TY - CONF
AB - We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.
AU - Berberich, Eric
AU - Halperin, Dan
AU - Kerber, Michael
AU - Pogalnikova, Roza
ID - 3329
T2 - Proceedings of the twenty-seventh annual symposium on Computational geometry
TI - Deconstructing approximate offsets
ER -
TY - CONF
AB - We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.
AU - Kerber, Michael
AU - Sagraloff, Michael
ID - 3330
TI - Root refinement for real polynomials
ER -
TY - JOUR
AB - Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3.
AU - Kerber, Michael
AU - Sagraloff, Michael
ID - 3332
IS - 3
JF - Graphs and Combinatorics
TI - A note on the complexity of real algebraic hypersurfaces
VL - 27
ER -
TY - JOUR
AU - Edelsbrunner, Herbert
AU - Pach, János
AU - Ziegler, Günter
ID - 3334
IS - 1
JF - Discrete & Computational Geometry
TI - Letter from the new editors-in-chief
VL - 45
ER -
TY - CHAP
AB - We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.
AU - Van De Weygaert, Rien
AU - Vegter, Gert
AU - Edelsbrunner, Herbert
AU - Jones, Bernard
AU - Pranav, Pratyush
AU - Park, Changbom
AU - Hellwing, Wojciech
AU - Eldering, Bob
AU - Kruithof, Nico
AU - Bos, Patrick
AU - Hidding, Johan
AU - Feldbrugge, Job
AU - Ten Have, Eline
AU - Van Engelen, Matti
AU - Caroli, Manuel
AU - Teillaud, Monique
ED - Gavrilova, Marina
ED - Tan, Kenneth
ED - Mostafavi, Mir
ID - 3335
T2 - Transactions on Computational Science XIV
TI - Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web
VL - 6970
ER -
TY - CONF
AB - In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ>0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0,1), the running time is O(C(1-δ)ΓR(n)log n), where C(1-δ)Γ is the number of homology classes with persistence at least (1-δ)Γ, n is the total number of simplices, and R(n) is the complexity of computing the rank of an n x n matrix with O(n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O(C(1-δ)Γn2.376) algorithm, a O(C(1-δ)Γn2.28) Las-Vegas algorithm, or a O(C(1-δ)Γn2+ε) Monte-Carlo algorithm for an arbitrary ε>0.
AU - Chen, Chao
AU - Kerber, Michael
ID - 3367
TI - An output sensitive algorithm for persistent homology
ER -
TY - JOUR
AB - By definition, transverse intersections are stable under in- finitesimal perturbations. Using persistent homology, we ex- tend this notion to sizeable perturbations. Specifically, we assign to each homology class of the intersection its robust- ness, the magnitude of a perturbation necessary to kill it, and prove that robustness is stable. Among the applications of this result is a stable notion of robustness for fixed points of continuous mappings and a statement of stability for con- tours of smooth mappings.
AU - Edelsbrunner, Herbert
AU - Morozov, Dmitriy
AU - Patel, Amit
ID - 3377
IS - 3
JF - Foundations of Computational Mathematics
TI - Quantifying transversality by measuring the robustness of intersections
VL - 11
ER -
TY - JOUR
AB - The theory of intersection homology was developed to study the singularities of a topologically stratified space. This paper in- corporates this theory into the already developed framework of persistent homology. We demonstrate that persistent intersec- tion homology gives useful information about the relationship between an embedded stratified space and its singularities. We give, and prove the correctness of, an algorithm for the computa- tion of the persistent intersection homology groups of a filtered simplicial complex equipped with a stratification by subcom- plexes. We also derive, from Poincare ́ Duality, some structural results about persistent intersection homology.
AU - Bendich, Paul
AU - Harer, John
ID - 3378
IS - 3
JF - Foundations of Computational Mathematics
TI - Persistent intersection homology
VL - 11
ER -
TY - CONF
AB - In this paper, we establish a correspondence between the incremental algorithm for computing AT-models [8,9] and the one for computing persistent homology [6,14,15]. We also present a decremental algorithm for computing AT-models that allows to extend the persistence computation to a wider setting. Finally, we show how to combine incremental and decremental techniques for persistent homology computation.
AU - Gonzalez-Diaz, Rocio
AU - Ion, Adrian
AU - Jimenez, Maria Jose
AU - Poyatos, Regina
ID - 9648
SN - 03029743
T2 - Computer Analysis of Images and Patterns
TI - Incremental-decremental algorithm for computing AT-models and persistent homology
VL - 6854
ER -
TY - JOUR
AB - We bound the difference in length of two curves in terms of their total curvatures and the Fréchet distance. The bound is independent of the dimension of the ambient Euclidean space, it improves upon a bound by Cohen-Steiner and Edelsbrunner, and it generalizes a result by Fáry and Chakerian.
