental optimum changes in both time and space; the population therefore becomes locally extinct and migrates toward suitable habitat. We also use a population‐genetic model with many loci to allow genetic variance to evolve, and we show that the only solution now has uniform adaptation.},
author = {Polechova, Jitka and Barton, Nicholas H and Marion, Glenn},
journal = {American Naturalist},
number = {5},
pages = {E186 -- E204},
publisher = {University of Chicago Press},
title = {{Species' range: Adaptation in space and time}},
doi = {10.1086/605958},
volume = {174},
year = {2009},
}
@article{4231,
abstract = {The evolution of quantitative characters depends on the frequencies of the alleles involved, yet these frequencies cannot usually be measured. Previous groups have proposed an approximation to the dynamics of quantitative traits, based on an analogy with statistical mechanics. We present a modified version of that approach, which makes the analogy more precise and applies quite generally to describe the evolution of allele frequencies. We calculate explicitly how the macroscopic quantities (i.e., quantities that depend on the quantitative trait) depend on evolutionary forces, in a way that is independent of the microscopic details. We first show that the stationary distribution of allele frequencies under drift, selection, and mutation maximizes a certain measure of entropy, subject to constraints on the expectation of observable quantities. We then approximate the dynamical changes in these expectations, assuming that the distribution of allele frequencies always maximizes entropy, conditional on the expected values. When applied to directional selection on an additive trait, this gives a very good approximation to the evolution of the trait mean and the genetic variance, when the number of mutations per generation is sufficiently high (4Nμ > 1). We show how the method can be modified for small mutation rates (4Nμ → 0). We outline how this method describes epistatic interactions as, for example, with stabilizing selection.},
author = {Barton, Nicholas H and De Vladar, Harold},
journal = {Genetics},
number = {3},
pages = {997 -- 1011},
publisher = {Genetics Society of America},
title = {{Statistical mechanics and the evolution of polygenic quantitative traits}},
doi = {10.1534/genetics.108.099309},
volume = {181},
year = {2009},
}
@article{4242,
abstract = {Felsenstein distinguished two ways by which selection can directly strengthen isolation. First, a modifier that strengthens prezygotic isolation can be favored everywhere. This fits with the traditional view of reinforcement as an adaptation to reduce deleterious hybridization by strengthening assortative mating. Second, selection can favor association between different incompatibilities, despite recombination. We generalize this “two allele” model to follow associations among any number of incompatibilities, which may include both assortment and hybrid inviability. Our key argument is that this process, of coupling between incompatibilities, may be quite different from the usual view of reinforcement: strong isolation can evolve through the coupling of any kind of incompatibility, whether prezygotic or postzygotic. Single locus incompatibilities become coupled because associations between them increase the variance in compatibility, which in turn increases mean fitness if there is positive epistasis. Multiple incompatibilities, each maintained by epistasis, can become coupled in the same way. In contrast, a single-locus incompatibility can become coupled with loci that reduce the viability of haploid hybrids because this reduces harmful recombination. We obtain simple approximations for the limits of tight linkage, and strong assortment, and show how assortment alleles can invade through associations with other components of reproductive isolation.},
author = {Barton, Nicholas H and De Cara, Maria},
journal = {Evolution; International Journal of Organic Evolution},
number = {5},
pages = {1171 -- 1190},
publisher = {Wiley},
title = {{The evolution of strong reproductive isolation}},
doi = {10.1111/j.1558-5646.2009.00622.x},
volume = {63},
year = {2009},
}
@inproceedings{4542,
abstract = {Weighted automata are finite automata with numerical weights on transitions. Nondeterministic weighted automata define quantitative languages L that assign to each word w a real number L(w) computed as the maximal value of all runs over w, and the value of a run r is a function of the sequence of weights that appear along r. There are several natural functions to consider such as Sup, LimSup, LimInf, limit average, and discounted sum of transition weights.
We introduce alternating weighted automata in which the transitions of the runs are chosen by two players in a turn-based fashion. Each word is assigned the maximal value of a run that the first player can enforce regardless of the choices made by the second player. We survey the results about closure properties, expressiveness, and decision problems for nondeterministic weighted automata, and we extend these results to alternating weighted automata.
For quantitative languages L 1 and L 2, we consider the pointwise operations max(L 1,L 2), min(L 1,L 2), 1 − L 1, and the sum L 1 + L 2. We establish the closure properties of all classes of alternating weighted automata with respect to these four operations.
We next compare the expressive power of the various classes of alternating and nondeterministic weighted automata over infinite words. In particular, for limit average and discounted sum, we show that alternation brings more expressive power than nondeterminism.
