TY - JOUR AB - Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4. AU - Edelsbrunner, Herbert AU - Nikitenko, Anton AU - Reitzner, Matthias ID - 718 IS - 3 JF - Advances in Applied Probability SN - 00018678 TI - Expected sizes of poisson Delaunay mosaics and their discrete Morse functions VL - 49 ER - TY - THES AB - The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's. AU - Nikitenko, Anton ID - 6287 SN - 2663-337X TI - Discrete Morse theory for random complexes ER - TY - JOUR AB - Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology. AU - Bauer, Ulrich AU - Kerber, Michael AU - Reininghaus, Jan AU - Wagner, Hubert ID - 1433 JF - Journal of Symbolic Computation SN - 07477171 TI - Phat - Persistent homology algorithms toolbox VL - 78 ER - TY - JOUR AB - In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform. AU - Akopyan, Arseniy AU - Bárány, Imre AU - Robins, Sinai ID - 1180 JF - Advances in Mathematics SN - 00018708 TI - Algebraic vertices of non-convex polyhedra VL - 308 ER - TY - JOUR AB - We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions. AU - Edelsbrunner, Herbert AU - Glazyrin, Alexey AU - Musin, Oleg AU - Nikitenko, Anton ID - 1173 IS - 5 JF - Combinatorica SN - 02099683 TI - The Voronoi functional is maximized by the Delaunay triangulation in the plane VL - 37 ER - TY - JOUR AB - Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field. AU - Bauer, Ulrich AU - Edelsbrunner, Herbert ID - 1072 IS - 5 JF - Transactions of the American Mathematical Society TI - The Morse theory of Čech and delaunay complexes VL - 369 ER - TY - JOUR AB - We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs. AU - Chatterjee, Krishnendu AU - Osang, Georg F ID - 1065 JF - Information Processing Letters SN - 00200190 TI - Pushdown reachability with constant treewidth VL - 122 ER - TY - JOUR AB - We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys. AU - Pranav, Pratyush AU - Edelsbrunner, Herbert AU - Van De Weygaert, Rien AU - Vegter, Gert AU - Kerber, Michael AU - Jones, Bernard AU - Wintraecken, Mathijs ID - 1022 IS - 4 JF - Monthly Notices of the Royal Astronomical Society SN - 00358711 TI - The topology of the cosmic web in terms of persistent Betti numbers VL - 465 ER - TY - JOUR AB - We generalize Brazas’ topology on the fundamental group to the whole universal path space X˜ i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action. AU - Virk, Ziga AU - Zastrow, Andreas ID - 737 JF - Topology and its Applications SN - 01668641 TI - A new topology on the universal path space VL - 231 ER - TY - CONF AB - Recent research has examined how to study the topological features of a continuous self-map by means of the persistence of the eigenspaces, for given eigenvalues, of the endomorphism induced in homology over a field. This raised the question of how to select dynamically significant eigenvalues. The present paper aims to answer this question, giving an algorithm that computes the persistence of eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces as direct sums of “finite” and “singular” subspaces. AU - Ethier, Marc AU - Jablonski, Grzegorz AU - Mrozek, Marian ID - 836 SN - 978-331956930-7 T2 - Special Sessions in Applications of Computer Algebra TI - Finding eigenvalues of self-maps with the Kronecker canonical form VL - 198 ER - TY - CONF AB - We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams. AU - Heiss, Teresa AU - Wagner, Hubert ED - Felsberg, Michael ED - Heyden, Anders ED - Krüger, Norbert ID - 833 SN - 03029743 TI - Streaming algorithm for Euler characteristic curves of multidimensional images VL - 10424 ER - TY - CHAP AB - The advent of high-throughput technologies and the concurrent advances in information sciences have led to a data revolution in biology. This revolution is most significant in molecular biology, with an increase in the number and scale of the “omics” projects over the last decade. Genomics projects, for example, have produced impressive advances in our knowledge of the information concealed into genomes, from the many genes that encode for the proteins that are responsible for most if not all cellular functions, to the noncoding regions that are now known to provide regulatory functions. Proteomics initiatives help to decipher the role of post-translation modifications on the protein structures and provide maps of protein-protein interactions, while functional genomics is the field that attempts to make use of the data produced by these projects to