@inproceedings{8987, abstract = {Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so. Vaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that (security) Provably prevents replay and (if location data is available) relay attacks. (privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened. (efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication). Towards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message.}, author = {Pietrzak, Krzysztof Z}, booktitle = {Progress in Cryptology}, isbn = {9783030652760}, issn = {16113349}, location = {Bangalore, India}, pages = {3--15}, publisher = {Springer Nature}, title = {{Delayed authentication: Preventing replay and relay attacks in private contact tracing}}, doi = {10.1007/978-3-030-65277-7_1}, volume = {12578}, year = {2020}, } @article{8957, abstract = {Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.}, author = {Godard, Benoit G and Dumollard, Rémi and Munro, Edwin and Chenevert, Janet and Hebras, Céline and Mcdougall, Alex and Heisenberg, Carl-Philipp J}, issn = {18781551}, journal = {Developmental Cell}, number = {6}, pages = {695--706}, publisher = {Elsevier}, title = {{Apical relaxation during mitotic rounding promotes tension-oriented cell division}}, doi = {10.1016/j.devcel.2020.10.016}, volume = {55}, year = {2020}, } @article{9000, abstract = {In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate,” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics—an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.}, author = {Grah, Rok and Zoller, Benjamin and Tkačik, Gašper}, issn = {10916490}, journal = {PNAS}, number = {50}, pages = {31614--31622}, publisher = {National Academy of Sciences}, title = {{Nonequilibrium models of optimal enhancer function}}, doi = {10.1073/pnas.2006731117}, volume = {117}, year = {2020}, } @article{7910, abstract = {Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits.}, author = {Barzanjeh, Shabir and Pirandola, S. and Vitali, D and Fink, Johannes M}, issn = {23752548}, journal = {Science Advances}, number = {19}, publisher = {AAAS}, title = {{Microwave quantum illumination using a digital receiver}}, doi = {10.1126/sciadv.abb0451}, volume = {6}, year = {2020}, } @inproceedings{9001, abstract = {Quantum illumination is a sensing technique that employs entangled signal-idler beams to improve the detection efficiency of low-reflectivity objects in environments with large thermal noise. The advantage over classical strategies is evident at low signal brightness, a feature which could make the protocol an ideal prototype for non-invasive scanning or low-power short-range radar. Here we experimentally investigate the concept of quantum illumination at microwave frequencies, by generating entangled fields using a Josephson parametric converter which are then amplified to illuminate a room-temperature object at a distance of 1 meter. Starting from experimental data, we simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits.}, author = {Barzanjeh, Shabir and Pirandola, Stefano and Vitali, David and Fink, Johannes M}, booktitle = {IEEE National Radar Conference - Proceedings}, isbn = {9781728189420}, issn = {1097-5659}, location = {Florence, Italy}, number = {9}, publisher = {IEEE}, title = {{Microwave quantum illumination with a digital phase-conjugated receiver}}, doi = {10.1109/RadarConf2043947.2020.9266397}, volume = {2020}, year = {2020}, } @article{9007, abstract = {Motivated by a recent question of Peyre, we apply the Hardy–Littlewood circle method to count “sufficiently free” rational points of bounded height on arbitrary smooth projective hypersurfaces of low degree that are defined over the rationals.}, author = {Browning, Timothy D and Sawin, Will}, issn = {14208946}, journal = {Commentarii Mathematici Helvetici}, number = {4}, pages = {635--659}, publisher = {European Mathematical Society}, title = {{Free rational points on smooth hypersurfaces}}, doi = {10.4171/CMH/499}, volume = {95}, year = {2020}, } @article{9114, abstract = {Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion efficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication.}, author = {Hease, William J and Rueda Sanchez, Alfredo R and Sahu, Rishabh and Wulf, Matthias and Arnold, Georg M and Schwefel, Harald G.L. and Fink, Johannes M}, issn = {2691-3399}, journal = {PRX Quantum}, number = {2}, publisher = {American Physical Society}, title = {{Bidirectional electro-optic wavelength conversion in the quantum ground state}}, doi = {10.1103/prxquantum.1.020315}, volume = {1}, year = {2020}, } @article{9194, abstract = {Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future.}, author = {Lauk, Nikolai and Sinclair, Neil and Barzanjeh, Shabir and Covey, Jacob P and Saffman, Mark and Spiropulu, Maria and Simon, Christoph}, issn = {2058-9565}, journal = {Quantum Science and Technology}, number = {2}, publisher = {IOP Publishing}, title = {{Perspectives on quantum transduction}}, doi = {10.1088/2058-9565/ab788a}, volume = {5}, year = {2020}, } @article{9039, abstract = {We give a short and self-contained proof for rates of convergence of the Allen--Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen--Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.}, author = {Fischer, Julian L and Laux, Tim and Simon, Theresa M.}, issn = {10957154}, journal = {SIAM Journal on Mathematical Analysis}, number = {6}, pages = {6222--6233}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies}}, doi = {10.1137/20M1322182}, volume = {52}, year = {2020}, } @article{9104, abstract = {We consider the free additive convolution of two probability measures μ and ν on the real line and show that μ ⊞ v is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μ ⊞ ν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5].}, author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin}, issn = {15658538}, journal = {Journal d'Analyse Mathematique}, pages = {323--348}, publisher = {Springer Nature}, title = {{On the support of the free additive convolution}}, doi = {10.1007/s11854-020-0135-2}, volume = {142}, year = {2020}, } @misc{13071, abstract = {This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request.}, author = {Hease, William J and Rueda Sanchez, Alfredo R and Sahu, Rishabh and Wulf, Matthias and Arnold, Georg M and Schwefel, Harald and Fink, Johannes M}, publisher = {Zenodo}, title = {{Bidirectional electro-optic wavelength conversion in the quantum ground state}}, doi = {10.5281/ZENODO.4266025}, year = {2020}, } @article{9195, abstract = {Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well‐developed quantum optical tools, such as highly efficient single‐photon detectors and long‐lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second‐order nonlinear phenomena such as optomechanical and electro‐optic interactions. Alternative approaches, although not yet as efficient, include magneto‐optical coupling and schemes based on isolated quantum systems like atoms, ions, or quantum dots. Herein, the necessary theoretical foundations for the most important microwave‐to‐optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed.}, author = {Lambert, Nicholas J. and Rueda Sanchez, Alfredo R and Sedlmeir, Florian and Schwefel, Harald G. L.}, issn = {2511-9044}, journal = {Advanced Quantum Technologies}, number = {1}, publisher = {Wiley}, title = {{Coherent conversion between microwave and optical photons - An overview of physical implementations}}, doi = {10.1002/qute.201900077}, volume = {3}, year = {2020}, } @article{9011, abstract = {Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. Calypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees.}, author = {Kokoris Kogias, Eleftherios and Alp, Enis Ceyhun and Gasser, Linus and Jovanovic, Philipp and Syta, Ewa and Ford, Bryan}, issn = {2150-8097}, journal = {Proceedings of the VLDB Endowment}, number = {4}, pages = {586--599}, publisher = {Association for Computing Machinery}, title = {{CALYPSO: Private data management for decentralized ledgers}}, doi = {10.14778/3436905.3436917}, volume = {14}, year = {2020}, } @article{8308, abstract = {Many-body localization provides a mechanism to avoid thermalization in isolated interacting quantum systems. The breakdown of thermalization may be complete, when all eigenstates in the many-body spectrum become localized, or partial, when the so-called many-body mobility edge separates localized and delocalized parts of the spectrum. Previously, De Roeck et al. [Phys. Rev. B 93, 014203 (2016)] suggested a possible instability of the many-body mobility edge in energy density. The local ergodic regions—so-called “bubbles”—resonantly spread throughout the system, leading to delocalization. In order to study such instability mechanism, in this work we design a model featuring many-body mobility edge in particle density: the states at small particle density are localized, while increasing the density of particles leads to delocalization. Using numerical simulations with matrix product states, we demonstrate the stability of many-body localization with respect to small bubbles in large dilute systems for experimentally relevant timescales. In addition, we demonstrate that processes where the bubble spreads are favored over processes that lead to resonant tunneling, suggesting a possible mechanism behind the observed stability of many-body mobility edge. We conclude by proposing experiments to probe particle density mobility edge in the Bose-Hubbard model.}, author = {Brighi, Pietro and Abanin, Dmitry A. and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {6}, publisher = {American Physical Society}, title = {{Stability of mobility edges in disordered interacting systems}}, doi = {10.1103/physrevb.102.060202}, volume = {102}, year = {2020}, } @article{10862, abstract = {We consider the sum of two large Hermitian matrices A and B with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptotically given by the free additive convolution of the laws of A and B as the dimension of the matrix increases. This implies optimal rigidity of the eigenvalues and optimal rate of convergence in Voiculescu's theorem. Our previous works [4], [5] established these results in the bulk spectrum, the current paper completely settles the problem at the spectral edges provided they have the typical square-root behavior. The key element of our proof is to compensate the deterioration of the stability of the subordination equations by sharp error estimates that properly account for the local density near the edge. Our results also hold if the Haar unitary matrix is replaced by the Haar orthogonal matrix.}, author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin}, issn = {0022-1236}, journal = {Journal of Functional Analysis}, keywords = {Analysis}, number = {7}, publisher = {Elsevier}, title = {{Spectral rigidity for addition of random matrices at the regular edge}}, doi = {10.1016/j.jfa.2020.108639}, volume = {279}, year = {2020}, } @article{10867, abstract = {In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces.}, author = {Akopyan, Arseniy and Karasev, Roman}, issn = {1687-0247}, journal = {International Mathematics Research Notices}, keywords = {General Mathematics}, number = {3}, pages = {669--697}, publisher = {Oxford University Press}, title = {{Waist of balls in hyperbolic and spherical spaces}}, doi = {10.1093/imrn/rny037}, volume = {2020}, year = {2020}, } @misc{9799, abstract = {Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.}, author = {Fraisse, Christelle and Welch, John J.}, publisher = {Royal Society of London}, title = {{Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes}}, doi = {10.6084/m9.figshare.7957469.v1}, year = {2020}, } @misc{9798, abstract = {Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.}, author = {Fraisse, Christelle and Welch, John J.}, publisher = {Royal Society of London}, title = {{Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes}}, doi = {10.6084/m9.figshare.7957472.v1}, year = {2020}, } @article{6488, abstract = {We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.