@article{14845, abstract = {We study a linear rotor in a bosonic bath within the angulon formalism. Our focus is on systems where isotropic or anisotropic impurity-boson interactions support a shallow bound state. To study the fate of the angulon in the vicinity of bound-state formation, we formulate a beyond-linear-coupling angulon Hamiltonian. First, we use it to study attractive, spherically symmetric impurity-boson interactions for which the linear rotor can be mapped onto a static impurity. The well-known polaron formalism provides an adequate description in this limit. Second, we consider anisotropic potentials, and show that the presence of a shallow bound state with pronounced anisotropic character leads to a many-body instability that washes out the angulon dynamics.}, author = {Dome, Tibor and Volosniev, Artem and Ghazaryan, Areg and Safari, Laleh and Schmidt, Richard and Lemeshko, Mikhail}, issn = {2469-9969}, journal = {Physical Review B}, number = {1}, publisher = {American Physical Society}, title = {{Linear rotor in an ideal Bose gas near the threshold for binding}}, doi = {10.1103/PhysRevB.109.014102}, volume = {109}, year = {2024}, } @article{14852, abstract = {The physical conditions giving rise to high escape fractions of ionizing radiation (LyC fesc) in star-forming galaxies – most likely protagonists of cosmic reionization – are not yet fully understood. Using the VLT/MUSE observations of ∼1400 Ly α emitters at 2.9 < z < 6.7, we compare stacked rest-frame UV spectra of candidates for LyC leakers and non-leakers selected based on their Ly α profiles. We find that the stacks of potential LyC leakers, i.e. galaxies with narrow, symmetric Ly α profiles with small peak separation, generally show (i) strong nebular O iii]λ1666, [Si iii]λ1883, and [C iii]λ1907 +C iii]λ1909 emission, indicating a high-ionization state of the interstellar medium (ISM); (ii) high equivalent widths of He iiλ1640 (∼1 − 3 Å), suggesting the presence of hard ionizing radiation fields; (iii) Si ii*λ1533 emission, revealing substantial amounts of neutral hydrogen off the line of sight; (iv) high C ivλλ1548,1550 to [C iii]λ1907 +C iii]λ1909 ratios (C iv/C iii] ≳0.75) , signalling the presence of low column density channels in the ISM. In contrast, the stacks with broad, asymmetric Ly α profiles with large peak separation show weak nebular emission lines, low He iiλ1640 equivalent widths (≲1 Å), and low C iv/C iii] (≲0.25), implying low-ionization states and high-neutral hydrogen column densities. Our results suggest that C iv/C iii] might be sensitive to the physical conditions that govern LyC photon escape, providing a promising tool for identification of ionizing sources among star-forming galaxies in the epoch of reionization.}, author = {Kramarenko, Ivan and Kerutt, J and Verhamme, A and Oesch, P A and Barrufet, L and Matthee, Jorryt J and Kusakabe, H and Goovaerts, I and Thai, T T}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics}, number = {4}, pages = {9853--9871}, publisher = {Oxford University Press}, title = {{Linking UV spectral properties of MUSE Ly α emitters at z ≳ 3 to Lyman continuum escape}}, doi = {10.1093/mnras/stad3853}, volume = {527}, year = {2024}, } @article{14850, abstract = {Elaborate sexual signals are thought to have evolved and be maintained to serve as honest indicators of signaller quality. One measure of quality is health, which can be affected by parasite infection. Cnemaspis mysoriensis is a diurnal gecko that is often infested with ectoparasites in the wild, and males of this species express visual (coloured gular patches) and chemical (femoral gland secretions) traits that receivers could assess during social interactions. In this paper, we tested whether ectoparasites affect individual health, and whether signal quality is an indicator of ectoparasite levels. In wild lizards, we found that ectoparasite level was negatively correlated with body condition in both sexes. Moreover, some characteristics of both visual and chemical traits in males were strongly associated with ectoparasite levels. Specifically, males with higher ectoparasite levels had yellow gular patches with lower brightness and chroma, and chemical secretions with a lower proportion of aromatic compounds. We then determined whether ectoparasite levels in males influence female behaviour. Using sequential choice trials, wherein females were provided with either the visual or the chemical signals of wild-caught males that varied in ectoparasite level, we found that only chemical secretions evoked an elevated female response towards less parasitised males. Simultaneous choice trials in which females were exposed to the chemical secretions from males that varied in parasite level further confirmed a preference for males with lower parasites loads. Overall, we find that although health (body condition) or ectoparasite load can be honestly advertised through multiple modalities, the parasite-mediated female response is exclusively driven by chemical signals.