understand protein functions. The biggest challenge today is to assimilate the wealth of information provided by these initiatives into a conceptual framework that will help us decipher life. For example, the current views of the relationship between protein structure and function remain fragmented. We know of their sequences, more and more about their structures, we have information on their biological activities, but we have difficulties connecting this dotted line into an informed whole. We lack the experimental and computational tools for directly studying protein structure, function, and dynamics at the molecular and supra-molecular levels. In this chapter, we review some of the current developments in building the computational tools that are needed, focusing on the role that geometry and topology play in these efforts. One of our goals is to raise the general awareness about the importance of geometric methods in elucidating the mysterious foundations of our very existence. Another goal is the broadening of what we consider a geometric algorithm. There is plenty of valuable no-man’s-land between combinatorial and numerical algorithms, and it seems opportune to explore this land with a computational-geometric frame of mind. AU - Edelsbrunner, Herbert AU - Koehl, Patrice ED - Toth, Csaba ED - O'Rourke, Joseph ED - Goodman, Jacob ID - 84 T2 - Handbook of Discrete and Computational Geometry, Third Edition TI - Computational topology for structural molecular biology ER - TY - JOUR AB - We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor &#xbd; cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape. AU - Akopyan, Arseniy AU - Vysotsky, Vladislav ID - 909 IS - 7 JF - The American Mathematical Monthly SN - 00029890 TI - On the lengths of curves passing through boundary points of a planar convex shape VL - 124 ER - TY - JOUR AB - We study the usefulness of two most prominent publicly available rigorous ODE integrators: one provided by the CAPD group (capd.ii.uj.edu.pl), the other based on the COSY Infinity project (cosyinfinity.org). Both integrators are capable of handling entire sets of initial conditions and provide tight rigorous outer enclosures of the images under a time-T map. We conduct extensive benchmark computations using the well-known Lorenz system, and compare the computation time against the final accuracy achieved. We also discuss the effect of a few technical parameters, such as the order of the numerical integration method, the value of T, and the phase space resolution. We conclude that COSY may provide more precise results due to its ability of avoiding the variable dependency problem. However, the overall cost of computations conducted using CAPD is typically lower, especially when intervals of parameters are involved. Moreover, access to COSY is limited (registration required) and the rigorous ODE integrators are not publicly available, while CAPD is an open source free software project. Therefore, we recommend the latter integrator for this kind of computations. Nevertheless, proper choice of the various integration parameters turns out to be of even greater importance than the choice of the integrator itself. © 2016 IMACS. Published by Elsevier B.V. All rights reserved. AU - Miyaji, Tomoyuki AU - Pilarczyk, Pawel AU - Gameiro, Marcio AU - Kokubu, Hiroshi AU - Mischaikow, Konstantin ID - 1149 JF - Applied Numerical Mathematics TI - A study of rigorous ODE integrators for multi scale set oriented computations VL - 107 ER - TY - JOUR AB - A framework fo r extracting features in 2D transient flows, based on the acceleration field to ensure Galilean invariance is proposed in this paper. The minima of the acceleration magnitude (a superset of acceleration zeros) are extracted and discriminated into vortices and saddle points, based on the spectral properties of the velocity Jacobian. The extraction of topological features is performed with purely combinatorial algorithms from discrete computational topology. The feature points are prioritized with persistence, as a physically meaningful importance measure. These feature points are tracked in time with a robust algorithm for tracking features. Thus, a space-time hierarchy of the minima is built and vortex merging events are detected. We apply the acceleration feature extraction strategy to three two-dimensional shear flows: (1) an incompressible periodic cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly compressible planar jet. The vortex-like