}, author = {Cipolloni, Giorgio and Erdös, László}, issn = {20103271}, journal = {Random Matrices: Theory and Application}, number = {3}, publisher = {World Scientific Publishing}, title = {{Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices}}, doi = {10.1142/S2010326320500069}, volume = {9}, year = {2020}, } @article{8746, abstract = {Research in the field of colloidal semiconductor nanocrystals (NCs) has progressed tremendously, mostly because of their exceptional optoelectronic properties. Core@shell NCs, in which one or more inorganic layers overcoat individual NCs, recently received significant attention due to their remarkable optical characteristics. Reduced Auger recombination, suppressed blinking, and enhanced carrier multiplication are among the merits of core@shell NCs. Despite their importance in device development, the influence of the shell and the surface modification of the core@shell NC assemblies on the charge carrier transport remains a pertinent research objective. Type-II PbTe@PbS core@shell NCs, in which exclusive electron transport was demonstrated, still exhibit instability of their electron ransport. Here, we demonstrate the enhancement of electron transport and stability in PbTe@PbS core@shell NC assemblies using iodide as a surface passivating ligand. The combination of the PbS shelling and the use of the iodide ligand contributes to the addition of one mobile electron for each core@shell NC. Furthermore, both electron mobility and on/off current modulation ratio values of the core@shell NC field-effect transistor are steady with the usage of iodide. Excellent stability in these exclusively electron-transporting core@shell NCs paves the way for their utilization in electronic devices. }, author = {Miranti, Retno and Septianto, Ricky Dwi and Ibáñez, Maria and Kovalenko, Maksym V. and Matsushita, Nobuhiro and Iwasa, Yoshihiro and Bisri, Satria Zulkarnaen}, issn = {1077-3118}, journal = {Applied Physics Letters}, number = {17}, publisher = {AIP Publishing}, title = {{Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids}}, doi = {10.1063/5.0025965}, volume = {117}, year = {2020}, } @article{7985, abstract = {The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal–air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal–air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li–O2 cells but include Na–O2, K–O2, and Mg–O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li–O2 cells.}, author = {Kwak, WJ and Sharon, D and Xia, C and Kim, H and Johnson, LR and Bruce, PG and Nazar, LF and Sun, YK and Frimer, AA and Noked, M and Freunberger, Stefan Alexander and Aurbach, D}, issn = {1520-6890}, journal = {Chemical Reviews}, number = {14}, pages = {6626--6683}, publisher = {American Chemical Society}, title = {{Lithium-oxygen batteries and related systems: Potential, status, and future}}, doi = {10.1021/acs.chemrev.9b00609}, volume = {120}, year = {2020}, } @article{8721, abstract = {Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.}, author = {Hajny, Jakub and Prat, Tomas and Rydza, N and Rodriguez Solovey, Lesia and Tan, Shutang and Verstraeten, Inge and Domjan, David and Mazur, E and Smakowska-Luzan, E and Smet, W and Mor, E and Nolf, J and Yang, B and Grunewald, W and Molnar, Gergely and Belkhadir, Y and De Rybel, B and Friml, Jiří}, issn = {1095-9203}, journal = {Science}, number = {6516}, pages = {550--557}, publisher = {American Association for the Advancement of Science}, title = {{Receptor kinase module targets PIN-dependent auxin transport during canalization}}, doi = {10.1126/science.aba3178}, volume = {370}, year = {2020}, } @article{7968, abstract = {Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role.}, author = {Ghazaryan, Areg and Paltiel, Yossi and Lemeshko, Mikhail}, issn = {1932-7455}, journal = {The Journal of Physical Chemistry C}, number = {21}, pages = {11716--11721}, publisher = {American Chemical Society}, title = {{Analytic model of chiral-induced spin selectivity}}, doi = {10.1021/acs.jpcc.0c02584}, volume = {124}, year = {2020}, } @article{10866, abstract = {Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons–hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management.}, author = {Duan, Jiahua and Capote-Robayna, Nathaniel and Taboada-Gutiérrez, Javier and Álvarez-Pérez, Gonzalo and Prieto Gonzalez, Ivan and Martín-Sánchez, Javier and Nikitin, Alexey Y. and Alonso-González, Pablo}, issn = {1530-6992}, journal = {Nano Letters}, keywords = {Mechanical Engineering, Condensed Matter Physics, General Materials Science, General Chemistry, Bioengineering}, number = {7}, pages = {5323--5329}, publisher = {American Chemical Society}, title = {{Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs}}, doi = {10.1021/acs.nanolett.0c01673}, volume = {20}, year = {2020}, } @article{8588, abstract = {Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)].}, author = {Hubert, C. and Cohen, K. and Ghazaryan, Areg and Lemeshko, Mikhail and Rapaport, R. and Santos, P. V.}, issn = {2469-9969}, journal = {Physical Review B}, number = {4}, publisher = {American Physical Society}, title = {{Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids}}, doi = {10.1103/physrevb.102.045307}, volume = {102}, year = {2020}, } @article{8769, abstract = {One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas.}, author = {Yakaboylu, Enderalp and Ghazaryan, Areg and Lundholm, D. and Rougerie, N. and Lemeshko, Mikhail and Seiringer, Robert}, issn = {2469-9969}, journal = {Physical Review B}, number = {14}, publisher = {American Physical Society}, title = {{Quantum impurity model for anyons}}, doi = {10.1103/physrevb.102.144109}, volume = {102}, year = {2020}, } @article{7971, abstract = {Multilayer graphene lattices allow for an additional tunability of the band structure by the strong perpendicular electric field. In particular, the emergence of the new multiple Dirac points in ABA stacked trilayer graphene subject to strong transverse electric fields was proposed theoretically and confirmed experimentally. These new Dirac points dubbed “gullies” emerge from the interplay between strong electric field and trigonal warping. In this work, we first characterize the properties of new emergent Dirac points and show that the electric field can be used to tune the distance between gullies in the momentum space. We demonstrate that the band structure has multiple Lifshitz transitions and higher-order singularity of “monkey saddle” type. Following the characterization of the band structure, we consider the spectrum of Landau levels and structure of their wave functions. In the limit of strong electric fields when gullies are well separated in momentum space, they give rise to triply degenerate Landau levels. In the second part of this work, we investigate how degeneracy between three gully Landau levels is lifted in the presence of interactions. Within the Hartree-Fock approximation we show that the symmetry breaking state interpolates between the fully gully polarized state that breaks C3 symmetry at high displacement field and the gully symmetric state when the electric field is decreased. The discontinuous transition between these two states is driven by enhanced intergully tunneling and exchange. We conclude by outlining specific experimental predictions for the existence of such a symmetry-breaking state.}, author = {Rao, Peng and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {24}, publisher = {American Physical Society}, title = {{Gully quantum Hall ferromagnetism in biased trilayer graphene}}, doi = {10.1103/physrevb.101.245411}, volume = {101}, year = {2020}, } @article{8634, abstract = {In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent.}, author = {Suri, Balachandra and Kageorge, Logan and Grigoriev, Roman O. and Schatz, Michael F.}, issn = {1079-7114}, journal = {Physical Review Letters}, keywords = {General Physics and Astronomy}, number = {6}, publisher = {American Physical Society}, title = {{Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits}}, doi = {10.1103/physrevlett.125.064501}, volume = {125}, year = {2020}, } @article{7949, abstract = {Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.}, author = {Smith, S and Zhu, S and Joos, L and Roberts, I and Nikonorova, N and Vu, LD and Stes, E and Cho, H and Larrieu, A and Xuan, W and Goodall, B and van de Cotte, B and Waite, JM and Rigal, A and R Harborough, SR and Persiau, G and Vanneste, S and Kirschner, GK and Vandermarliere, E and Martens, L and Stahl, Y and Audenaert, D and Friml, Jiří and Felix, G and Simon, R and Bennett, M and Bishopp, A and De Jaeger, G and Ljung, K and Kepinski, S and Robert, S and Nemhauser, J and Hwang, I and Gevaert, K and Beeckman, T and De Smet, I}, issn = {1535-9484}, journal = {Molecular & Cellular Proteomics}, number = {8}, pages = {1248--1262}, publisher = {American Society for Biochemistry and Molecular Biology}, title = {{The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis}}, doi = {10.1074/mcp.ra119.001826}, volume = {19}, year = {2020}, } @article{7619, abstract = {Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development.}, author = {Zhang, Xixi and Adamowski, Maciek and Marhavá, Petra and Tan, Shutang and Zhang, Yuzhou and Rodriguez Solovey, Lesia and Zwiewka, Marta and Pukyšová, Vendula and Sánchez, Adrià Sans and Raxwal, Vivek Kumar and Hardtke, Christian S. and Nodzynski, Tomasz and Friml, Jiří}, issn = {1532-298X}, journal = {The Plant Cell}, number = {5}, pages = {1644--1664}, publisher = {American Society of Plant Biologists}, title = {{Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters}}, doi = {10.1105/tpc.19.00869}, volume = {32}, year = {2020}, } @article{8607, abstract = {Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles through the recognition of motifs based on tyrosine or di-leucine in their cytoplasmic tails. However, in plants, very little is known on how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis thaliana, the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), undergoes endocytosis that depends on clathrin and AP-2. Here we demonstrate that BRI1 binds directly to the medium AP-2 subunit, AP2M. The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed tyrosine-based endocytic motifs. The tyrosine-to-phenylalanine substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional tyrosine motifs also operates in plants.}, author = {Liu, D and Kumar, R and LAN, Claus and Johnson, Alexander J and Siao, W and Vanhoutte, I and Wang, P and Bender, KW and Yperman, K and Martins, S and Zhao, X and Vert, G and Van Damme, D and Friml, Jiří and Russinova, E}, issn = {1532-298x}, journal = {Plant Cell}, number = {11}, pages = {3598--3612}, publisher = {American Society of Plant Biologists}, title = {{Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif}}, doi = {10.1105/tpc.20.00384}, volume = {32}, year = {2020}, } @article{7695, abstract = {The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.}, author = {Wang, J and Mylle, E and Johnson, Alexander J and Besbrugge, N and De Jaeger, G and Friml, Jiří and Pleskot, R and van Damme, D}, issn = {1532-2548}, journal = {Plant Physiology}, number = {3}, pages = {986--997}, publisher = {American Society of Plant Biologists}, title = {{High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits}}, doi = {10.1104/pp.20.00178}, volume = {183}, year = {2020}, } @article{9197, abstract = {In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve.}, author = {Avni, Guy and Ibsen-Jensen, Rasmus and Tkadlec, Josef}, isbn = {9781577358350}, issn = {2374-3468}, journal = {Proceedings of the AAAI Conference on Artificial Intelligence}, location = {New York, NY, United States}, number = {02}, pages = {1798--1805}, publisher = {Association for the Advancement of Artificial Intelligence}, title = {{All-pay bidding games on graphs}}, doi = {10.1609/aaai.v34i02.5546}, volume = {34}, year = {2020}, } @article{8142, abstract = {Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.}, author = {Montesinos López, Juan C and Abuzeineh, A and Kopf, Aglaja and Juanes Garcia, Alba and Ötvös, Krisztina and Petrášek, J and Sixt, Michael K and Benková, Eva}, issn = {1460-2075}, journal = {The Embo Journal}, number = {17}, publisher = {Embo Press}, title = {{Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage}}, doi = {10.15252/embj.2019104238}, volume = {39}, year = {2020}, } @article{8084, abstract = {Origin and functions of intermittent transitions among sleep stages, including brief awakenings and arousals, constitute a challenge to the current homeostatic framework for sleep regulation, focusing on factors modulating sleep over large time scales. Here we propose that the complex micro-architecture characterizing sleep on scales of seconds and minutes results from intrinsic non-equilibrium critical dynamics. We investigate θ- and δ-wave dynamics in control rats and in rats where the sleep-promoting ventrolateral preoptic nucleus (VLPO) is lesioned (male Sprague-Dawley rats). We demonstrate that bursts in θ and δ cortical rhythms exhibit complex temporal organization, with long-range correlations and robust duality of power-law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, features typical of non-equilibrium systems self-organizing at criticality. We show that such non-equilibrium behavior relates to anti-correlated coupling between θ- and δ-bursts, persists across a range of time scales, and is independent of the dominant physiologic state; indications of a basic principle in sleep regulation. Further, we find that VLPO lesions lead to a modulation of cortical dynamics resulting in altered dynamical parameters of θ- and δ-bursts and significant reduction in θ–δ coupling. Our empirical findings and model simulations demonstrate that θ–δ coupling is essential for the emerging non-equilibrium critical dynamics observed across the sleep–wake cycle, and indicate that VLPO neurons may have dual role for both sleep and arousal/brief wake activation. The uncovered critical behavior in sleep- and wake-related cortical rhythms indicates a mechanism essential for the micro-architecture of spontaneous sleep-stage and arousal transitions within a novel, non-homeostatic paradigm of sleep regulation.