}, author = {Pal, Arka and Joshi, Mihir and Thaker, Maria}, issn = {0022-0949}, journal = {Journal of Experimental Biology}, keywords = {Insect Science, Molecular Biology, Animal Science and Zoology, Aquatic Science, Physiology, Ecology, Evolution, Behavior and Systematics}, number = {1}, publisher = {The Company of Biologists}, title = {{Too much information? Males convey parasite levels using more signal modalities than females utilise}}, doi = {10.1242/jeb.246217}, volume = {227}, year = {2024}, } @phdthesis{14711, abstract = {In nature, different species find their niche in a range of environments, each with its unique characteristics. While some thrive in uniform (homogeneous) landscapes where environmental conditions stay relatively consistent across space, others traverse the complexities of spatially heterogeneous terrains. Comprehending how species are distributed and how they interact within these landscapes holds the key to gaining insights into their evolutionary dynamics while also informing conservation and management strategies. For species inhabiting heterogeneous landscapes, when the rate of dispersal is low compared to spatial fluctuations in selection pressure, localized adaptations may emerge. Such adaptation in response to varying selection strengths plays an important role in the persistence of populations in our rapidly changing world. Hence, species in nature are continuously in a struggle to adapt to local environmental conditions, to ensure their continued survival. Natural populations can often adapt in time scales short enough for evolutionary changes to influence ecological dynamics and vice versa, thereby creating a feedback between evolution and demography. The analysis of this feedback and the relative contributions of gene flow, demography, drift, and natural selection to genetic variation and differentiation has remained a recurring theme in evolutionary biology. Nevertheless, the effective role of these forces in maintaining variation and shaping patterns of diversity is not fully understood. Even in homogeneous environments devoid of local adaptations, such understanding remains elusive. Understanding this feedback is crucial, for example in determining the conditions under which extinction risk can be mitigated in peripheral populations subject to deleterious mutation accumulation at the edges of species’ ranges as well as in highly fragmented populations. In this thesis we explore both uniform and spatially heterogeneous metapopulations, investigating and providing theoretical insights into the dynamics of local adaptation in the latter and examining the dynamics of load and extinction as well as the impact of joint ecological and evolutionary (eco-evolutionary) dynamics in the former. The thesis is divided into 5 chapters. Chapter 1 provides a general introduction into the subject matter, clarifying concepts and ideas used throughout the thesis. In chapter 2, we explore how fast a species distributed across a heterogeneous landscape adapts to changing conditions marked by alterations in carrying capacity, selection pressure, and migration rate. In chapter 3, we investigate how migration selection and drift influences adaptation and the maintenance of variation in a metapopulation with three habitats, an extension of previous models of adaptation in two habitats. We further develop analytical approximations for the critical threshold required for polymorphism to persist. The focus of chapter 4 of the thesis is on understanding the interplay between ecology and evolution as coupled processes. We investigate how eco-evolutionary feedback between migration, selection, drift, and demography influences eco-evolutionary outcomes in marginal populations subject to deleterious mutation accumulation. Using simulations as well as theoretical approximations of the coupled dynamics of population size and allele frequency, we analyze how gene flow from a large mainland source influences genetic load and population size on an island (i.e., in a marginal population) under