acceleration feature points are shown to be well aligned with acceleration zeros, maxima of the vorticity magnitude, minima of the pressure field and minima of λ2. AU - Kasten, Jens AU - Reininghaus, Jan AU - Hotz, Ingrid AU - Hege, Hans AU - Noack, Bernd AU - Daviller, Guillaume AU - Morzyński, Marek ID - 1216 IS - 1 JF - Archives of Mechanics TI - Acceleration feature points of unsteady shear flows VL - 68 ER - TY - JOUR AB - We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for N=6, 7 and 8 circles. Surprisingly, for the case N=7 there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs. AU - Musin, Oleg AU - Nikitenko, Anton ID - 1222 IS - 1 JF - Discrete & Computational Geometry TI - Optimal packings of congruent circles on a square flat torus VL - 55 ER - TY - CONF AB - Bitmap images of arbitrary dimension may be formally perceived as unions of m-dimensional boxes aligned with respect to a rectangular grid in ℝm. Cohomology and homology groups are well known topological invariants of such sets. Cohomological operations, such as the cup product, provide higher-order algebraic topological invariants, especially important for digital images of dimension higher than 3. If such an operation is determined at the level of simplicial chains [see e.g. González-Díaz, Real, Homology, Homotopy Appl, 2003, 83-93], then it is effectively computable. However, decomposing a cubical complex into a simplicial one deleteriously affects the efficiency of such an approach. In order to avoid this overhead, a direct cubical approach was applied in [Pilarczyk, Real, Adv. Comput. Math., 2015, 253-275] for the cup product in cohomology, and implemented in the ChainCon software package [http://www.pawelpilarczyk.com/chaincon/]. We establish a formula for the Steenrod square operations [see Steenrod, Annals of Mathematics. Second Series, 1947, 290-320] directly at the level of cubical chains, and we prove the correctness of this formula. An implementation of this formula is programmed in C++ within the ChainCon software framework. We provide a few examples and discuss the effectiveness of this approach. One specific application follows from the fact that Steenrod squares yield tests for the topological extension problem: Can a given map A → Sd to a sphere Sd be extended to a given super-complex X of A? In particular, the ROB-SAT problem, which is to decide for a given function f: X → ℝm and a value r > 0 whether every g: X → ℝm with ∥g - f ∥∞ ≤ r has a root, reduces to the extension problem. AU - Krcál, Marek AU - Pilarczyk, Pawel ID - 1237 TI - Computation of cubical Steenrod squares VL - 9667 ER - TY - JOUR AB - We study the homomorphism induced in homology by a closed correspondence between topological spaces, using projections from the graph of the correspondence to its domain and codomain. We provide assumptions under which the homomorphism induced by an outer approximation of a continuous map coincides with the homomorphism induced in homology by the map. In contrast to more classical results we do not require that the projection to the domain have acyclic preimages. Moreover, we show that it is possible to retrieve correct homological information from a correspondence even if some data is missing or perturbed. Finally, we describe an application to combinatorial maps that are either outer approximations of continuous maps or reconstructions of such maps from a finite set of data points. AU - Harker, Shaun AU - Kokubu, Hiroshi AU - Mischaikow, Konstantin AU - Pilarczyk, Pawel ID - 1252 IS - 4 JF - Proceedings of the American Mathematical Society SN - 1088-6826 TI - Inducing a map on homology from a correspondence VL - 144 ER - TY - JOUR AB - We use rigorous numerical techniques to compute a lower bound for the exponent of expansivity outside a neighborhood of the critical point for thousands of intervals of parameter values in the quadratic family. We first compute a radius of the critical neighborhood outside which the map is uniformly expanding. This radius is taken as small as possible, yet large enough for our numerical procedure to succeed in proving that the expansivity exponent outside this neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this expansivity exponent, valid for all the parameters in that interval. We illustrate and study the distribution of the radii and the expansivity exponents. The results of our computations are mathematically rigorous. The source code of the software and the results of the computations