}, author = {Lombardi, Fabrizio and Gómez-Extremera, Manuel and Bernaola-Galván, Pedro and Vetrivelan, Ramalingam and Saper, Clifford B. and Scammell, Thomas E. and Ivanov, Plamen Ch.}, issn = {1529-2401}, journal = {Journal of Neuroscience}, number = {1}, pages = {171--190}, publisher = {Society for Neuroscience}, title = {{Critical dynamics and coupling in bursts of cortical rhythms indicate non-homeostatic mechanism for sleep-stage transitions and dual role of VLPO neurons in both sleep and wake}}, doi = {10.1523/jneurosci.1278-19.2019}, volume = {40}, year = {2020}, } @article{7650, abstract = {We consider a dilute, homogeneous Bose gas at positive temperature. The system is investigated in the Gross–Pitaevskii limit, where the scattering length a is so small that the interaction energy is of the same order of magnitude as the spectral gap of the Laplacian, and for temperatures that are comparable to the critical temperature of the ideal gas. We show that the difference between the specific free energy of the interacting system and the one of the ideal gas is to leading order given by 4πa(2ϱ2−ϱ20). Here ϱ denotes the density of the system and ϱ0 is the expected condensate density of the ideal gas. Additionally, we show that the one-particle density matrix of any approximate minimizer of the Gibbs free energy functional is to leading order given by the one of the ideal gas. This in particular proves Bose–Einstein condensation with critical temperature given by the one of the ideal gas to leading order. One key ingredient of our proof is a novel use of the Gibbs variational principle that goes hand in hand with the c-number substitution.}, author = {Deuchert, Andreas and Seiringer, Robert}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {6}, pages = {1217--1271}, publisher = {Springer Nature}, title = {{Gross-Pitaevskii limit of a homogeneous Bose gas at positive temperature}}, doi = {10.1007/s00205-020-01489-4}, volume = {236}, year = {2020}, } @article{8130, abstract = {We study the dynamics of a system of N interacting bosons in a disc-shaped trap, which is realised by an external potential that confines the bosons in one spatial dimension to an interval of length of order ε. The interaction is non-negative and scaled in such a way that its scattering length is of order ε/N, while its range is proportional to (ε/N)β with scaling parameter β∈(0,1]. We consider the simultaneous limit (N,ε)→(∞,0) and assume that the system initially exhibits Bose–Einstein condensation. We prove that condensation is preserved by the N-body dynamics, where the time-evolved condensate wave function is the solution of a two-dimensional non-linear equation. The strength of the non-linearity depends on the scaling parameter β. For β∈(0,1), we obtain a cubic defocusing non-linear Schrödinger equation, while the choice β=1 yields a Gross–Pitaevskii equation featuring the scattering length of the interaction. In both cases, the coupling parameter depends on the confining potential.}, author = {Bossmann, Lea}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {11}, pages = {541--606}, publisher = {Springer Nature}, title = {{Derivation of the 2d Gross–Pitaevskii equation for strongly confined 3d Bosons}}, doi = {10.1007/s00205-020-01548-w}, volume = {238}, year = {2020}, } @article{7235, abstract = {We consider the Fröhlich model of a polaron, and show that its effective mass diverges in thestrong coupling limit.}, author = {Lieb, Elliott H. and Seiringer, Robert}, issn = {1572-9613}, journal = {Journal of Statistical Physics}, pages = {23--33}, publisher = {Springer Nature}, title = {{Divergence of the effective mass of a polaron in the strong coupling limit}}, doi = {10.1007/s10955-019-02322-3}, volume = {180}, year = {2020}, } @inproceedings{7966, abstract = {For 1≤m≤n, we consider a natural m-out-of-n multi-instance scenario for a public-key encryption (PKE) scheme. An adversary, given n independent instances of PKE, wins if he breaks at least m out of the n instances. In this work, we are interested in the scaling factor of PKE schemes, SF, which measures how well the difficulty of breaking m out of the n instances scales in m. That is, a scaling factor SF=ℓ indicates that breaking m out of n instances is at least ℓ times more difficult than breaking one single instance. A PKE scheme with small scaling factor hence provides an ideal target for mass surveillance. In fact, the Logjam attack (CCS 2015) implicitly exploited, among other things, an almost constant scaling factor of ElGamal over finite fields (with shared group parameters). For Hashed ElGamal over elliptic curves, we use the generic group model to argue that the scaling factor depends on the scheme's granularity. In low granularity, meaning each public key contains its independent group parameter, the scheme has optimal scaling factor SF=m; In medium and high granularity, meaning all public keys share the same group parameter, the scheme still has a reasonable scaling factor SF=√m. Our findings underline that instantiating ElGamal over elliptic curves should be preferred to finite fields in a multi-instance scenario. As our main technical contribution, we derive new generic-group lower bounds of Ω(√(mp)) on the difficulty of solving both the m-out-of-n Gap Discrete Logarithm and the m-out-of-n Gap Computational Diffie-Hellman problem over groups of prime order p, extending a recent result by Yun (EUROCRYPT 2015). We establish the lower bound by studying the hardness of a related computational problem which we call the search-by-hypersurface problem.}, author = {Auerbach, Benedikt and Giacon, Federico and Kiltz, Eike}, booktitle = {Advances in Cryptology – EUROCRYPT 2020}, isbn = {9783030457266}, issn = {1611-3349}, pages = {475--506}, publisher = {Springer Nature}, title = {{Everybody’s a target: Scalability in public-key encryption}}, doi = {10.1007/978-3-030-45727-3_16}, volume = {12107}, year = {2020}, } @inproceedings{8623, abstract = {We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its theoretical properties. In particular, we show that for every assumption A, the boolean combinations of properties that are safe or co-safe relative to A are monitorable under A. We give several examples and constructions on how an assumption can make a non-monitorable property monitorable, and how an assumption can make a monitorable property monitorable with fewer resources, such as integer registers.}, author = {Henzinger, Thomas A and Sarac, Naci E}, booktitle = {Runtime Verification}, isbn = {9783030605070}, issn = {1611-3349}, location = {Los Angeles, CA, United States}, pages = {3--18}, publisher = {Springer Nature}, title = {{Monitorability under assumptions}}, doi = {10.1007/978-3-030-60508-7_1}, volume = {12399}, year = {2020}, } @inproceedings{8732, abstract = {A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G+e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP -complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment σ , it can be decided in polynomial time whether there exists a pseudocircle Φσ extending σ for which A∪{Φσ} is again an arrangement of pseudocircles.}, author = {Arroyo Guevara, Alan M and Klute, Fabian and Parada, Irene and Seidel, Raimund and Vogtenhuber, Birgit and Wiedera, Tilo}, booktitle = {Graph-Theoretic Concepts in Computer Science}, isbn = {9783030604394}, issn = {1611-3349}, location = {Leeds, United Kingdom}, pages = {325--338}, publisher = {Springer Nature}, title = {{Inserting one edge into a simple drawing is hard}}, doi = {10.1007/978-3-030-60440-0_26}, volume = {12301}, year = {2020}, } @article{7611, abstract = {We consider a system of N bosons in the limit N→∞, interacting through singular potentials. For initial data exhibiting Bose–Einstein condensation, the many-body time evolution is well approximated through a quadratic fluctuation dynamics around a cubic nonlinear Schrödinger equation of the condensate wave function. We show that these fluctuations satisfy a (multi-variate) central limit theorem.}, author = {Rademacher, Simone Anna Elvira}, issn = {1573-0530}, journal = {Letters in Mathematical Physics}, pages = {2143--2174}, publisher = {Springer Nature}, title = {{Central limit theorem for Bose gases interacting through singular potentials}}, doi = {10.1007/s11005-020-01286-w}, volume = {110}, year = {2020}, } @article{7236, abstract = {The biotic interactions hypothesis posits that biotic interactions are more important drivers of adaptation closer to the equator, evidenced by “stronger” contemporary interactions (e.g. greater interaction rates) and/or patterns of trait evolution consistent with a history of stronger interactions. Support for the hypothesis is mixed, but few studies span tropical and temperate regions while experimentally controlling for evolutionary history. Here, we integrate field observations and common garden experiments to quantify the relative importance of pollination and herbivory in a pair of tropical‐temperate congeneric perennial herbs. Phytolacca rivinoides and P. americana are pioneer species native to the Neotropics and the eastern USA, respectively. We compared plant‐pollinator and plant‐herbivore interactions between three tropical populations of P. rivinoides from Costa Rica and three temperate populations of P. americana from its northern range edge in Michigan and Ohio. For some metrics of interaction importance, we also included three subtropical populations of P. americana from its southern range edge in Florida. This approach confounds species and region but allows us, uniquely, to measure complementary proxies of interaction importance across a tropical‐temperate range in one system. To test the prediction that lower‐latitude plants are more reliant on insect pollinators, we quantified floral display and reward, insect visitation rates, and self‐pollination ability (autogamy). To test the prediction that lower‐latitude plants experience more herbivore pressure, we quantified herbivory rates, herbivore abundance, and leaf palatability. We found evidence supporting the biotic interactions hypothesis for most comparisons between P. rivinoides and north‐temperate P. americana (floral display, insect visitation, autogamy, herbivory, herbivore abundance, and young‐leaf palatability). Results for subtropical P. americana populations, however, were typically not intermediate between P. rivinoides and north‐temperate P. americana, as would be predicted by a linear latitudinal gradient in interaction importance. Subtropical young‐leaf palatability was intermediate, but subtropical mature leaves were the least palatable, and pollination‐related traits did not differ between temperate and subtropical regions. These nonlinear patterns of interaction importance suggest future work to relate interaction importance to climatic or biotic thresholds. In sum, we found that the biotic interactions hypothesis was more consistently supported at the larger spatial scale of our study.}, author = {Baskett, Carina and Schroeder, Lucy and Weber, Marjorie G. and Schemske, Douglas W.}, issn = {1557-7015}, journal = {Ecological Monographs}, number = {1}, publisher = {Wiley}, title = {{Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair}}, doi = {10.1002/ecm.1397}, volume = {90}, year = {2020}, } @article{7697, abstract = {* Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown. * In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells. * Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization. * These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants.}, author = {Zhang, Yuzhou and Hartinger, Corinna and Wang, Xiaojuan and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {5}, pages = {1406--1416}, publisher = {Wiley}, title = {{Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters}}, doi = {10.1111/nph.16629}, volume = {227}, year = {2020}, } @article{8765, abstract = {This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate.}, author = {Schreck, Camille and Wojtan, Christopher J}, issn = {1467-8659}, journal = {Computer Graphics Forum}, keywords = {Computer Networks and Communications}, number = {2}, pages = {89--99}, publisher = {Wiley}, title = {{A practical method for animating anisotropic elastoplastic materials}}, doi = {10.1111/cgf.13914}, volume = {39}, year = {2020}, } @article{8057, abstract = {Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities approaching 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of ‘free’ and ‘bound’ water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.