TY - CHAP AB - Saddle periodic orbits are an essential and stable part of the topological skeleton of a 3D vector field. Nevertheless, there is currently no efficient algorithm to robustly extract these features. In this chapter, we present a novel technique to extract saddle periodic orbits. Exploiting the analytic properties of such an orbit, we propose a scalar measure based on the finite-time Lyapunov exponent (FTLE) that indicates its presence. Using persistent homology, we can then extract the robust cycles of this field. These cycles thereby represent the saddle periodic orbits of the given vector field. We discuss the different existing FTLE approximation schemes regarding their applicability to this specific problem and propose an adapted version of FTLE called Normalized Velocity Separation. Finally, we evaluate our method using simple analytic vector field data. AU - Kasten, Jens AU - Reininghaus, Jan AU - Reich, Wieland AU - Scheuermann, Gerik ED - Bremer, Peer-Timo ED - Hotz, Ingrid ED - Pascucci, Valerio ED - Peikert, Ronald ID - 10893 SN - 1612-3786 T2 - Topological Methods in Data Analysis and Visualization III TI - Toward the extraction of saddle periodic orbits VL - 1 ER - TY - JOUR AB - Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques. AU - Huber, Stefan AU - Held, Martin AU - Meerwald, Peter AU - Kwitt, Roland ID - 1816 IS - 1 JF - International Journal of Computational Geometry and Applications TI - Topology-preserving watermarking of vector graphics VL - 24 ER - TY - JOUR AB - We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices. AU - Cibulka, Josef AU - Gao, Pu AU - Krcál, Marek AU - Valla, Tomáš AU - Valtr, Pavel ID - 1842 IS - 1 JF - Discrete & Computational Geometry TI - On the geometric ramsey number of outerplanar graphs VL - 53 ER - TY - JOUR AB - We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets. AU - Dolbilin, Nikolai AU - Edelsbrunner, Herbert AU - Glazyrin, Alexey AU - Musin, Oleg ID - 1876 IS - 3 JF - Moscow Mathematical Journal SN - 16093321 TI - Functionals on triangulations of delaunay sets VL - 14 ER - TY - JOUR AB - We propose an algorithm for the generalization of cartographic objects that can be used to represent maps on different scales. AU - Alexeev, V V AU - Bogaevskaya, V G AU - Preobrazhenskaya, M M AU - Ukhalov, A Y AU - Edelsbrunner, Herbert AU - Yakimova, Olga ID - 1929 IS - 6 JF - Journal of Mathematical Sciences SN - 1072-3374 TI - An algorithm for cartographic generalization that preserves global topology VL - 203 ER -