are made publicly available at http://www.pawelpilarczyk.com/quadratic/. AU - Golmakani, Ali AU - Luzzatto, Stefano AU - Pilarczyk, Pawel ID - 1254 IS - 2 JF - Experimental Mathematics TI - Uniform expansivity outside a critical neighborhood in the quadratic family VL - 25 ER - TY - JOUR AB - We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams. AU - Held, Martin AU - Huber, Stefan AU - Palfrader, Peter ID - 1272 IS - 5 JF - Computer-Aided Design and Applications TI - Generalized offsetting of planar structures using skeletons VL - 13 ER - TY - JOUR AB - Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls. AU - Edelsbrunner, Herbert AU - Iglesias Ham, Mabel ID - 1295 JF - Electronic Notes in Discrete Mathematics TI - Multiple covers with balls II: Weighted averages VL - 54 ER - TY - JOUR AB - We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds. AU - Durst, Sebastian AU - Kegel, Marc AU - Klukas, Mirko D ID - 1292 IS - 2 JF - Acta Mathematica Hungarica TI - Computing the Thurston–Bennequin invariant in open books VL - 150 ER - TY - JOUR AB - In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K. AU - Akopyan, Arseniy AU - Balitskiy, Alexey ID - 1330 IS - 2 JF - Israel Journal of Mathematics TI - Billiards in convex bodies with acute angles VL - 216 ER - TY - JOUR AB - We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. AU - Akopyan, Arseniy AU - Balitskiy, Alexey AU - Karasev, Roman AU - Sharipova, Anastasia ID - 1360 IS - 10 JF - Proceedings of the American Mathematical Society TI - Elementary approach to closed billiard trajectories in asymmetric normed spaces VL - 144 ER - TY - JOUR AB - The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. AU - Franek, Peter AU - Krcál, Marek ID - 1408 IS - 1 JF - Discrete & Computational Geometry TI - On computability and triviality of well groups VL - 56 ER - TY - JOUR AB - Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. AU - Dunaeva, Olga AU - Edelsbrunner, Herbert AU - Lukyanov, Anton AU - Machin, Michael AU - Malkova, Daria AU - Kuvaev, Roman AU - Kashin, Sergey ID - 1289 IS - 1 JF - Pattern Recognition Letters TI - The classification of endoscopy images with persistent homology VL - 83 ER - TY - JOUR AB - We study the discrepancy of jittered sampling sets: such a set P⊂ [0,1]d is generated for fixed m∈ℕ by partitioning [0,1]d into md axis aligned cubes of equal measure and placing a random point inside each of the N=md cubes. We prove that, for N sufficiently large, 1/10 d/N1/2+1/2d ≤EDN∗(P)≤ √d(log N) 1/2/N1/2+1/2d, where the upper bound with an unspecified constant Cd was proven earlier by Beck. Our proof makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling in N. Additional heuristics suggest that jittered sampling should be able to improve known bounds on the inverse of the star-discrepancy in the regime N≳dd. We also prove a partition principle showing that every partition of [0,1]d combined with a jittered sampling construction gives rise to a set whose expected squared L2-discrepancy is smaller than that of purely random points. AU - Pausinger, Florian AU - Steinerberger, Stefan ID - 1617 JF - Journal of Complexity TI - On the discrepancy of jittered sampling VL - 33 ER - TY - CONF AB - Although the concept of functional plane for naive plane is studied and reported in the literature in great detail, no similar study is yet found for naive sphere. This article exposes the first study in this line, opening up further prospects of analyzing the topological properties of sphere in the discrete space. We show that each quadraginta octant Q of a naive sphere forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as the functional plane of Q, and hence gives rise to merely mono-jumps during back projection. The other two coordinate planes serve as para-functional and dia-functional planes for Q, as the former is ‘mono-jumping’ but not bijective, whereas the latter holds neither of the two. Owing to this, the quadraginta octants form symmetry groups and subgroups with equivalent jump conditions. We also show a potential application in generating a special class of discrete 3D circles based on back projection and jump bridging by Steiner voxels. A circle in this class possesses 4-symmetry, uniqueness, and bounded distance from the underlying real sphere and real plane. AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5806 SN - 0302-9743 T2 - Discrete Geometry for Computer Imagery TI - On functionality of quadraginta octants of naive