}, author = {Bouchal, Roza and Li, Zhujie and Bongu, Chandra and Le Vot, Steven and Berthelot, Romain and Rotenberg, Benjamin and Favier, Frederic and Freunberger, Stefan Alexander and Salanne, Mathieu and Fontaine, Olivier}, issn = {1521-3757}, journal = {Angewandte Chemie}, number = {37}, pages = {16047--16051}, publisher = {Wiley}, title = {{Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte}}, doi = {10.1002/ange.202005378}, volume = {132}, year = {2020}, } @article{7343, abstract = {Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, issn = {1461-0248}, journal = {Ecology Letters}, number = {3}, pages = {565--574}, publisher = {Wiley}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.1111/ele.13458}, volume = {23}, year = {2020}, } @article{8099, abstract = {Sewall Wright developed FST for describing population differentiation and it has since been extended to many novel applications, including the detection of homomorphic sex chromosomes. However, there has been confusion regarding the expected estimate of FST for a fixed difference between the X‐ and Y‐chromosome when comparing males and females. Here, we attempt to resolve this confusion by contrasting two common FST estimators and explain why they yield different estimates when applied to the case of sex chromosomes. We show that this difference is true for many allele frequencies, but the situation characterized by fixed differences between the X‐ and Y‐chromosome is among the most extreme. To avoid additional confusion, we recommend that all authors using FST clearly state which estimator of FST their work uses.}, author = {Gammerdinger, William J and Toups, Melissa A and Vicoso, Beatriz}, issn = {1755-0998}, journal = {Molecular Ecology Resources}, number = {6}, pages = {1517--1525}, publisher = {Wiley}, title = {{Disagreement in FST estimators: A case study from sex chromosomes}}, doi = {10.1111/1755-0998.13210}, volume = {20}, year = {2020}, } @article{7847, abstract = {Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of 'free' and 'bound' water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability. }, author = {Bouchal, Roza and Li, Zhujie and Bongu, Chandra and Le Vot, Steven and Berthelot, Romain and Rotenberg, Benjamin and Favier, Fréderic and Freunberger, Stefan Alexander and Salanne, Mathieu and Fontaine, Olivier}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {37}, pages = {15913--1591}, publisher = {Wiley}, title = {{Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte}}, doi = {10.1002/anie.202005378}, volume = {59}, year = {2020}, } @article{7224, abstract = {Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.}, author = {Rybicki, Joel and Abrego, Nerea and Ovaskainen, Otso}, issn = {1461-0248}, journal = {Ecology Letters}, number = {3}, pages = {506--517}, publisher = {Wiley}, title = {{Habitat fragmentation and species diversity in competitive communities}}, doi = {10.1111/ele.13450}, volume = {23}, year = {2020}, } @article{8329, abstract = {We show the synthesis of a redox‐active quinone, 2‐methoxy‐1,4‐hydroquinone (MHQ), from a bio‐based feedstock and its suitability as electrolyte in aqueous redox flow batteries. We identified semiquinone intermediates at insufficiently low pH and quinoid radicals as responsible for decomposition of MHQ under electrochemical conditions. Both can be avoided and/or stabilized, respectively, using H 3 PO 4 electrolyte, allowing for reversible cycling in a redox flow battery for hundreds of cycles.}, author = {Schlemmer, Werner and Nothdurft, Philipp and Petzold, Alina and Frühwirt, Philipp and Schmallegger, Max and Gescheidt-Demner, Georg and Fischer, Roland and Freunberger, Stefan Alexander and Kern, Wolfgang and Spirk, Stefan}, issn = {1521-3773}, journal = {Angewandte Chemie International Edition}, number = {51}, pages = {22943--22946}, publisher = {Wiley}, title = {{2‐methoxyhydroquinone from vanillin for aqueous redox‐flow batteries}}, doi = {10.1002/anie.202008253}, volume = {59}, year = {2020}, } @misc{13060, abstract = {Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. Whilst multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defenses of ants – their social immunity ­– influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success, whilst simultaneously increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community-level. Mathematical modeling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host- and population-level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, publisher = {Dryad}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.5061/DRYAD.CRJDFN318}, year = {2020}, } @misc{9780, abstract = {PADREV : 4,4'-dimethoxy[1,1'-biphenyl]-2,2',5,5'-tetrol Space Group: C 2 (5), Cell: a 24.488(16)Å b 5.981(4)Å c 3.911(3)Å, α 90° β 91.47(3)° γ 90°}, author = {Schlemmer, Werner and Nothdurft, Philipp and Petzold, Alina and Riess, Gisbert and Frühwirt, Philipp and Schmallegger, Max and Gescheidt-Demner, Georg and Fischer, Roland and Freunberger, Stefan Alexander and Kern, Wolfgang and Spirk, Stefan}, publisher = {CCDC}, title = {{CCDC 1991959: Experimental Crystal Structure Determination}}, doi = {10.5517/ccdc.csd.cc24vsrk}, year = {2020}, } @article{7207, abstract = {The hippocampus plays key roles in learning and memory and is a main target of Alzheimer's disease (AD), which causes progressive memory impairments. Despite numerous investigations about the processes required for the normal hippocampal functions, the neurotransmitter receptors involved in the synaptic deficits by which AD disables the hippocampus are not yet characterized. By combining histoblots, western blots, immunohistochemistry and high‐resolution immunoelectron microscopic methods for GABAB receptors, this study provides a quantitative description of the expression and the subcellular localization of GABAB1 in the hippocampus in a mouse model of AD at 1, 6 and 12 months of age. Western blots and histoblots showed that the total amount of protein and the laminar expression pattern of GABAB1 were similar in APP/PS1 mice and in age‐matched wild‐type mice. In contrast, immunoelectron microscopic techniques showed that the subcellular localization of GABAB1 subunit did not change significantly in APP/PS1 mice at 1 month of age, was significantly reduced in the stratum lacunosum‐moleculare of CA1 pyramidal cells at 6 months of age and significantly reduced at the membrane surface of CA1 pyramidal cells at 12 months of age. This reduction of plasma membrane GABAB1 was paralleled by a significant increase of the subunit at the intracellular sites. We further observed a decrease of membrane‐targeted GABAB receptors in axon terminals contacting CA1 pyramidal cells. Our data demonstrate compartment‐ and age‐dependent reduction of plasma membrane‐targeted GABAB receptors in the CA1 region of the hippocampus, suggesting that this decrease might be enough to alter the GABAB‐mediated synaptic transmission taking place in AD.}, author = {Martín-Belmonte, Alejandro and Aguado, Carolina and Alfaro-Ruíz, Rocío and Moreno-Martínez, Ana Esther and De La Ossa, Luis and Martínez-Hernández, José and Buisson, Alain and Früh, Simon and Bettler, Bernhard and Shigemoto, Ryuichi and Fukazawa, Yugo and Luján, Rafael}, issn = {17503639}, journal = {Brain Pathology}, number = {3}, pages = {554--575}, publisher = {Wiley}, title = {{Reduction in the neuronal surface of post and presynaptic GABA>B< receptors in the hippocampus in a mouse model of Alzheimer's disease}}, doi = {10.1111/bpa.12802}, volume = {30}, year = {2020}, } @article{7205, abstract = {Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.}, author = {Johannesson, Kerstin and Zagrodzka, Zuzanna and Faria, Rui and Westram, Anja M and Butlin, Roger K.}, issn = {14209101}, journal = {Journal of Evolutionary Biology}, number = {3}, pages = {342--351}, publisher = {Wiley}, title = {{Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes?}}, doi = {10.1111/jeb.13570}, volume = {33}, year = {2020}, } @inbook{7227, abstract = {Gastrulation entails specification and formation of three embryonic germ layers—ectoderm, mesoderm and endoderm—thereby establishing the basis for the future body plan. In zebrafish embryos, germ layer specification occurs during blastula and early gastrula stages (Ho & Kimmel, 1993), a period when the main morphogenetic movements underlying gastrulation are initiated. Hence, the signals driving progenitor cell fate specification, such as Nodal ligands from the TGF-β family, also play key roles in regulating germ layer progenitor cell segregation (Carmany-Rampey & Schier, 2001; David & Rosa, 2001; Feldman et al., 2000; Gritsman et al., 1999; Keller et al., 2008). In this review, we summarize and discuss the main signaling pathways involved in germ layer progenitor cell fate specification and segregation, specifically focusing on recent advances in understanding the interplay between mesoderm and endoderm specification and the internalization movements at the onset of zebrafish gastrulation.}, author = {Nunes Pinheiro, Diana C and Heisenberg, Carl-Philipp J}, booktitle = {Gastrulation: From Embryonic Pattern to Form}, issn = {00702153}, pages = {343--375}, publisher = {Elsevier}, title = {{Zebrafish gastrulation: Putting fate in motion}}, doi = {10.1016/bs.ctdb.2019.10.009}, volume = {136}, year = {2020}, } @article{7417, abstract = {Previously, we reported that the allelic de-etiolated by zinc (dez) and trichome birefringence (tbr) mutants exhibit photomorphogenic development in the dark, which is enhanced by high Zn. TRICHOME BIREFRINGENCE-LIKE proteins had been implicated in transferring acetyl groups to various hemicelluloses. Pectin O-acetylation levels were lower in dark-grown dez seedlings than in the wild type. We observed Zn-enhanced photomorphogenesis in the dark also in the reduced wall acetylation 2 (rwa2-3) mutant, which exhibits lowered O-acetylation levels of cell wall macromolecules including pectins and xyloglucans, supporting a role for cell wall macromolecule O-acetylation in the photomorphogenic phenotypes of rwa2-3 and dez. Application of very short oligogalacturonides (vsOGs) restored skotomorphogenesis in dark-grown dez and rwa2-3. Here we demonstrate that in dez, O-acetylation of non-pectin cell wall components, notably of xyloglucan, is enhanced. Our results highlight the complexity of cell wall homeostasis and indicate against an influence of xyloglucan O-acetylation on light-dependent seedling development.}, author = {Sinclair, Scott A and Gille, S. and Pauly, M. and Krämer, U.}, issn = {1559-2324}, journal = {Plant Signaling & Behavior}, number = {1}, publisher = {Informa UK Limited}, title = {{Regulation of acetylation of plant cell wall components is complex and responds to external stimuli}}, doi = {10.1080/15592324.2019.1687185}, volume = {15}, year = {2020}, } @article{6185, abstract = {For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).}, author = {Erdös, László and Krüger, Torben H and Schröder, Dominik J}, issn = {1432-0916}, journal = {Communications in Mathematical Physics}, pages = {1203--1278}, publisher = {Springer Nature}, title = {{Cusp universality for random matrices I: Local law and the complex Hermitian case}}, doi = {10.1007/s00220-019-03657-4}, volume = {378}, year = {2020}, } @phdthesis{7629, abstract = {This thesis is based on three main topics: In the first part, we study convergence of discrete gradient flow structures associated with regular finite-volume discretisations of Fokker-Planck equations. We show evolutionary I convergence of the discrete gradient flows to the L2-Wasserstein gradient flow corresponding to the solution of a Fokker-Planck equation in arbitrary dimension d >= 1. Along the argument, we prove Mosco- and I-convergence results for discrete energy functionals, which are of independent interest for convergence of equivalent gradient flow structures in Hilbert spaces. The second part investigates L2-Wasserstein flows on metric graph. The starting point is a Benamou-Brenier formula for the L2-Wasserstein distance, which is proved via a regularisation scheme for solutions of the continuity equation, adapted to the peculiar geometric structure of metric graphs. Based on those results, we show that the L2-Wasserstein space over a metric graph admits a gradient flow which may be identified as a solution of a Fokker-Planck equation. In the third part, we focus again on the discrete gradient flows, already encountered in the first part. We propose a variational structure which extends the gradient flow structure to Markov chains violating the detailed-balance conditions. Using this structure, we characterise contraction estimates for the discrete heat flow in terms of convexity of corresponding path-dependent energy functionals. In addition, we use this approach to derive several functional inequalities for said functionals.