AU - Fasy, Brittany Terese
ID - 3781
IS - 1-2
JF - Acta Sci. Math. (Szeged)
TI - The difference in length of curves in R^n
VL - 77
ER -
TY - CHAP
AB - We address the problem of covering ℝ n with congruent balls, while minimizing the number of balls that contain an average point. Considering the 1-parameter family of lattices defined by stretching or compressing the integer grid in diagonal direction, we give a closed formula for the covering density that depends on the distortion parameter. We observe that our family contains the thinnest lattice coverings in dimensions 2 to 5. We also consider the problem of packing congruent balls in ℝ n , for which we give a closed formula for the packing density as well. Again we observe that our family contains optimal configurations, this time densest packings in dimensions 2 and 3.
AU - Edelsbrunner, Herbert
AU - Kerber, Michael
ED - Calude, Cristian
ED - Rozenberg, Grzegorz
ED - Salomaa, Arto
ID - 3796
T2 - Rainbow of Computer Science
TI - Covering and packing with spheres by diagonal distortion in R^n
VL - 6570
ER -
TY - JOUR
AB - The elevation function on a smoothly embedded 2-manifold in R-3 reflects the multiscale topography of cavities and protrusions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Transporting the concept from the smooth to the piecewise linear category, this paper describes an algorithm for finding all local maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian curvature of the 2-manifold.
AU - Wang, Bei
AU - Edelsbrunner, Herbert
AU - Morozov, Dmitriy
ID - 3965
IS - 2.2
JF - Journal of Experimental Algorithmics
TI - Computing elevation maxima by searching the Gauss sphere
VL - 16
ER -
TY - JOUR
AB - We address the problem of localizing homology classes, namely, finding the cycle representing a given class with the most concise geometric measure. We study the problem with different measures: volume, diameter and radius. For volume, that is, the 1-norm of a cycle, two main results are presented. First, we prove that the problem is NP-hard to approximate within any constant factor. Second, we prove that for homology of dimension two or higher, the problem is NP-hard to approximate even when the Betti number is O(1). The latter result leads to the inapproximability of the problem of computing the nonbounding cycle with the smallest volume and computing cycles representing a homology basis with the minimal total volume. As for the other two measures defined by pairwise geodesic distance, diameter and radius, we show that the localization problem is NP-hard for diameter but is polynomial for radius. Our work is restricted to homology over the ℤ2 field.
AU - Chen, Chao
AU - Freedman, Daniel
ID - 3267
IS - 3
JF - Discrete & Computational Geometry
TI - Hardness results for homology localization
VL - 45
ER -
TY - CONF
AB - We introduce TopoCut: a new way to integrate knowledge about topological properties (TPs) into random field image segmentation model. Instead of including TPs as additional constraints during minimization of the energy function, we devise an efficient algorithm for modifying the unary potentials such that the resulting segmentation is guaranteed with the desired properties. Our method is more flexible in the sense that it handles more topology constraints than previous methods, which were only able to enforce pairwise or global connectivity. In particular, our method is very fast, making it for the first time possible to enforce global topological properties in practical image segmentation tasks.
AU - Chen, Chao
AU - Freedman, Daniel
AU - Lampert, Christoph
ID - 3336
SN - 978-1-4577-0394-2
T2 - CVPR: Computer Vision and Pattern Recognition
TI - Enforcing topological constraints in random field image segmentation
ER -
TY - CHAP
AB - Alpha shapes have been conceived in 1981 as an attempt to define the shape of a finite set of point in the plane. Since then, connections to diverse areas in the sciences and engineering have developed, including to pattern recognition, digital shape sampling and processing, and structural molecular biology. This survey begins with a historical account and discusses geometric, algorithmic, topological, and combinatorial aspects of alpha shapes in this sequence.
AU - Edelsbrunner, Herbert
ED - van de Weygaert, R
ED - Vegter, G
ED - Ritzerveld, J
ED - Icke, V
ID - 3311
T2 - Tessellations in the Sciences: Virtues, Techniques and Applications of Geometric Tilings
TI - Alpha shapes - a survey
ER -
TY - CONF
AB - In cortex surface segmentation, the extracted surface is required to have a particular topology, namely, a two-sphere. We present a new method for removing topology noise of a curve or surface within the level set framework, and thus produce a cortical surface with correct topology. We define a new energy term which quantifies topology noise. We then show how to minimize this term by computing its functional derivative with respect to the level set function. This method differs from existing methods in that it is inherently continuous and not digital; and in the way that our energy directly relates to the topology of the underlying curve or surface, versus existing knot-based measures which are related in a more indirect fashion. The proposed flow is validated empirically.