Finally, we present decidability results and open questions for the quantitative extension of the classical decision problems in automata theory: emptiness, universality, language inclusion, and language equivalence.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Wroclaw, Poland},
pages = {3 -- 13},
publisher = {Springer},
title = {{Alternating weighted automata}},
doi = {10.1007/978-3-642-03409-1_2},
volume = {5699},
year = {2009},
}
@inproceedings{4543,
abstract = {The synthesis of a reactive system with respect to all omega-regular specification requires the solution of a graph game. Such games have been extended in two natural ways. First, a game graph can be equipped with probabilistic choices between alternative transitions, thus allowing the, modeling of uncertain behaviour. These are called stochastic games. Second, a liveness specification can he strengthened to require satisfaction within all unknown but bounded amount of time. These are called finitary objectives. We study. for the first time, the, combination of Stochastic games and finitary objectives. We characterize the requirements on optimal strategies and provide algorithms for Computing the maximal achievable probability of winning stochastic games with finitary parity or Street, objectives. Most notably the set of state's from which a player can win with probability . for a finitary parity objective can he computed in polynomial time even though no polynomial-time algorithm is known in the nonfinitary case.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Horn, Florian},
location = {High Tatras, Slovakia},
pages = {34 -- 54},
publisher = {Springer},
title = {{Stochastic games with finitary objectives}},
doi = {10.1007/978-3-642-03816-7_4},
volume = {5734},
year = {2009},
}
@inproceedings{4545,
abstract = {A stochastic game is a two-player game played oil a graph, where in each state the successor is chosen either by One of the players, or according to a probability distribution. We Survey Stochastic games with limsup and liminf objectives. A real-valued re-ward is assigned to each state, and the value of all infinite path is the limsup (resp. liminf) of all rewards along the path. The value of a stochastic game is the maximal expected value of an infinite path that call he achieved by resolving the decisions of the first player. We present the complexity of computing values of Stochastic games and their subclasses, and the complexity, of optimal strategies in such games. },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Rhodos, Greece},
pages = {1 -- 15},
publisher = {Springer},
title = {{A survey of stochastic games with limsup and liminf objectives}},
doi = {10.1007/978-3-642-02930-1_1},
volume = {5556},
year = {2009},
}
@inproceedings{4569,
abstract = {Most specification languages express only qualitative constraints. However, among two implementations that satisfy a given specification, one may be preferred to another. For example, if a specification asks that every request is followed by a response, one may prefer an implementation that generates responses quickly but does not generate unnecessary responses. We use quantitative properties to measure the “goodness” of an implementation. Using games with corresponding quantitative objectives, we can synthesize “optimal” implementations, which are preferred among the set of possible implementations that satisfy a given specification.
In particular, we show how automata with lexicographic mean-payoff conditions can be used to express many interesting quantitative properties for reactive systems. In this framework, the synthesis of optimal implementations requires the solution of lexicographic mean-payoff games (for safety requirements), and the solution of games with both lexicographic mean-payoff and parity objectives (for liveness requirements). We present algorithms for solving both kinds of novel graph games.},
author = {Bloem, Roderick and Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara},
location = {Grenoble, France},
pages = {140 -- 156},
publisher = {Springer},
title = {{Better quality in synthesis through quantitative objectives}},
doi = {10.1007/978-3-642-02658-4_14},
volume = {5643},
year = {2009},
}
@inbook{3675,
abstract = {Sex and recombination have long been seen as adaptations that facilitate natural selection by generating favorable variations. If recombination is to aid selection, there must be negative linkage disequilibria—favorable alleles must be found together less often than expected by chance. These negative linkage disequilibria can be generated directly by selection, but this must involve negative epistasis of just the right strength, which is not expected, from either experiment or theory. Random drift provides a more general source of negative associations: Favorable mutations almost always arise on different genomes, and negative associations tend to persist, precisely because they shield variation from selection.
We can understand how recombination aids adaptation by determining the maximum possible rate of adaptation. With unlinked loci, this rate increases only logarithmically with the influx of favorable mutations. With a linear genome, a scaling argument shows that in a large population, the rate of adaptive substitution depends only on the expected rate in the absence of interference, divided by the total rate of recombination. A two-locus approximation predicts an upper bound on the rate of substitution, proportional to recombination rate.
If associations between linked loci do impede adaptation, there can be substantial selection for modifiers that increase recombination. Whether this can account for the maintenance of high rates of sex and recombination depends on the extent of selection. It is clear that the rate of species-wide substitutions is typically far too low to generate appreciable selection for recombination. However, local sweeps within a subdivided population may be effective.},
author = {Barton, Nicholas H},
booktitle = {Cold Spring Harbor Symposia on Quantitative Biology},
pages = {187 -- 195},
publisher = {Cold Spring Harbor Laboratory Press},
title = {{Why sex and recombination? }},
doi = {10.1101/sqb.2009.74.030},
volume = {74},
year = {2009},
}
@article{517,
author = {Barton, Nicholas H},
journal = {Genetical Research},
number = {5-6},
pages = {475 -- 477},
publisher = {Cambridge University Press},
title = {{Identity and coalescence in structured populations: A commentary on 'Inbreeding coefficients and coalescence times' by Montgomery Slatkin}},
doi = {10.1017/S0016672308009683},
volume = {89},
year = {2008},
}