TY - JOUR
AB - We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.
AU - Biedl, Therese
AU - Huber, Stefan
AU - Palfrader, Peter
ID - 481
IS - 3-4
JF - International Journal of Computational Geometry and Applications
TI - Planar matchings for weighted straight skeletons
VL - 26
ER -
TY - JOUR
AB - Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.
AU - Austin, Kyle
AU - Virk, Ziga
ID - 521
JF - Topology and its Applications
SN - 01668641
TI - Higson compactification and dimension raising
VL - 215
ER -
TY - JOUR
AB - We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).
AU - Franek, Peter
AU - Krcál, Marek
ID - 568
IS - 2
JF - Homology, Homotopy and Applications
SN - 15320073
TI - Persistence of zero sets
VL - 19
ER -
TY - THES
AB - The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.
AU - Nikitenko, Anton
ID - 6287
TI - Discrete Morse theory for random complexes
ER -
TY - CONF
AB - We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory.
AU - Edelsbrunner, Herbert
AU - Wagner, Hubert
ID - 688
SN - 18688969
TI - Topological data analysis with Bregman divergences
VL - 77
ER -
TY - JOUR
AB - We answer a question of M. Gromov on the waist of the unit ball.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ID - 707
IS - 4
JF - Bulletin of the London Mathematical Society
SN - 00246093
TI - A tight estimate for the waist of the ball
VL - 49
ER -
TY - JOUR
AB - Phat is an open-source C. ++ library for the computation of persistent homology by matrix reduction, targeted towards developers of software for topological data analysis. We aim for a simple generic design that decouples algorithms from data structures without sacrificing efficiency or user-friendliness. We provide numerous different reduction strategies as well as data types to store and manipulate the boundary matrix. We compare the different combinations through extensive experimental evaluation and identify optimization techniques that work well in practical situations. We also compare our software with various other publicly available libraries for persistent homology.
AU - Bauer, Ulrich
AU - Kerber, Michael
AU - Reininghaus, Jan
AU - Wagner, Hubert
ID - 1433
JF - Journal of Symbolic Computation
SN - 07477171
TI - Phat - Persistent homology algorithms toolbox
VL - 78
ER -
TY - JOUR
AB - We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.
AU - Pranav, Pratyush
AU - Edelsbrunner, Herbert
AU - Van De Weygaert, Rien
AU - Vegter, Gert
AU - Kerber, Michael
AU - Jones, Bernard
AU - Wintraecken, Mathijs
ID - 1022
IS - 4
JF - Monthly Notices of the Royal Astronomical Society
SN - 00358711
TI - The topology of the cosmic web in terms of persistent Betti numbers
VL - 465
ER -
TY - JOUR
AB - We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs.
AU - Chatterjee, Krishnendu
AU - Osang, Georg F
ID - 1065
JF - Information Processing Letters
SN - 00200190
TI - Pushdown reachability with constant treewidth
VL - 122
ER -
TY - JOUR
AB - Given a finite set of points in Rn and a radius parameter, we study the Čech, Delaunay–Čech, Delaunay (or alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the Čech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.
AU - Bauer, Ulrich
AU - Edelsbrunner, Herbert
ID - 1072
IS - 5
JF - Transactions of the American Mathematical Society
TI - The Morse theory of Čech and delaunay complexes
VL - 369
ER -
TY - JOUR
AB - We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.
AU - Edelsbrunner, Herbert
AU - Glazyrin, Alexey
AU - Musin, Oleg
AU - Nikitenko, Anton
ID - 1173
IS - 5
JF - Combinatorica
SN - 02099683
TI - The Voronoi functional is maximized by the Delaunay triangulation in the plane
VL - 37
ER -
TY - JOUR
AB - In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.
AU - Akopyan, Arseniy
AU - Bárány, Imre
AU - Robins, Sinai
ID - 1180
JF - Advances in Mathematics
SN - 00018708
TI - Algebraic vertices of non-convex polyhedra
VL - 308
ER -
TY - JOUR
AB - We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor ½ cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.
AU - Akopyan, Arseniy
AU - Vysotsky, Vladislav
ID - 909
IS - 7
JF - The American Mathematical Monthly
SN - 00029890
TI - On the lengths of curves passing through boundary points of a planar convex shape
VL - 124
ER -
TY - JOUR
AB - We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.
AU - Held, Martin
AU - Huber, Stefan
AU - Palfrader, Peter
ID - 1272
IS - 5
JF - Computer-Aided Design and Applications
TI - Generalized offsetting of planar structures using skeletons
VL - 13
ER -
TY - JOUR
AB - Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.
AU - Dunaeva, Olga
AU - Edelsbrunner, Herbert
AU - Lukyanov, Anton
AU - Machin, Michael
AU - Malkova, Daria
AU - Kuvaev, Roman
AU - Kashin, Sergey
ID - 1289
IS - 1
JF - Pattern Recognition Letters
TI - The classification of endoscopy images with persistent homology
VL - 83
ER -
TY - JOUR
AB - We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.
AU - Durst, Sebastian
AU - Kegel, Marc
AU - Klukas, Mirko D
ID - 1292
IS - 2
JF - Acta Mathematica Hungarica
TI - Computing the Thurston–Bennequin invariant in open books
VL - 150
ER -
TY - JOUR
AB - Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls.
AU - Edelsbrunner, Herbert
AU - Iglesias Ham, Mabel
ID - 1295
JF - Electronic Notes in Discrete Mathematics
TI - Multiple covers with balls II: Weighted averages
VL - 54
ER -
TY - JOUR
AB - In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K.
AU - Akopyan, Arseniy
AU - Balitskiy, Alexey
ID - 1330
IS - 2
JF - Israel Journal of Mathematics
TI - Billiards in convex bodies with acute angles
VL - 216
ER -
TY - JOUR
AB - We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results.
AU - Akopyan, Arseniy
AU - Balitskiy, Alexey
AU - Karasev, Roman
AU - Sharipova, Anastasia
ID - 1360
IS - 10
JF - Proceedings of the American Mathematical Society
TI - Elementary approach to closed billiard trajectories in asymmetric normed spaces
VL - 144
ER -
TY - JOUR
AB - The concept of well group in a special but important case captures homological properties of the zero set of a continuous map (Formula presented.) on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within (Formula presented.) distance r from f for a given (Formula presented.). The main drawback of the approach is that the computability of well groups was shown only when (Formula presented.) or (Formula presented.). Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of (Formula presented.) by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and (Formula presented.), our approximation of the (Formula presented.)th well group is exact. For the second part, we find examples of maps (Formula presented.) with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.
AU - Franek, Peter
AU - Krcál, Marek
ID - 1408
IS - 1
JF - Discrete & Computational Geometry
TI - On computability and triviality of well groups
VL - 56
ER -