AU - Chen, Chao
AU - Freedman, Daniel
ID - 3782
T2 - Conference proceedings MCV 2010
TI - Topology noise removal for curve and surface evolution
VL - 6533
ER -
TY - CHAP
AB - The (apparent) contour of a smooth mapping from a 2-manifold to the plane, f: M → R2 , is the set of critical values, that is, the image of the points at which the gradients of the two component functions are linearly dependent. Assuming M is compact and orientable and measuring difference with the erosion distance, we prove that the contour is stable.
AU - Edelsbrunner, Herbert
AU - Morozov, Dmitriy
AU - Patel, Amit
ID - 3795
T2 - Topological Data Analysis and Visualization: Theory, Algorithms and Applications
TI - The stability of the apparent contour of an orientable 2-manifold
ER -
TY - CONF
AB - We define the robustness of a level set homology class of a function f:XR as the magnitude of a perturbation necessary to kill the class. Casting this notion into a group theoretic framework, we compute the robustness for each class, using a connection to extended persistent homology. The special case X=R3 has ramifications in medical imaging and scientific visualization.
AU - Bendich, Paul
AU - Edelsbrunner, Herbert
AU - Morozov, Dmitriy
AU - Patel, Amit
ID - 3848
TI - The robustness of level sets
VL - 6346
ER -
TY - CONF
AB - Using ideas from persistent homology, the robustness of a level set of a real-valued function is defined in terms of the magnitude of the perturbation necessary to kill the classes. Prior work has shown that the homology and robustness information can be read off the extended persistence diagram of the function. This paper extends these results to a non-uniform error model in which perturbations vary in their magnitude across the domain.
AU - Bendich, Paul
AU - Edelsbrunner, Herbert
AU - Kerber, Michael
AU - Patel, Amit
ID - 3849
TI - Persistent homology under non-uniform error
VL - 6281
ER -
TY - CONF
AB - Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as the Minkowski sum of another polygonal shape with a disk of fixed radius? If it does, we also seek a preferably simple solution shape P;P’s offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give a decision algorithm for fixed radius in O(nlogn) time that handles any polygonal shape. For convex shapes, the complexity drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one.
AU - Berberich, Eric
AU - Halperin, Dan
AU - Kerber, Michael
AU - Pogalnikova, Roza
ID - 3850
TI - Polygonal reconstruction from approximate offsets
ER -
TY - CONF
AB - Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Edelsbrunner, Herbert
AU - Henzinger, Thomas A
AU - Rannou, Philippe
ID - 3853
TI - Mean-payoff automaton expressions
VL - 6269
ER -
TY - JOUR
AB - We are interested in 3-dimensional images given as arrays of voxels with intensity values. Extending these values to acontinuous function, we study the robustness of homology classes in its level and interlevel sets, that is, the amount of perturbationneeded to destroy these classes. The structure of the homology classes and their robustness, over all level and interlevel sets, can bevisualized by a triangular diagram of dots obtained by computing the extended persistence of the function. We give a fast hierarchicalalgorithm using the dual complexes of oct-tree approximations of the function. In addition, we show that for balanced oct-trees, thedual complexes are geometrically realized in $R^3$ and can thus be used to construct level and interlevel sets. We apply these tools tostudy 3-dimensional images of plant root systems.
AU - Bendich, Paul
AU - Edelsbrunner, Herbert
AU - Kerber, Michael
ID - 3901
IS - 6
JF - IEEE Transactions of Visualization and Computer Graphics
TI - Computing robustness and persistence for images
VL - 16
ER -
TY - CONF
AB - We address the problem of localizing homology classes, namely, finding the cycle representing a given class with the most concise geometric measure. We focus on the volume measure, that is, the 1-norm of a cycle. Two main results are presented. First, we prove the problem is NP-hard to approximate within any constant factor. Second, we prove that for homology of dimension two or higher, the problem is NP-hard to approximate even when the Betti number is O(1). A side effect is the inapproximability of the problem of computing the nonbounding cycle with the smallest volume, and computing cycles representing a homology basis with the minimal total volume. We also discuss other geometric measures (diameter and radius) and show their disadvantages in homology localization. Our work is restricted to homology over the ℤ2 field.
AU - Chen, Chao
AU - Freedman, Daniel
ID - 10909
T2 - Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms
TI - Hardness results for homology localization
ER -
TY - CONF
AB - We describe an algorithm for segmenting three-dimensional medical imaging data modeled as a continuous function on a 3-manifold. It is related to watershed algorithms developed in image processing but is closer to its mathematical roots, which are Morse theory and homological algebra. It allows for the implicit treatment of an underlying mesh, thus combining the structural integrity of its mathematical foundations with the computational efficiency of image processing.
AU - Edelsbrunner, Herbert
AU - Harer, John
ID - 3968
TI - The persistent Morse complex segmentation of a 3-manifold
VL - 5903
ER -