sphere with application to circle drawing VL - 9647 ER - TY - CHAP AB - Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy. AU - Sen, Nabhasmita AU - Biswas, Ranita AU - Bhowmick, Partha ID - 5805 SN - 0302-9743 T2 - Computational Topology in Image Context TI - On some local topological properties of naive discrete sphere VL - 9667 ER - TY - CHAP AB - A discrete spherical circle is a topologically well-connected 3D circle in the integer space, which belongs to a discrete sphere as well as a discrete plane. It is one of the most important 3D geometric primitives, but has not possibly yet been studied up to its merit. This paper is a maiden exposition of some of its elementary properties, which indicates a sense of its profound theoretical prospects in the framework of digital geometry. We have shown how different types of discretization can lead to forbidden and admissible classes, when one attempts to define the discretization of a spherical circle in terms of intersection between a discrete sphere and a discrete plane. Several fundamental theoretical results have been presented, the algorithm for construction of discrete spherical circles has been discussed, and some test results have been furnished to demonstrate its practicality and usefulness. AU - Biswas, Ranita AU - Bhowmick, Partha AU - Brimkov, Valentin E. ID - 5809 SN - 0302-9743 T2 - Combinatorial image analysis TI - On the connectivity and smoothness of discrete spherical circles VL - 9448 ER - TY - JOUR AB - We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in Rn, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball. AU - Edelsbrunner, Herbert AU - Pausinger, Florian ID - 1662 JF - Advances in Mathematics TI - Approximation and convergence of the intrinsic volume VL - 287 ER - TY - CONF AB - We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as real-world data. AU - Kwitt, Roland AU - Huber, Stefan AU - Niethammer, Marc AU - Lin, Weili AU - Bauer, Ulrich ID - 1424 TI - Statistical topological data analysis-A kernel perspective VL - 28 ER - TY - CONF AB - Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes. AU - Reininghaus, Jan AU - Huber, Stefan AU - Bauer, Ulrich AU - Kwitt, Roland ID - 1483 TI - A stable multi-scale kernel for topological machine learning ER - TY - CONF AB - Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations. AU - Edelsbrunner, Herbert AU - Iglesias Ham, Mabel AU - Kurlin, Vitaliy ID - 1495 T2 - Proceedings of the 27th Canadian Conference on Computational Geometry TI - Relaxed disk packing VL - 2015-August ER - TY - CONF AB - The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f from K to R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within L_infty distance r from f for a given r > 0. The main drawback of the approach is that the computability of well groups was shown only when dim K = n or n = 1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f, f' from K to R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status. AU - Franek, Peter AU - Krcál, Marek ID - 1510 TI - On computability and triviality of well groups VL - 34 ER - TY - CHAP AB - The Heat Kernel Signature (HKS) is a scalar quantity which is derived from the heat kernel of a given shape. Due to its robustness, isometry invariance, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some Riemannian manifold and thereby apply the HKS to visualize and analyze the given tensor data. In this paper, we propose a generalization of this approach that enables the treatment of indefinite tensor fields, like the stress tensor, by interpreting them as a generator of a positive definite tensor field. To investigate the usefulness of this approach we consider the stress tensor from the two-point-load model example and from a mechanical work piece. AU - Zobel, Valentin AU - Reininghaus, Jan AU - Hotz, Ingrid ED - Hotz, Ingrid ED - Schultz, Thomas ID - 1531 SN - 978-3-319-15089-5 T2 - Visualization and Processing of Higher Order Descriptors for Multi-Valued Data TI - Visualizing symmetric indefinite 2D tensor fields using The Heat Kernel Signature VL - 40 ER - TY - JOUR AB - We show that incorporating spatial dispersal of individuals into a simple vaccination epidemic model may give rise to a model that exhibits rich dynamical behavior. Using an SIVS (susceptible-infected-vaccinated-susceptible) model as a basis, we describe the spread of an infectious disease in a population split into two regions. In each subpopulation, both forward and backward