genetically realistic assumptions. Analyses of this sort are important because small isolated populations, are repeatedly affected by complex interactions between ecological and evolutionary processes, which can lead to their death. Understanding these interactions can therefore provide an insight into the conditions under which extinction risk can be mitigated in peripheral populations thus, contributing to conservation and restoration efforts. Chapter 5 extends the analysis in chapter 4 to consider the dynamics of load (due to deleterious mutation accumulation) and extinction risk in a metapopulation. We explore the role of gene flow, selection, and dominance on load and extinction risk and further pinpoint critical thresholds required for metapopulation persistence. Overall this research contributes to our understanding of ecological and evolutionary mechanisms that shape species’ persistence in fragmented landscapes, a crucial foundation for successful conservation efforts and biodiversity management.}, author = {Olusanya, Oluwafunmilola O}, issn = {2663 - 337X}, pages = {183}, publisher = {Institute of Science and Technology Austria}, title = {{Local adaptation, genetic load and extinction in metapopulations}}, doi = {10.15479/at:ista:14711}, year = {2024}, } @inproceedings{14888, abstract = {A face in a curve arrangement is called popular if it is bounded by the same curve multiple times. Motivated by the automatic generation of curved nonogram puzzles, we investigate possibilities to eliminate the popular faces in an arrangement by inserting a single additional curve. This turns out to be NP-hard; however, it becomes tractable when the number of popular faces is small: We present a probabilistic FPT-approach in the number of popular faces.}, author = {De Nooijer, Phoebe and Terziadis, Soeren and Weinberger, Alexandra and Masárová, Zuzana and Mchedlidze, Tamara and Löffler, Maarten and Rote, Günter}, booktitle = {31st International Symposium on Graph Drawing and Network Visualization}, isbn = {9783031492747}, issn = {1611-3349}, location = {Isola delle Femmine, Palermo, Italy}, pages = {18--33}, publisher = {Springer Nature}, title = {{Removing popular faces in curve arrangements}}, doi = {10.1007/978-3-031-49275-4_2}, volume = {14466}, year = {2024}, } @article{14887, abstract = {Episodic memories are encoded by experience-activated neuronal ensembles that remain necessary and sufficient for recall. However, the temporal evolution of memory engrams after initial encoding is unclear. In this study, we employed computational and experimental approaches to examine how the neural composition and selectivity of engrams change with memory consolidation. Our spiking neural network model yielded testable predictions: memories transition from unselective to selective as neurons drop out of and drop into engrams; inhibitory activity during recall is essential for memory selectivity; and inhibitory synaptic plasticity during memory consolidation is critical for engrams to become selective. Using activity-dependent labeling, longitudinal calcium imaging and a combination of optogenetic and chemogenetic manipulations in mouse dentate gyrus, we conducted contextual fear conditioning experiments that supported our model’s predictions. Our results reveal that memory engrams are dynamic and that changes in engram composition mediated by inhibitory plasticity are crucial for the emergence of memory selectivity.}, author = {Feitosa Tomé, Douglas and Zhang, Ying and Aida, Tomomi and Mosto, Olivia and Lu, Yifeng and Chen, Mandy and Sadeh, Sadra and Roy, Dheeraj S. and Clopath, Claudia}, issn = {1546-1726}, journal = {Nature Neuroscience}, publisher = {Springer Nature}, title = {{Dynamic and selective engrams emerge with memory consolidation}}, doi = {10.1038/s41593-023-01551-w}, year = {2024}, } @article{14251, abstract = {The phytohormone auxin and its directional transport through tissues play a fundamental role in development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In Arabidopsis root epidermis, bryophytic PINs show no defined polarity. Pharmacological interference revealed a strong cytoskeleton dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal a divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and a co-evolution of PIN sequence-based and cell-based polarity mechanisms.