Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




184 Publications

2020 | Journal Article | IST-REx-ID: 8338 | OA
Akopyan, A., Bobenko, A. I., Schief, W. K., & Techter, J. (2020). On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00240-w
View | DOI | Download Preprint (ext.) | arXiv
 
2020 | Conference Paper | IST-REx-ID: 8703 | OA
Osang, G. F., Rouxel-Labbé, M., & Teillaud, M. (2020). Generalizing CGAL periodic Delaunay triangulations. In 28th Annual European Symposium on Algorithms (Vol. 173). Virtual, Online; Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.75
View | Files available | DOI
 
2019 | Journal Article | IST-REx-ID: 6050 | OA
Akopyan, A., & Fedorov, R. (2019). Two circles and only a straightedge. Proceedings of the American Mathematical Society. AMS. https://doi.org/10.1090/proc/14240
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Journal Article | IST-REx-ID: 5678 | OA
Edelsbrunner, H., & Nikitenko, A. (2019). Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. Springer. https://doi.org/10.1007/s00454-018-0049-2
View | Files available | DOI | arXiv
 
2019 | Journal Article | IST-REx-ID: 6515 | OA
Dyer, R., Vegter, G., & Wintraecken, M. (2019). Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . Carleton University. https://doi.org/10.20382/jocg.v10i1a9
View | Files available | DOI
 
2019 | Conference Paper | IST-REx-ID: 6628 | OA
Vegter, G., & Wintraecken, M. (2019). The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In The 31st Canadian Conference in Computational Geometry (pp. 275–279). Edmonton, Canada.
View | Files available
 
2019 | Journal Article | IST-REx-ID: 6634 | OA
Akopyan, A., Hubard, A., & Karasev, R. (2019). Lower and upper bounds for the waists of different spaces. Topological Methods in Nonlinear Analysis. Akademicka Platforma Czasopism. https://doi.org/10.12775/TMNA.2019.008
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6648 | OA
Edelsbrunner, H., Virk, Z., & Wagner, H. (2019). Topological data analysis in information space. In 35th International Symposium on Computational Geometry (Vol. 129, p. 31:1-31:14). Portland, OR, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.SOCG.2019.31
View | Files available | DOI | arXiv
 
2019 | Journal Article | IST-REx-ID: 6671 | OA
Boissonnat, J.-D., Lieutier, A., & Wintraecken, M. (2019). The reach, metric distortion, geodesic convexity and the variation of tangent spaces. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-019-00029-8
View | Files available | DOI
 
2019 | Journal Article | IST-REx-ID: 6756 | OA
Pranav, P., Adler, R. J., Buchert, T., Edelsbrunner, H., Jones, B. J. T., Schwartzman, A., … Van De Weygaert, R. (2019). Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astronomy and Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834916
View | Files available | DOI | arXiv
 
2019 | Journal Article | IST-REx-ID: 6793 | OA
Akopyan, A., & Izmestiev, I. (2019). The Regge symmetry, confocal conics, and the Schläfli formula. Bulletin of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/blms.12276
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Journal Article | IST-REx-ID: 6828 | OA
Brown, A. (2019). Arakawa-Suzuki functors for Whittaker modules. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2019.07.027
View | DOI | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 7216
Osang, G. F., Cook, J., Fabrikant, A., & Gruteser, M. (2019). LiveTraVeL: Real-time matching of transit vehicle trajectories to transit routes at scale. In 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: IEEE. https://doi.org/10.1109/ITSC.2019.8917514
View | DOI
 
2019 | Preprint | IST-REx-ID: 7950 | OA
Biniaz, A., Jain, K., Lubiw, A., Masárová, Z., Miltzow, T., Mondal, D., … Turcotte, A. (n.d.). Token swapping on trees. arXiv.
View | Files available | Download Preprint (ext.) | arXiv
 
2019 | Conference Paper | IST-REx-ID: 6989 | OA
Aichholzer, O., Akitaya, H. A., Cheung, K. C., Demaine, E. D., Demaine, M. L., Fekete, S. P., … Schmidt, C. (2019). Folding polyominoes with holes into a cube. In Proceedings of the 31st Canadian Conference on Computational Geometry (pp. 164–170). Edmonton, Canada: Canadian Conference on Computational Geometry.
View | Files available | Download Published Version (ext.) | arXiv
 
2019 | Journal Article | IST-REx-ID: 6608 | OA
Edelsbrunner, H., & Ölsböck, K. (2019). Holes and dependences in an ordered complex. Computer Aided Geometric Design. Elsevier. https://doi.org/10.1016/j.cagd.2019.06.003
View | Files available | DOI
 
2018 | Journal Article | IST-REx-ID: 106 | OA
Akopyan, A., & Petrunin, A. (2018). Long geodesics on convex surfaces. Mathematical Intelligencer. Springer. https://doi.org/10.1007/s00283-018-9795-5
View | DOI | Download Preprint (ext.) | arXiv
 
2018 | Journal Article | IST-REx-ID: 1064 | OA
Akopyan, A., Balitskiy, A., & Grigorev, M. (2018). On the circle covering theorem by A.W. Goodman and R.E. Goodman. Discrete & Computational Geometry. Springer. https://doi.org/10.1007/s00454-017-9883-x
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 187 | OA
Edelsbrunner, H., & Osang, G. F. (2018). The multi-cover persistence of Euclidean balls (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.34
View | Files available | DOI
 
2018 | Conference Paper | IST-REx-ID: 188 | OA
Edelsbrunner, H., Virk, Z., & Wagner, H. (2018). Smallest enclosing spheres and Chernoff points in Bregman geometry (Vol. 99, p. 35:1-35:13). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.35
View | Files available | DOI
 

Search

Filter Publications