bifurcations can occur. This implies that for disconnected regions the two-patch system may admit several steady states. We consider traveling between the regions and investigate the impact of spatial dispersal of individuals on the model dynamics. We establish conditions for the existence of multiple nontrivial steady states in the system, and we study the structure of the equilibria. The mathematical analysis reveals an unusually rich dynamical behavior, not normally found in the simple epidemic models. In addition to the disease-free equilibrium, eight endemic equilibria emerge from backward transcritical and saddle-node bifurcation points, forming an interesting bifurcation diagram. Stability of steady states, their bifurcations, and the global dynamics are investigated with analytical tools, numerical simulations, and rigorous set-oriented numerical computations. AU - Knipl, Diána AU - Pilarczyk, Pawel AU - Röst, Gergely ID - 1555 IS - 2 JF - SIAM Journal on Applied Dynamical Systems TI - Rich bifurcation structure in a two patch vaccination model VL - 14 ER - TY - CONF AB - Aiming at the automatic diagnosis of tumors from narrow band imaging (NBI) magnifying endoscopy (ME) images of the stomach, we combine methods from image processing, computational topology, and machine learning to classify patterns into normal, tubular, vessel. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions. AU - Dunaeva, Olga AU - Edelsbrunner, Herbert AU - Lukyanov, Anton AU - Machin, Michael AU - Malkova, Daria ID - 1568 T2 - Proceedings - 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing TI - The classification of endoscopy images with persistent homology ER - TY - CONF AB - My personal journey to the fascinating world of geometric forms started more than 30 years ago with the invention of alpha shapes in the plane. It took about 10 years before we generalized the concept to higher dimensions, we produced working software with a graphics interface for the three-dimensional case. At the same time, we added homology to the computations. Needless to say that this foreshadowed the inception of persistent homology, because it suggested the study of filtrations to capture the scale of a shape or data set. Importantly, this method has fast algorithms. The arguably most useful result on persistent homology is the stability of its diagrams under perturbations. AU - Edelsbrunner, Herbert ID - 1567 T2 - 23rd International Symposium TI - Shape, homology, persistence, and stability VL - 9411 ER - TY - JOUR AB - For a given self-map $f$ of $M$, a closed smooth connected and simply-connected manifold of dimension $m\geq 4$, we provide an algorithm for estimating the values of the topological invariant $D^m_r[f]$, which equals the minimal number of $r$-periodic points in the smooth homotopy class of $f$. Our results are based on the combinatorial scheme for computing $D^m_r[f]$ introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63-84]. An open-source implementation of the algorithm programmed in C++ is publicly available at {\tt http://www.pawelpilarczyk.com/combtop/}. AU - Graff, Grzegorz AU - Pilarczyk, Pawel ID - 1563 IS - 1 JF - Topological Methods in Nonlinear Analysis TI - An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds VL - 45 ER - TY - JOUR AB - We prove that the dual of the digital Voronoi diagram constructed by flooding the plane from the data points gives a geometrically and topologically correct dual triangulation. This provides the proof of correctness for recently developed GPU algorithms that outperform traditional CPU algorithms for constructing two-dimensional Delaunay triangulations. AU - Cao, Thanhtung AU - Edelsbrunner, Herbert AU - Tan, Tiowseng ID - 1578 IS - 7 JF - Computational Geometry TI - Triangulations from topologically correct digital Voronoi diagrams VL - 48 ER - TY - JOUR AB - We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan AU - Kaaser, Dominik AU - Palfrader, Peter ID - 1584 IS - 5 JF - Computational Geometry: Theory and Applications TI - Reprint of: Weighted straight skeletons in the plane VL - 48 ER - TY - JOUR AB - We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan AU - Kaaser, Dominik AU - Palfrader, Peter ID - 1582 IS - 2 JF - Computational Geometry: Theory and Applications TI - Weighted straight skeletons in the plane VL - 48 ER - TY - JOUR AB - We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlogn) time and O(n) space, where n denotes the number of vertices of