}, author = {Tang, Han and Lu, KJ and Zhang, Y and Cheng, YL and Tu, SL and Friml, Jiří}, issn = {2590-3462}, journal = {Plant Communications}, number = {1}, publisher = {Elsevier}, title = {{Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution}}, doi = {10.1016/j.xplc.2023.100669}, volume = {5}, year = {2024}, } @article{14886, abstract = {It is a basic principle that an effect cannot come before the cause. Dispersive relations that follow from this fundamental fact have proven to be an indispensable tool in physics and engineering. They are most powerful in the domain of linear response where they are known as Kramers-Kronig relations. However, when it comes to nonlinear phenomena the implications of causality are much less explored, apart from several notable exceptions. Here in this paper we demonstrate how to apply the dispersive formalism to analyze the ultrafast nonlinear response in the context of the paradigmatic nonlinear Kerr effect. We find that the requirement of causality introduces a noticeable effect even under assumption that Kerr effect is mediated by quasi-instantaneous off-resonant electronic hyperpolarizability. We confirm this by experimentally measuring the time-resolved Kerr dynamics in GaAs by means of a hybrid pump-probe Mach-Zehnder interferometer and demonstrate the presence of an intrinsic lagging between amplitude and phase responses as predicted by dispersive analysis. Our results describe a general property of the time-resolved nonlinear processes thereby highlighting the importance of accounting for dispersive effects in the nonlinear optical processes involving ultrashort pulses.}, author = {Lorenc, Dusan and Alpichshev, Zhanybek}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Dispersive effects in ultrafast nonlinear phenomena: The case of optical Kerr effect}}, doi = {10.1103/PhysRevResearch.6.013042}, volume = {6}, year = {2024}, } @phdthesis{14821, author = {Chiossi, Heloisa}, issn = {2663 - 337X}, pages = {89}, publisher = {Institute of Science and Technology Austria}, title = {{Adaptive hierarchical representations in the hippocampus}}, doi = {10.15479/at:ista:14821}, year = {2024}, } @article{14901, abstract = {Global services like navigation, communication, and Earth observation have increased dramatically in the 21st century due to advances in outer space industries. But as orbits become increasingly crowded with both satellites and inevitable space debris pollution, continued operations become endangered by the heightened risks of debris collisions in orbit. Kessler Syndrome is the term for when a critical threshold of orbiting debris triggers a runaway positive feedback loop of debris collisions, creating debris congestion that can render orbits unusable. As this potential tipping point becomes more widely recognized, there have been renewed calls for debris mitigation and removal. Here, we combine complex systems and social-ecological systems approaches to study how these efforts may affect space debris accumulation and the likelihood of reaching Kessler Syndrome. Specifically, we model how debris levels are affected by future launch rates, cleanup activities, and collisions between extant debris. We contextualize and interpret our dynamic model within a discussion of existing space debris governance and other social, economic, and geopolitical factors that may influence effective collective management of the orbital commons. In line with previous studies, our model finds that debris congestion may be reached in less than 200 years, though a holistic management strategy combining removal and mitigation actions can avoid such outcomes while continuing space activities. Moreover, although active debris removal may be particularly effective, the current lack of market and governance support may impede its implementation. Research into these critical dynamics and the multi-faceted variables that influence debris outcomes can support policymakers in curating impactful governance strategies and realistic transition pathways to sustaining debris-free orbits. Overall, our study is useful for communicating about space debris sustainability in policy and education settings by providing an exploration of policy portfolio options supported by a simple and clear social-ecological modeling approach.}, author = {Nomura, Keiko and Rella, Simon and Merritt, Haily and Baltussen, Mathieu and Bird, Darcy and Tjuka, Annika and Falk, Dan}, issn = {1875-0281}, journal = {International Journal of the Commons}, keywords = {Sociology and Political Science}, number = {1}, publisher = {Ubiquity Press}, title = {{Tipping points of space debris in low earth orbit}}, doi = {10.5334/ijc.1275}, volume = {18}, year = {2024}, }