}, author = {Forkert, Dominik L}, issn = {2663-337X}, pages = {154}, publisher = {Institute of Science and Technology Austria}, title = {{Gradient flows in spaces of probability measures for finite-volume schemes, metric graphs and non-reversible Markov chains}}, doi = {10.15479/AT:ISTA:7629}, year = {2020}, } @phdthesis{8574, abstract = {This thesis concerns itself with the interactions of evolutionary and ecological forces and the consequences on genetic diversity and the ultimate survival of populations. It is important to understand what signals processes leave on the genome and what we can infer from such data, which is usually abundant but noisy. Furthermore, understanding how and when populations adapt or go extinct is important for practical purposes, such as the genetic management of populations, as well as for theoretical questions, since local adaptation can be the first step toward speciation. In Chapter 2, we introduce the method of maximum entropy to approximate the demographic changes of a population in a simple setting, namely the logistic growth model with immigration. We show that this method is not only a powerful tool in physics but can be gainfully applied in an ecological framework. We investigate how well it approximates the real behavior of the system, and find that is does so, even in unexpected situations. Finally, we illustrate how it can model changing environments. In Chapter 3, we analyze the co-evolution of allele frequencies and population sizes in an infinite island model. We give conditions under which polygenic adaptation to a rare habitat is possible. The model we use is based on the diffusion approximation, considers eco-evolutionary feedback mechanisms (hard selection), and treats both drift and environmental fluctuations explicitly. We also look at limiting scenarios, for which we derive analytical expressions. In Chapter 4, we present a coalescent based simulation tool to obtain patterns of diversity in a spatially explicit subdivided population, in which the demographic history of each subpopulation can be specified. We compare the results to existing predictions, and explore the relative importance of time and space under a variety of spatial arrangements and demographic histories, such as expansion and extinction. In the last chapter, we give a brief outlook to further research. }, author = {Szep, Eniko}, issn = {2663-337X}, pages = {158}, publisher = {Institute of Science and Technology Austria}, title = {{Local adaptation in metapopulations}}, doi = {10.15479/AT:ISTA:8574}, year = {2020}, } @phdthesis{7514, abstract = {We study the interacting homogeneous Bose gas in two spatial dimensions in the thermodynamic limit at fixed density. We shall be concerned with some mathematical aspects of this complicated problem in many-body quantum mechanics. More specifically, we consider the dilute limit where the scattering length of the interaction potential, which is a measure for the effective range of the potential, is small compared to the average distance between the particles. We are interested in a setting with positive (i.e., non-zero) temperature. After giving a survey of the relevant literature in the field, we provide some facts and examples to set expectations for the two-dimensional system. The crucial difference to the three-dimensional system is that there is no Bose–Einstein condensate at positive temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that an asymptotic formula for the free energy holds similarly to the three-dimensional case. We motivate this formula by considering a toy model with δ interaction potential. By restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain an upper bound for the free energy that still has the quasi-condensate fraction as a free parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in our rigorous contribution. The mathematically rigorous result that we prove concerns the specific free energy in the dilute limit. We give upper and lower bounds on the free energy in terms of the free energy of the non-interacting system and a correction term coming from the interaction. Both bounds match and thus we obtain the leading term of an asymptotic approximation in the dilute limit, provided the thermal wavelength of the particles is of the same order (or larger) than the average distance between the particles. The remarkable feature of this result is its generality: the correction term depends on the interaction potential only through its scattering length and it holds for all nonnegative interaction potentials with finite scattering length that are measurable. In particular, this allows to model an interaction of hard disks.}, author = {Mayer, Simon}, issn = {2663-337X}, pages = {148}, publisher = {Institute of Science and Technology Austria}, title = {{The free energy of a dilute two-dimensional Bose gas}}, doi = {10.15479/AT:ISTA:7514}, year = {2020}, } @phdthesis{8353, abstract = {Mrp (Multi resistance and pH adaptation) are broadly distributed secondary active antiporters that catalyze the transport of monovalent ions such as sodium and potassium outside of the cell coupled to the inward translocation of protons. Mrp antiporters are unique in a way that they are composed of seven subunits (MrpABCDEFG) encoded in a single operon, whereas other antiporters catalyzing the same reaction are mostly encoded by a single gene. Mrp exchangers are crucial for intracellular pH homeostasis and Na+ efflux, essential mechanisms for H+ uptake under alkaline environments and for reduction of the intracellular concentration of toxic cations. Mrp displays no homology to any other monovalent Na+(K+)/H+ antiporters but Mrp subunits have primary sequence similarity to essential redox-driven proton pumps, such as respiratory complex I and membrane-bound hydrogenases. This similarity reinforces the hypothesis that these present day redox-driven proton pumps are descended from the Mrp antiporter. The Mrp structure serves as a model to understand the yet obscure coupling mechanism between ion or electron transfer and proton translocation in this large group of proteins. In the thesis, I am presenting the purification, biochemical analysis, cryo-EM analysis and molecular structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. Numerous conditions were screened to purify Mrp to high homogeneity and to obtain an appropriate distribution of single particles on cryo-EM grids covered with a continuous layer of ultrathin carbon. A preferred particle orientation problem was solved by performing a tilted data collection. The activity assays showed the specific pH-dependent profile of secondary active antiporters. The molecular structure shows that Mrp is a dimer of seven-subunit protomers with 50 trans-membrane helices each. The dimer interface is built by many short and tilted transmembrane helices, probably causing a thinning of the bacterial membrane. The surface charge distribution shows an extraordinary asymmetry within each monomer, revealing presumable proton and sodium translocation pathways. The two largest and homologous Mrp subunits MrpA and MrpD probably translocate one proton each into the cell. The sodium ion is likely being translocated in the opposite direction within the small subunits along a ladder of charged and conserved residues. Based on the structure, we propose a mechanism were the antiport activity is accomplished via electrostatic interactions between the charged cations and key charged residues. The flexible key TM helices coordinate these electrostatic interactions, while the membrane thinning between the monomers enables the translocation of sodium across the charged membrane. The entire family of redox-driven proton pumps is likely to perform their mechanism in a likewise manner.}, author = {Steiner, Julia}, issn = {2663-337X}, pages = {191}, publisher = {Institute of Science and Technology Austria}, title = {{Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I}}, doi = {10.15479/AT:ISTA:8353}, year = {2020}, } @phdthesis{8589, abstract = {The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development.}, author = {Han, Huibin}, issn = {2663-337X}, pages = {164}, publisher = {Institute of Science and Technology Austria}, title = {{Novel insights into PIN polarity regulation during Arabidopsis development}}, doi = {10.15479/AT:ISTA:8589}, year = {2020}, } @article{8284, abstract = {Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements.}, author = {Steiner, Julia and Sazanov, Leonid A}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter}}, doi = {10.7554/eLife.59407}, volume = {9}, year = {2020}, } @phdthesis{8155, abstract = {In the thesis we focus on the interplay of the biophysics and evolution of gene regulation. We start by addressing how the type of prokaryotic gene regulation – activation and repression – affects spurious binding to DNA, also known as transcriptional crosstalk. We propose that regulatory interference caused by excess regulatory proteins in the dense cellular medium – global crosstalk – could be a factor in determining which type of gene regulatory network is evolutionarily preferred. Next,we use a normative approach in eukaryotic gene regulation to describe minimal non-equilibrium enhancer models that optimize so-called regulatory phenotypes. We find a class of models that differ from standard thermodynamic equilibrium models by a single parameter that notably increases the regulatory performance. Next chapter addresses the question of genotype-phenotype-fitness maps of higher dimensional phenotypes. We show that our biophysically realistic approach allows us to understand how the mechanisms of promoter function constrain genotypephenotype maps, and how they affect the evolutionary trajectories of promoters. In the last chapter we ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using mathematical modeling, we show that amplifications can tune gene expression in many environments, including those where transcription factor-based schemes are hard to evolve or maintain. }, author = {Grah, Rok}, issn = {2663-337X}, pages = {310}, publisher = {Institute of Science and Technology Austria}, title = {{Gene regulation across scales – how biophysical constraints shape evolution}}, doi = {10.15479/AT:ISTA:8155}, year = {2020}, } @article{7643, author = {Han, Huibin and Rakusova, Hana and Verstraeten, Inge and Zhang, Yuzhou and Friml, Jiří}, issn = {1532-2548}, journal = {Plant Physiology}, number = {5}, pages = {37--40}, publisher = {American Society of Plant Biologists}, title = {{SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism}}, doi = {10.1104/pp.20.00212}, volume = {183}, year = {2020}, } @unpublished{7675, abstract = {In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-physical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal non-equilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in non-equilibrium models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to a much smaller subspace that optimally realizes biological function prior to inference from data, our normative approach holds promise for mathematical models in systems biology.}, author = {Grah, Rok and Zoller, Benjamin and Tkačik, Gašper}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Normative models of enhancer function}}, doi = {10.1101/2020.04.08.029405}, year = {2020}, } @phdthesis{7460, abstract = {Many methods for the reconstruction of shapes from sets of points produce ordered simplicial complexes, which are collections of vertices, edges, triangles, and their higher-dimensional analogues, called simplices, in which every simplex gets assigned a real value measuring its size. This thesis studies ordered simplicial complexes, with a focus on their topology, which reflects the connectedness of the represented shapes and the presence of holes. We are interested both in understanding better the structure of these complexes, as well as in developing algorithms for applications. For the Delaunay triangulation, the most popular measure for a simplex is the radius of the smallest empty circumsphere. Based on it, we revisit Alpha and Wrap complexes and experimentally determine their probabilistic properties for random data. Also, we prove the existence of tri-partitions, propose algorithms to open and close holes, and extend the concepts from Euclidean to Bregman geometries.}, author = {Ölsböck, Katharina}, issn = {2663-337X}, keywords = {shape reconstruction, hole manipulation, ordered complexes, Alpha complex, Wrap complex, computational topology, Bregman geometry}, pages = {155}, publisher = {Institute of Science and Technology Austria}, title = {{The hole system of triangulated shapes}}, doi = {10.15479/AT:ISTA:7460}, year = {2020}, } @phdthesis{7896, abstract = {A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems like computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD. Almost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation. However, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic problem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD. Our main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions. }, author = {Kamath Hosdurg, Chethan}, issn = {2663-337X}, pages = {126}, publisher = {Institute of Science and Technology Austria}, title = {{On the average-case hardness of total search problems}}, doi = {10.15479/AT:ISTA:7896}, year = {2020}, } @inproceedings{7936, abstract = {State-of-the-art detection systems are generally evaluated on their ability to exhaustively retrieve objects densely distributed in the image, across a wide variety of appearances and semantic categories. Orthogonal to this, many real-life object detection applications, for example in remote sensing, instead require dealing with large images that contain only a few small objects of a single class, scattered heterogeneously across the space. In addition, they are often subject to strict computational constraints, such as limited battery capacity and computing power.To tackle these more practical scenarios, we propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities: We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals. Similar to a detection cascade, this multi-stage architecture spares computational effort by discarding large irrelevant regions of the image early during the detection process. The ability to group objects provides further computational and memory savings, as it allows working with lower image resolutions in early stages, where groups are more easily detected than individuals, as they are more salient. We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors, consistently across three different backbone architectures.