the polygon. AU - Biedl, Therese AU - Held, Martin AU - Huber, Stefan AU - Kaaser, Dominik AU - Palfrader, Peter ID - 1583 IS - 2 JF - Information Processing Letters TI - A simple algorithm for computing positively weighted straight skeletons of monotone polygons VL - 115 ER - TY - CHAP AB - The straight skeleton of a polygon is the geometric graph obtained by tracing the vertices during a mitered offsetting process. It is known that the straight skeleton of a simple polygon is a tree, and one can naturally derive directions on the edges of the tree from the propagation of the shrinking process. In this paper, we ask the reverse question: Given a tree with directed edges, can it be the straight skeleton of a polygon? And if so, can we find a suitable simple polygon? We answer these questions for all directed trees where the order of edges around each node is fixed. AU - Aichholzer, Oswin AU - Biedl, Therese AU - Hackl, Thomas AU - Held, Martin AU - Huber, Stefan AU - Palfrader, Peter AU - Vogtenhuber, Birgit ID - 1590 SN - 978-3-319-27260-3 T2 - Graph Drawing and Network Visualization TI - Representing directed trees as straight skeletons VL - 9411 ER - TY - JOUR AB - We study the problem of robust satisfiability of systems of nonlinear equations, namely, whether for a given continuous function f:K→ ℝn on a finite simplicial complex K and α > 0, it holds that each function g: K → ℝn such that ||g - f || ∞ < α, has a root in K. Via a reduction to the extension problem of maps into a sphere, we particularly show that this problem is decidable in polynomial time for every fixed n, assuming dimK ≤ 2n - 3. This is a substantial extension of previous computational applications of topological degree and related concepts in numerical and interval analysis. Via a reverse reduction, we prove that the problem is undecidable when dim K > 2n - 2, where the threshold comes from the stable range in homotopy theory. For the lucidity of our exposition, we focus on the setting when f is simplexwise linear. Such functions can approximate general continuous functions, and thus we get approximation schemes and undecidability of the robust satisfiability in other possible settings. AU - Franek, Peter AU - Krcál, Marek ID - 1682 IS - 4 JF - Journal of the ACM TI - Robust satisfiability of systems of equations VL - 62 ER - TY - JOUR AB - We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞. AU - Akopyan, Arseniy AU - Plakhov, Alexander ID - 1710 IS - 4 JF - Society for Industrial and Applied Mathematics TI - Minimal resistance of curves under the single impact assumption VL - 47 ER - TY - JOUR AB - We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory. AU - Akopyan, Arseniy AU - Pirogov, Sergey AU - Rybko, Aleksandr ID - 1828 IS - 1 JF - Journal of Statistical Physics TI - Invariant measures of genetic recombination process VL - 160 ER - TY - JOUR AB - We numerically investigate the distribution of extrema of 'chaotic' Laplacian eigenfunctions on two-dimensional manifolds. Our contribution is two-fold: (a) we count extrema on grid graphs with a small number of randomly added edges and show the behavior to coincide with the 1957 prediction of Longuet-Higgins for the continuous case and (b) we compute the regularity of their spatial distribution using discrepancy, which is a classical measure from the theory of Monte Carlo integration. The first part suggests that grid graphs with randomly added edges should behave like two-dimensional surfaces with ergodic geodesic flow; in the second part we show that the extrema are more regularly distributed in space than the grid Z2. AU - Pausinger, Florian AU - Steinerberger, Stefan ID - 1938 IS - 6 JF - Physics Letters, Section A TI - On the distribution of local extrema in quantum chaos VL - 379 ER - TY - JOUR AB - Considering a continuous self-map and the induced endomorphism on homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of representations, we define the persistence of the eigenspaces, effectively introducing a hierarchical organization of the map. The algorithm that computes this information for a finite sample is proved to be stable, and to give the correct answer for a sufficiently dense sample. Results computed with an implementation of the algorithm provide evidence of its practical utility. AU - Edelsbrunner, Herbert AU - Jablonski, Grzegorz AU - Mrozek, Marian ID - 2035 IS - 5 JF - Foundations of Computational Mathematics TI - The persistent homology of a self-map VL - 15 ER -