}, author = {Royer, Amélie and Lampert, Christoph}, booktitle = {IEEE Winter Conference on Applications of Computer Vision}, isbn = {9781728165530}, location = { Snowmass Village, CO, United States}, publisher = {IEEE}, title = {{Localizing grouped instances for efficient detection in low-resource scenarios}}, doi = {10.1109/WACV45572.2020.9093288}, year = {2020}, } @inproceedings{7937, abstract = {Fine-tuning is a popular way of exploiting knowledge contained in a pre-trained convolutional network for a new visual recognition task. However, the orthogonal setting of transferring knowledge from a pretrained network to a visually different yet semantically close source is rarely considered: This commonly happens with real-life data, which is not necessarily as clean as the training source (noise, geometric transformations, different modalities, etc.).To tackle such scenarios, we introduce a new, generalized form of fine-tuning, called flex-tuning, in which any individual unit (e.g. layer) of a network can be tuned, and the most promising one is chosen automatically. In order to make the method appealing for practical use, we propose two lightweight and faster selection procedures that prove to be good approximations in practice. We study these selection criteria empirically across a variety of domain shifts and data scarcity scenarios, and show that fine-tuning individual units, despite its simplicity, yields very good results as an adaptation technique. As it turns out, in contrast to common practice, rather than the last fully-connected unit it is best to tune an intermediate or early one in many domain- shift scenarios, which is accurately detected by flex-tuning.}, author = {Royer, Amélie and Lampert, Christoph}, booktitle = {2020 IEEE Winter Conference on Applications of Computer Vision}, isbn = {9781728165530}, location = {Snowmass Village, CO, United States}, publisher = {IEEE}, title = {{A flexible selection scheme for minimum-effort transfer learning}}, doi = {10.1109/WACV45572.2020.9093635}, year = {2020}, } @inproceedings{8193, abstract = {Multiple-environment Markov decision processes (MEMDPs) are MDPs equipped with not one, but multiple probabilistic transition functions, which represent the various possible unknown environments. While the previous research on MEMDPs focused on theoretical properties for long-run average payoff, we study them with discounted-sum payoff and focus on their practical advantages and applications. MEMDPs can be viewed as a special case of Partially observable and Mixed observability MDPs: the state of the system is perfectly observable, but not the environment. We show that the specific structure of MEMDPs allows for more efficient algorithmic analysis, in particular for faster belief updates. We demonstrate the applicability of MEMDPs in several domains. In particular, we formalize the sequential decision-making approach to contextual recommendation systems as MEMDPs and substantially improve over the previous MDP approach.}, author = {Chatterjee, Krishnendu and Chmelik, Martin and Karkhanis, Deep and Novotný, Petr and Royer, Amélie}, booktitle = {Proceedings of the 30th International Conference on Automated Planning and Scheduling}, issn = {23340843}, location = {Nancy, France}, pages = {48--56}, publisher = {Association for the Advancement of Artificial Intelligence}, title = {{Multiple-environment Markov decision processes: Efficient analysis and applications}}, volume = {30}, year = {2020}, } @inbook{8092, abstract = {Image translation refers to the task of mapping images from a visual domain to another. Given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce xgan, a dual adversarial auto-encoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the learned embedding to preserve semantics shared across domains. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset we collected for this purpose, “CartoonSet”, is also publicly available as a new benchmark for semantic style transfer at https://google.github.io/cartoonset/index.html.}, author = {Royer, Amélie and Bousmalis, Konstantinos and Gouws, Stephan and Bertsch, Fred and Mosseri, Inbar and Cole, Forrester and Murphy, Kevin}, booktitle = {Domain Adaptation for Visual Understanding}, editor = {Singh, Richa and Vatsa, Mayank and Patel, Vishal M. and Ratha, Nalini}, isbn = {9783030306717}, pages = {33--49}, publisher = {Springer Nature}, title = {{XGAN: Unsupervised image-to-image translation for many-to-many mappings}}, doi = {10.1007/978-3-030-30671-7_3}, year = {2020}, } @phdthesis{7944, abstract = {This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.}, author = {Masárová, Zuzana}, isbn = {978-3-99078-005-3}, issn = {2663-337X}, keywords = {reconfiguration, reconfiguration graph, triangulations, flip, constrained triangulations, shellability, piecewise-linear balls, token swapping, trees, coloured weighted token swapping}, pages = {160}, publisher = {Institute of Science and Technology Austria}, title = {{Reconfiguration problems}}, doi = {10.15479/AT:ISTA:7944}, year = {2020}, } @article{8587, abstract = {Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.}, author = {Li, Xiang and Yakaboylu, Enderalp and Bighin, Giacomo and Schmidt, Richard and Lemeshko, Mikhail and Deuchert, Andreas}, issn = {1089-7690}, journal = {The Journal of Chemical Physics}, keywords = {Physical and Theoretical Chemistry, General Physics and Astronomy}, number = {16}, publisher = {AIP Publishing}, title = {{Intermolecular forces and correlations mediated by a phonon bath}}, doi = {10.1063/1.5144759}, volume = {152}, year = {2020}, } @phdthesis{8341, abstract = {One of the most striking hallmarks of the eukaryotic cell is the presence of intracellular vesicles and organelles. Each of these membrane-enclosed compartments has a distinct composition of lipids and proteins, which is essential for accurate membrane traffic and homeostasis. Interestingly, their biochemical identities are achieved with the help of small GTPases of the Rab family, which cycle between GDP- and GTP-bound forms on the selected membrane surface. While this activity switch is well understood for an individual protein, how Rab GTPases collectively transition between states to generate decisive signal propagation in space and time is unclear. In my PhD thesis, I present in vitro reconstitution experiments with theoretical modeling to systematically study a minimal Rab5 activation network from bottom-up. We find that positive feedback based on known molecular interactions gives rise to bistable GTPase activity switching on system’s scale. Furthermore, we determine that collective transition near the critical point is intrinsically stochastic and provide evidence that the inactive Rab5 abundance on the membrane can shape the network response. Finally, we demonstrate that collective switching can spread on the lipid bilayer as a traveling activation wave, representing a possible emergent activity pattern in endosomal maturation. Together, our findings reveal new insights into the self-organization properties of signaling networks away from chemical equilibrium. Our work highlights the importance of systematic characterization of biochemical systems in well-defined physiological conditions. This way, we were able to answer long-standing open questions in the field and close the gap between regulatory processes on a molecular scale and emergent responses on system’s level.}, author = {Bezeljak, Urban}, issn = {2663-337X}, pages = {215}, publisher = {Institute of Science and Technology Austria}, title = {{In vitro reconstitution of a Rab activation switch}}, doi = {10.15479/AT:ISTA:8341}, year = {2020}, } @article{7580, abstract = {The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.}, author = {Bezeljak, Urban and Loya, Hrushikesh and Kaczmarek, Beata M and Saunders, Timothy E. and Loose, Martin}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {12}, pages = {6504--6549}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Stochastic activation and bistability in a Rab GTPase regulatory network}}, doi = {10.1073/pnas.1921027117}, volume = {117}, year = {2020}, } @phdthesis{8032, abstract = {Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.” In this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus.}, author = {Huszár, Kristóf}, isbn = {978-3-99078-006-0}, issn = {2663-337X}, pages = {xviii+120}, publisher = {Institute of Science and Technology Austria}, title = {{Combinatorial width parameters for 3-dimensional manifolds}}, doi = {10.15479/AT:ISTA:8032}, year = {2020}, } @inproceedings{8195, abstract = {This paper presents a foundation for refining concurrent programs with structured control flow. The verification problem is decomposed into subproblems that aid interactive program development, proof reuse, and automation. The formalization in this paper is the basis of a new design and implementation of the Civl verifier.}, author = {Kragl, Bernhard and Qadeer, Shaz and Henzinger, Thomas A}, booktitle = {Computer Aided Verification}, isbn = {9783030532871}, issn = {1611-3349}, pages = {275--298}, publisher = {Springer Nature}, title = {{Refinement for structured concurrent programs}}, doi = {10.1007/978-3-030-53288-8_14}, volume = {12224}, year = {2020}, } @inproceedings{8012, abstract = {Asynchronous programs are notoriously difficult to reason about because they spawn computation tasks which take effect asynchronously in a nondeterministic way. Devising inductive invariants for such programs requires understanding and stating complex relationships between an unbounded number of computation tasks in arbitrarily long executions. In this paper, we introduce inductive sequentialization, a new proof rule that sidesteps this complexity via a sequential reduction, a sequential program that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. We have implemented and integrated our proof rule in the CIVL verifier, allowing us to provably derive fine-grained implementations of asynchronous programs. We have successfully applied our proof rule to a diverse set of message-passing protocols, including leader election protocols, two-phase commit, and Paxos.}, author = {Kragl, Bernhard and Enea, Constantin and Henzinger, Thomas A and Mutluergil, Suha Orhun and Qadeer, Shaz}, booktitle = {Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation}, isbn = {9781450376136}, location = {London, United Kingdom}, pages = {227--242}, publisher = {Association for Computing Machinery}, title = {{Inductive sequentialization of asynchronous programs}}, doi = {10.1145/3385412.3385980}, year = {2020}, } @phdthesis{8358, abstract = {During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This so-called Z-ring acts as a scaffold recruiting several division-related proteins to mid-cell and plays a key role in distributing proteins at the division site, a feature driven by the treadmilling motion of FtsZ filaments around the septum. What regulates the architecture, dynamics and stability of the Z-ring is still poorly understood, but FtsZ-associated proteins (Zaps) are known to play an important role. Advances in fluorescence microscopy and in vitro reconstitution experiments have helped to shed light into some of the dynamic properties of these complex systems, but methods that allow to collect and analyze large quantitative data sets of the underlying polymer dynamics are still missing. Here, using an in vitro reconstitution approach, we studied how different Zaps affect FtsZ filament dynamics and organization into large-scale patterns, giving special emphasis to the role of the well-conserved protein ZapA. For this purpose, we use high-resolution fluorescence microscopy combined with novel image analysis workfows to study pattern organization and polymerization dynamics of active filaments. We quantified the influence of Zaps on FtsZ on three diferent spatial scales: the large-scale organization of the membrane-bound filament network, the underlying polymerization dynamics and the behavior of single molecules. We found that ZapA cooperatively increases the spatial order of the filament network, binds only transiently to FtsZ filaments and has no effect on filament length and treadmilling velocity. Our data provides a model for how FtsZ-associated proteins can increase the precision and stability of the bacterial cell division machinery in a switch-like manner, without compromising filament dynamics. Furthermore, we believe that our automated quantitative methods can be used to analyze a large variety of dynamic cytoskeletal systems, using standard time-lapse movies of homogeneously labeled proteins obtained from experiments in vitro or even inside the living cell. }, author = {Dos Santos Caldas, Paulo R}, isbn = {978-3-99078-009-1}, issn = {2663-337X}, pages = {135}, publisher = {Institute of Science and Technology Austria}, title = {{Organization and dynamics of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinkers}}, doi = {10.15479/AT:ISTA:8358}, year = {2020}, } @inproceedings{8703, abstract = {Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity. }, author = {Osang, Georg F and Rouxel-Labbé, Mael and Teillaud, Monique}, booktitle = {28th Annual European Symposium on Algorithms}, isbn = {9783959771627}, issn = {18688969}, location = {Virtual, Online; Pisa, Italy}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Generalizing CGAL periodic Delaunay triangulations}}, doi = {10.4230/LIPIcs.ESA.2020.75}, volume = {173}, year = {2020}, } @inproceedings{7481, abstract = {We address the following question: How redundant is the parameterisation of ReLU networks? Specifically, we consider transformations of the weight space which leave the function implemented by the network intact. Two such transformations are known for feed-forward architectures: permutation of neurons within a layer, and positive scaling of all incoming weights of a neuron coupled with inverse scaling of its outgoing weights. In this work, we show for architectures with non-increasing widths that permutation and scaling are in fact the only function-preserving weight transformations. For any eligible architecture we give an explicit construction of a neural network such that any other network that implements the same function can be obtained from the original one by the application of permutations and rescaling. The proof relies on a geometric understanding of boundaries between linear regions of ReLU networks, and we hope the developed mathematical tools are of independent interest.}, author = {Bui Thi Mai, Phuong and Lampert, Christoph}, booktitle = {8th International Conference on Learning Representations}, location = {Online}, title = {{Functional vs. parametric equivalence of ReLU networks}}, year = {2020}, } @article{9781, abstract = {We consider the Pekar functional on a ball in ℝ3. We prove uniqueness of minimizers, and a quadratic lower bound in terms of the distance to the minimizer. The latter follows from nondegeneracy of the Hessian at the minimum.}, author = {Feliciangeli, Dario and Seiringer, Robert}, issn = {1095-7154}, journal = {SIAM Journal on Mathematical Analysis}, keywords = {Applied Mathematics, Computational Mathematics, Analysis}, number = {1}, pages = {605--622}, publisher = {Society for Industrial & Applied Mathematics }, title = {{Uniqueness and nondegeneracy of minimizers of the Pekar functional on a ball}}, doi = {10.1137/19m126284x}, volume = {52}, year = {2020}, } @article{7489, abstract = {In the present work, we consider the evolution of two fluids separated by a sharp interface in the presence of surface tension—like, for example, the evolution of oil bubbles in water. Our main result is a weak–strong uniqueness principle for the corresponding free boundary problem for the incompressible Navier–Stokes equation: as long as a strong solution exists, any varifold solution must coincide with it. In particular, in the absence of physical singularities, the concept of varifold solutions—whose global in time existence has been shown by Abels (Interfaces Free Bound 9(1):31–65, 2007) for general initial data—does not introduce a mechanism for non-uniqueness. The key ingredient of our approach is the construction of a relative entropy functional capable of controlling the interface error. If the viscosities of the two fluids do not coincide, even for classical (strong) solutions the gradient of the velocity field becomes discontinuous at the interface, introducing the need for a careful additional adaption of the relative entropy.}, author = {Fischer, Julian L and Hensel, Sebastian}, issn = {14320673}, journal = {Archive for Rational Mechanics and Analysis}, pages = {967--1087}, publisher = {Springer Nature}, title = {{Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension}}, doi = {10.1007/s00205-019-01486-2}, volume = {236}, year = {2020}, } @unpublished{10012, abstract = {We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.}, author = {Fischer, Julian L and Hensel, Sebastian and Laux, Tim and Simon, Thilo}, booktitle = {arXiv}, title = {{The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions}}, year = {2020}, } @article{8755, abstract = {The superconducting circuit community has recently discovered the promising potential of superinductors. These circuit elements have a characteristic impedance exceeding the resistance quantum RQ ≈ 6.45 kΩ which leads to a suppression of ground state charge fluctuations. Applications include the realization of hardware protected qubits for fault tolerant quantum computing, improved coupling to small dipole moment objects and defining a new quantum metrology standard for the ampere. In this work we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e. using disordered superconductors or Josephson junction arrays. We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 kΩ at 5.6 GHz and a capacitance down to ≤ 1 fF, with lowloss and a power handling reaching 108 intra-cavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity and the ability to couple magnetically - properties that significantly broaden the scope of future quantum circuits. }, author = {Peruzzo, Matilda and Trioni, Andrea and Hassani, Farid and Zemlicka, Martin and Fink, Johannes M}, issn = {23317019}, journal = {Physical Review Applied}, number = {4}, publisher = {American Physical Society}, title = {{Surpassing the resistance quantum with a geometric superinductor}}, doi = {10.1103/PhysRevApplied.14.044055}, volume = {14}, year = {2020}, } @article{7573, abstract = {This paper deals with dynamical optimal transport metrics defined by spatial discretisation of the Benamou–Benamou formula for the Kantorovich metric . Such metrics appear naturally in discretisations of -gradient flow formulations for dissipative PDE. However, it has recently been shown that these metrics do not in general converge to , unless strong geometric constraints are imposed on the discrete mesh. In this paper we prove that, in a 1-dimensional periodic setting, discrete transport metrics converge to a limiting transport metric with a non-trivial effective mobility. This mobility depends sensitively on the geometry of the mesh and on the non-local mobility at the discrete level. Our result quantifies to what extent discrete transport can make use of microstructure in the mesh to reduce the cost of transport.}, author = {Gladbach, Peter and Kopfer, Eva and Maas, Jan and Portinale, Lorenzo}, issn = {00217824}, journal = {Journal de Mathematiques Pures et Appliquees}, number = {7}, pages = {204--234}, publisher = {Elsevier}, title = {{Homogenisation of one-dimensional discrete optimal transport}}, doi = {10.1016/j.matpur.2020.02.008}, volume = {139}, year = {2020}, } @unpublished{10022, abstract = {We consider finite-volume approximations of Fokker-Planck equations on bounded convex domains in R^d and study the corresponding gradient flow structures. We reprove the convergence of the discrete to continuous Fokker-Planck equation via the method of Evolutionary Γ-convergence, i.e., we pass to the limit at the level of the gradient flow structures, generalising the one-dimensional result obtained by Disser and Liero. The proof is of variational nature and relies on a Mosco convergence result for functionals in the discrete-to-continuum limit that is of independent interest. Our results apply to arbitrary regular meshes, even though the associated discrete transport distances may fail to converge to the Wasserstein distance in this generality.}, author = {Forkert, Dominik L and Maas, Jan and Portinale, Lorenzo}, booktitle = {arXiv}, pages = {33}, title = {{Evolutionary Γ-convergence of entropic gradient flow structures for Fokker-Planck equations in multiple dimensions}}, year = {2020}, } @inproceedings{8724, abstract = {We study the problem of learning from multiple untrusted data sources, a scenario of increasing practical relevance given the recent emergence of crowdsourcing and collaborative learning paradigms. Specifically, we analyze the situation in which a learning system obtains datasets from multiple sources, some of which might be biased or even adversarially perturbed. It is known that in the single-source case, an adversary with the power to corrupt a fixed fraction of the training data can prevent PAC-learnability, that is, even in the limit of infinitely much training data, no learning system can approach the optimal test error. In this work we show that, surprisingly, the same is not true in the multi-source setting, where the adversary can arbitrarily corrupt a fixed fraction of the data sources. Our main results are a generalization bound that provides finite-sample guarantees for this learning setting, as well as corresponding lower bounds. Besides establishing PAC-learnability our results also show that in a cooperative learning setting sharing data with other parties has provable benefits, even if some participants are malicious. }, author = {Konstantinov, Nikola H and Frantar, Elias and Alistarh, Dan-Adrian and Lampert, Christoph}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, issn = {2640-3498}, location = {Online}, pages = {5416--5425}, publisher = {ML Research Press}, title = {{On the sample complexity of adversarial multi-source PAC learning}}, volume = {119}, year = {2020}, } @article{8644, abstract = {Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures.}, author = {Rzadkowski, Wojciech and Defenu, N and Chiacchiera, S and Trombettoni, A and Bighin, Giacomo}, issn = {13672630}, journal = {New Journal of Physics}, number = {9}, publisher = {IOP Publishing}, title = {{Detecting composite orders in layered models via machine learning}}, doi = {10.1088/1367-2630/abae44}, volume = {22}, year = {2020}, } @article{8705, abstract = {We consider the quantum mechanical many-body problem of a single impurity particle immersed in a weakly interacting Bose gas. The impurity interacts with the bosons via a two-body potential. We study the Hamiltonian of this system in the mean-field limit and rigorously show that, at low energies, the problem is well described by the Fröhlich polaron model.}, author = {Mysliwy, Krzysztof and Seiringer, Robert}, issn = {1424-0637}, journal = {Annales Henri Poincare}, number = {12}, pages = {4003--4025}, publisher = {Springer Nature}, title = {{Microscopic derivation of the Fröhlich Hamiltonian for the Bose polaron in the mean-field limit}}, doi = {10.1007/s00023-020-00969-3}, volume = {21}, year = {2020}, } @article{10861, abstract = {We introduce in this paper AMT2.0, a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended signal temporal logic, which integrates timed regular expressions within signal temporal logic. The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal. We demonstrate the tool functionality on several running examples and case studies, and evaluate its performance.}, author = {Nickovic, Dejan and Lebeltel, Olivier and Maler, Oded and Ferrere, Thomas and Ulus, Dogan}, issn = {1433-2787}, journal = {International Journal on Software Tools for Technology Transfer}, keywords = {Information Systems, Software}, number = {6}, pages = {741--758}, publisher = {Springer Nature}, title = {{AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic}}, doi = {10.1007/s10009-020-00582-z}, volume = {22}, year = {2020}, } @article{14125, abstract = {Motivation: Recent technological advances have led to an increase in the production and availability of single-cell data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or clinically meaningful observations through the unification of the perspectives afforded by each technology. In most cases, however, profiling technologies consume the used cells and thus pairwise correspondences between datasets are lost. Due to the sheer size single-cell datasets can acquire, scalable algorithms that are able to universally match single-cell measurements carried out in one cell to its corresponding sibling in another technology are needed. Results: We propose Single-Cell data Integration via Matching (SCIM), a scalable approach to recover such correspondences in two or more technologies. SCIM assumes that cells share a common (low-dimensional) underlying structure and that the underlying cell distribution is approximately constant across technologies. It constructs a technology-invariant latent space using an autoencoder framework with an adversarial objective. Multi-modal datasets are integrated by pairing cells across technologies using a bipartite matching scheme that operates on the low-dimensional latent representations. We evaluate SCIM on a simulated cellular branching process and show that the cell-to-cell matches derived by SCIM reflect the same pseudotime on the simulated dataset. Moreover, we apply our method to two real-world scenarios, a melanoma tumor sample and a human bone marrow sample, where we pair cells from a scRNA dataset to their sibling cells in a CyTOF dataset achieving 90% and 78% cell-matching accuracy for each one of the samples, respectively.}, author = {Stark, Stefan G and Ficek, Joanna and Locatello, Francesco and Bonilla, Ximena and Chevrier, Stéphane and Singer, Franziska and Aebersold, Rudolf and Al-Quaddoomi, Faisal S and Albinus, Jonas and Alborelli, Ilaria and Andani, Sonali and Attinger, Per-Olof and Bacac, Marina and Baumhoer, Daniel and Beck-Schimmer, Beatrice and Beerenwinkel, Niko and Beisel, Christian and Bernasconi, Lara and Bertolini, Anne and Bodenmiller, Bernd and Bonilla, Ximena and Casanova, Ruben and Chevrier, Stéphane and Chicherova, Natalia and D'Costa, Maya and Danenberg, Esther and Davidson, Natalie and gan, Monica-Andreea Dră and Dummer, Reinhard and Engler, Stefanie and Erkens, Martin and Eschbach, Katja and Esposito, Cinzia and Fedier, André and Ferreira, Pedro and Ficek, Joanna and Frei, Anja L and Frey, Bruno and Goetze, Sandra and Grob, Linda and Gut, Gabriele and Günther, Detlef and Haberecker, Martina and Haeuptle, Pirmin and Heinzelmann-Schwarz, Viola and Herter, Sylvia and Holtackers, Rene and Huesser, Tamara and Irmisch, Anja and Jacob, Francis and Jacobs, Andrea and Jaeger, Tim M and Jahn, Katharina and James, Alva R and Jermann, Philip M and Kahles, André and Kahraman, Abdullah and Koelzer, Viktor H and Kuebler, Werner and Kuipers, Jack and Kunze, Christian P and Kurzeder, Christian and Lehmann, Kjong-Van and Levesque, Mitchell and Lugert, Sebastian and Maass, Gerd and Manz, Markus and Markolin, Philipp and Mena, Julien and Menzel, Ulrike and Metzler, Julian M and Miglino, Nicola and Milani, Emanuela S and Moch, Holger and Muenst, Simone and Murri, Riccardo and Ng, Charlotte KY and Nicolet, Stefan and Nowak, Marta and Pedrioli, Patrick GA and Pelkmans, Lucas and Piscuoglio, Salvatore and Prummer, Michael and Ritter, Mathilde and Rommel, Christian and Rosano-González, María L and Rätsch, Gunnar and Santacroce, Natascha and Castillo, Jacobo Sarabia del and Schlenker, Ramona and Schwalie, Petra C and Schwan, Severin and Schär, Tobias and Senti, Gabriela and Singer, Franziska and Sivapatham, Sujana and Snijder, Berend and Sobottka, Bettina and Sreedharan, Vipin T and Stark, Stefan and Stekhoven, Daniel J and Theocharides, Alexandre PA and Thomas, Tinu M and Tolnay, Markus and Tosevski, Vinko and Toussaint, Nora C and Tuncel, Mustafa A and Tusup, Marina and Drogen, Audrey Van and Vetter, Marcus and Vlajnic, Tatjana and Weber, Sandra and Weber, Walter P and Wegmann, Rebekka and Weller, Michael and Wendt, Fabian and Wey, Norbert and Wicki, Andreas and Wollscheid, Bernd and Yu, Shuqing and Ziegler, Johanna and Zimmermann, Marc and Zoche, Martin and Zuend, Gregor and Rätsch, Gunnar and Lehmann, Kjong-Van}, issn = {1367-4811}, journal = {Bioinformatics}, keywords = {Computational Mathematics, Computational Theory and Mathematics, Computer Science Applications, Molecular Biology, Biochemistry, Statistics and Probability}, number = {Supplement_2}, pages = {i919--i927}, publisher = {Oxford University Press}, title = {{SCIM: Universal single-cell matching with unpaired feature sets}}, doi = {10.1093/bioinformatics/btaa843}, volume = {36}, year = {2020}, } @inproceedings{14186, abstract = {The goal of the unsupervised learning of disentangled representations is to separate the independent explanatory factors of variation in the data without access to supervision. In this paper, we summarize the results of Locatello et al., 2019, and focus on their implications for practitioners. We discuss the theoretical result showing that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases and the practical challenges it entails. Finally, we comment on our experimental findings, highlighting the limitations of state-of-the-art approaches and directions for future research.}, author = {Locatello, Francesco and Bauer, Stefan and Lucic, Mario and Rätsch, Gunnar and Gelly, Sylvain and Schölkopf, Bernhard and Bachem, Olivier}, booktitle = {The 34th AAAI Conference on Artificial Intelligence}, isbn = {9781577358350}, issn = {2374-3468}, location = {New York, NY, United States}, number = {9}, pages = {13681--13684}, publisher = {Association for the Advancement of Artificial Intelligence}, title = {{A commentary on the unsupervised learning of disentangled representations}}, doi = {10.1609/aaai.v34i09.7120}, volume = {34}, year = {2020}, } @inproceedings{14188, abstract = {Intelligent agents should be able to learn useful representations by observing changes in their environment. We model such observations as pairs of non-i.i.d. images sharing at least one of the underlying factors of variation. First, we theoretically show that only knowing how many factors have changed, but not which ones, is sufficient to learn disentangled representations. Second, we provide practical algorithms that learn disentangled representations from pairs of images without requiring annotation of groups, individual factors, or the number of factors that have changed. Third, we perform a large-scale empirical study and show that such pairs of observations are sufficient to reliably learn disentangled representations on several benchmark data sets. Finally, we evaluate our learned representations and find that they are simultaneously useful on a diverse suite of tasks, including generalization under covariate shifts, fairness, and abstract reasoning. Overall, our results demonstrate that weak supervision enables learning of useful disentangled representations in realistic scenarios.}, author = {Locatello, Francesco and Poole, Ben and Rätsch, Gunnar and Schölkopf, Bernhard and Bachem, Olivier and Tschannen, Michael}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, location = {Virtual}, pages = {6348–6359}, title = {{Weakly-supervised disentanglement without compromises}}, volume = {119}, year = {2020}, } @inproceedings{14187, abstract = {We propose a novel Stochastic Frank-Wolfe (a.k.a. conditional gradient) algorithm for constrained smooth finite-sum minimization with a generalized linear prediction/structure. This class of problems includes empirical risk minimization with sparse, low-rank, or other structured constraints. The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration cost that is independent of the dataset size. Furthermore, as a byproduct of the method we obtain a stochastic estimator of the Frank-Wolfe gap that can be used as a stopping criterion. Depending on the setting, the proposed method matches or improves on the best computational guarantees for Stochastic Frank-Wolfe algorithms. Benchmarks on several datasets highlight different regimes in which the proposed method exhibits a faster empirical convergence than related methods. Finally, we provide an implementation of all considered methods in an open-source package.}, author = {Négiar, Geoffrey and Dresdner, Gideon and Tsai, Alicia and Ghaoui, Laurent El and Locatello, Francesco and Freund, Robert M. and Pedregosa, Fabian}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, location = {Virtual}, pages = {7253--7262}, title = {{Stochastic Frank-Wolfe for constrained finite-sum minimization}}, volume = {119}, year = {2020}, } @article{14195, abstract = {The idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train over 14000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on eight data sets. We observe that while the different methods successfully enforce properties “encouraged” by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, different evaluation metrics do not always agree on what should be considered “disentangled” and exhibit systematic differences in the estimation. Finally, increased disentanglement does not seem to necessarily lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.}, author = {Locatello, Francesco and Bauer, Stefan and Lucic, Mario and Rätsch, Gunnar and Gelly, Sylvain and Schölkopf, Bernhard and Bachem, Olivier}, journal = {Journal of Machine Learning Research}, publisher = {MIT Press}, title = {{A sober look at the unsupervised learning of disentangled representations and their evaluation}}, volume = {21}, year = {2020}, } @article{7569, abstract = {Genes differ in the frequency at which they are expressed and in the form of regulation used to control their activity. In particular, positive or negative regulation can lead to activation of a gene in response to an external signal. Previous works proposed that the form of regulation of a gene correlates with its frequency of usage: positive regulation when the gene is frequently expressed and negative regulation when infrequently expressed. Such network design means that, in the absence of their regulators, the genes are found in their least required activity state, hence regulatory intervention is often necessary. Due to the multitude of genes and regulators, spurious binding and unbinding events, called “crosstalk”, could occur. To determine how the form of regulation affects the global crosstalk in the network, we used a mathematical model that includes multiple regulators and multiple target genes. We found that crosstalk depends non-monotonically on the availability of regulators. Our analysis showed that excess use of regulation entailed by the formerly suggested network design caused high crosstalk levels in a large part of the parameter space. We therefore considered the opposite ‘idle’ design, where the default unregulated state of genes is their frequently required activity state. We found, that ‘idle’ design minimized the use of regulation and thus minimized crosstalk. In addition, we estimated global crosstalk of S. cerevisiae using transcription factors binding data. We demonstrated that even partial network data could suffice to estimate its global crosstalk, suggesting its applicability to additional organisms. We found that S. cerevisiae estimated crosstalk is lower than that of a random network, suggesting that natural selection reduces crosstalk. In summary, our study highlights a new type of protein production cost which is typically overlooked: that of regulatory interference caused by the presence of excess regulators in the cell. It demonstrates the importance of whole-network descriptions, which could show effects missed by single-gene models.}, author = {Grah, Rok and Friedlander, Tamar}, issn = {1553-7358}, journal = {PLOS Computational Biology}, number = {2}, publisher = {Public Library of Science}, title = {{The relation between crosstalk and gene regulation form revisited}}, doi = {10.1371/journal.pcbi.1007642}, volume = {16}, year = {2020}, } @unpublished{8813, abstract = {In mammals, chromatin marks at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. This control is thought predominantly to involve parent-specific differentially methylated regions (DMR) in genomic DNA. However, neither parent-of-origin-specific transcription nor DMRs have been comprehensively mapped. We here address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos (blastocysts). Transcriptome-analysis identified 71 genes expressed with previously unknown parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expression). Uniparental expression of nBiX genes disappeared soon after implantation. Micro-whole-genome bisulfite sequencing (μWGBS) of individual uniparental blastocysts detected 859 DMRs. Only 18% of nBiXs were associated with a DMR, whereas 60% were associated with parentally-biased H3K27me3. This suggests a major role for Polycomb-mediated imprinting in blastocysts. Five nBiX-clusters contained at least one known imprinted gene, and five novel clusters contained exclusively nBiX-genes. These data suggest a complex program of stage-specific imprinting involving different tiers of regulation.}, author = {Santini, Laura and Halbritter, Florian and Titz-Teixeira, Fabian and Suzuki, Toru and Asami, Maki and Ramesmayer, Julia and Ma, Xiaoyan and Lackner, Andreas and Warr, Nick and Pauler, Florian and Hippenmeyer, Simon and Laue, Ernest and Farlik, Matthias and Bock, Christoph and Beyer, Andreas and Perry, Anthony C. F. and Leeb, Martin}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Novel imprints in mouse blastocysts are predominantly DNA methylation independent}}, doi = {10.1101/2020.11.03.366948}, year = {2020}, }